1
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
2
|
Song XJ, Wang SY, Jia SY, Wang GJ, Zhang WB. In vivo evaluation of liver function by multimodal imaging in an alcohol-induced liver injury model. Quant Imaging Med Surg 2023; 13:6434-6445. [PMID: 37869294 PMCID: PMC10585574 DOI: 10.21037/qims-23-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 10/24/2023]
Abstract
Background Visually evaluating liver function is a hot topic in hepatology research. There are few reliable and practical visualization methods for evaluating the liver function in vivo in experimental studies. In this study, we established a multimodal imaging approach for in vivo liver function evaluation and compared healthy mice with chronic alcoholic liver injury (cALI) model mice to explore its potential applicability in experimental research. Methods In vivo fluorescence imaging (IVFI) technology was utilized to visually represent the clearance of indocyanine green from the liver of both healthy mice and mice with cALI. The reserve liver function was evaluated via IVFI using the Cy5.5-galactosylated polylysine probe, which targets the asialoglycoprotein receptor of hepatocytes. Hepatic microcirculation was assessed through laser speckle perfusion imaging of hepatic blood perfusion. The liver microstructure was then investigated by in vivo confocal laser endomicroscopy imaging. Finally, hepatic asialoglycoprotein receptor expression, histology, and the levels of serum alanine aminotransferase and aspartate aminotransferase were measured. Results In vivo multimodal imaging results intuitively and dynamically showed that indocyanine green clearance [mean ± standard deviation (SD): 30.83±14.71, 95% confidence interval (CI): 20.3 to 41.35], the fluorescence signal intensity (mean ± SD: 1,217.92±117.63; 95% CI: 1,148.38 to 1,290.84) and fluorescence aggregation area (mean ± SD: 5,855.80±1,271.81; 95% CI: 5,051.57 to 6,653.88) of Cy5.5-galactosylated polylysine targeting the asialoglycoprotein receptor, and hepatic blood perfusion (mean ± SD: 1,494.86±299.33; 95% CI: 1,316.98 to 1,690.16) in model mice were significantly lower than those in healthy mice (all P<0.001). Compared to healthy mice, the model mice exhibited a significant decline in liver asialoglycoprotein receptor expression (mean ± SD: 219.03±16.34; 95% CI: 208.97 to 230.69; P<0.001), increased serum alanine aminotransferase (mean ± SD: 149.70±47.89 U/L; 95% CI: 81.75 to 128.89; P=0.01) and aspartate aminotransferase levels (mean ± SD: 106.30±36.13 U/L; 95% CI: 122.01 to 180.17; P=0.021), hepatocyte swelling and deformation, disappearance of the hepatic cord structure, partial necrosis, and disintegration of hepatocytes. The imaging features of fluorescence signals in liver regions, hepatic blood perfusion and microstructure were biologically related to hepatic asialoglycoprotein receptor expression, serum indices of liver function, and histopathology in model mice. Conclusions Utilizing in vivo multimodal imaging technology to assess liver function is a viable approach for experimental research, providing dynamic and intuitive visual evaluations in a rapid manner.
Collapse
Affiliation(s)
- Xiao-Jing Song
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-You Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-Yong Jia
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Jun Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-Bo Zhang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Huang CJ, Hsu SJ, Hsu YC, Chen LK, Li C, Huang HC, Lee YH. Synthesis, characterization, and biological verification of asialoglycoprotein receptor-targeted lipopolysaccharide-encapsulated PLGA nanoparticles for the establishment of a liver fibrosis animal model. Biomater Sci 2023; 11:6650-6662. [PMID: 37609825 DOI: 10.1039/d3bm01058a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Liver fibrosis is generally preceded by various liver injuries and often leads to chronic liver diseases and even cirrhosis. Therefore, a liver fibrosis animal model is the cornerstone for the development of therapeutic strategies for hepatic diseases. Although administration of hepatotoxic substances and/or bile duct ligation have been widely performed to construct the in vivo model over the last decades, they are seriously hindered by time-consuming protocols, high mortality, and instability, indicating that an effective and safe approach for the induction of liver fibrosis is still urgently needed nowadays. In this study, we have developed asialoglycoprotein receptor (ASGPR)-targeted lipopolysaccharide (LPS)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles named ALPNPs for establishing an animal model of liver fibrosis. The ALPNPs are characterized as having a spherical nanostructure with size of 182.9 ± 8.89 nm and surface charge of -8.3 ± 1.48 mV. An anti-ASGPR antibody bound to the surface of the nanoparticles with a crosslinking efficiency of 95.03% allows ALPNPs to have hepatocyte-binding specificity. In comparison to free LPSs, the ALPNPs can induce higher aspartate aminotransferase and total bilirubin concentrations in plasma, reduce the blood flow rate in the portal system and the kidneys, and increase vascular resistance in the liver, kidneys, and collateral shunting vasculature. Based on histological and RNA-seq analyses, the ALPNPs can provide similar capability on inducing hepatic inflammation and fibrosis compared to free LPS but possess higher liver targetability than the naked drug. In addition, the ALPNPs are less toxic in organs other than the liver in comparison to free LPS, demonstrating that the ALPNPs do not elicit off-target effects in vivo. Given the aforementioned efficacies with other merits such as biocompatibility and drug release controllability provided by PLGA, we anticipate that the developed ALPNPs are highly applicable in establishing animal models of liver fibrosis in pre-clinical studies.
Collapse
Affiliation(s)
- Ching-Ju Huang
- Department of Biomedical Sciences and Engineering, National Central, University, Taoyuan 32001, Taiwan R.O.C.
| | - Shao-Jung Hsu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan R.O.C.
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan R.O.C
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central, University, Taoyuan 32001, Taiwan R.O.C.
| | - Liang-Kun Chen
- Department of Biomedical Sciences and Engineering, National Central, University, Taoyuan 32001, Taiwan R.O.C.
| | - Chuan Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan R.O.C
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan R.O.C.
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan R.O.C
| | - Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central, University, Taoyuan 32001, Taiwan R.O.C.
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan R.O.C
| |
Collapse
|
4
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
6
|
Dai X, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xinghang Dai
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- West China School of Medicine Sichuan University Chengdu 610041 China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Amgen Bioprocessing Centre Keck Graduate Institute CA 91711 USA
| | - Zhongwei Gu
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
7
|
Asialoglycoprotein Receptor-Targeted Superparamagnetic Perfluorooctylbromide Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:5510071. [PMID: 34131415 PMCID: PMC8181107 DOI: 10.1155/2021/5510071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Abstract
Background The decrease in asialoglycoprotein receptor (ASGPR) levels is observed in patients with chronic liver disease and liver tumor. The aim of our study was to develop ASGPR-targeted superparamagnetic perfluorooctylbromide nanoparticles (M-PFONP) and wonder whether this composite agent could target buffalo rat liver (BRL) cells in vitro and could improve R2∗ value of the rat liver parenchyma after its injection in vivo. Methods GalPLL, a ligand of ASGPR, was synthesized by reductive amination. ASGPR-targeted M-PFOBNP was prepared by a film hydration method coupled with sonication. Several analytical methods were used to investigate the characterization and safety of the contrast agent in vitro. The in vivo MR T2∗ mapping was performed to evaluate the enhancement effect in rat liver. Results The optimum concentration of Fe3O4 nanoparticles inclusion in GalPLL/M-PFOBNP was about 52.79 µg/mL, and the mean size was 285.6 ± 4.6 nm. The specificity of GalPLL/M-PFOBNP for ASGPR was confirmed by incubation experiment with fluorescence microscopy. The methyl thiazolyl tetrazolium (MTT) test showed that there was no significant difference in the optical density (OD) of cells incubated with all GalPLL/M-PFOBNP concentrations. Compared with M-PFOBNP, the increase in R2∗ value of the rat liver parenchyma after GalPLL/M-PFOBNP injection was higher. Conclusions GalPLL/M-PFOBNP may potentially serve as a liver-targeted contrast agent for MR receptor imaging.
Collapse
|
8
|
Xing L, Chang X, Shen L, Zhang C, Fan Y, Cho C, Zhang Z, Jiang H. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci 2020; 16:47-61. [PMID: 33613729 PMCID: PMC7878446 DOI: 10.1016/j.ajps.2020.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/22/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer, which is a serious disease threatening human health. Recent studies have shown that the early treatment of fibrosis is turning point and particularly important. Therefore, how to reverse fibrosis has become the focus and research hotspot in recent years. So far, the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery. Moreover, the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects. Herein, this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver, pulmonary, and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms, which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lijun Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenglu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yatong Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chongsu Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding authors.
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081 China
- Corresponding authors.
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
9
|
Shao T, Josephson L, Liang SH. PET/SPECT Molecular Probes for the Diagnosis and Staging of Nonalcoholic Fatty Liver Disease. Mol Imaging 2020; 18:1536012119871455. [PMID: 31478458 PMCID: PMC6724487 DOI: 10.1177/1536012119871455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a significant public health challenge afflicting approximately 1 billion individuals both in the Western world and in the East world. While liver biopsy is considered as gold standard in the diagnosis and staging of liver fibrosis, noninvasive imaging technologies, including ultrasonography, computed tomography, single-photon emission computed tomography (SPECT), magnetic resonance imaging, and positron emission tomography (PET) could offer more sensitive, comprehensive, and quantitative measurement for NAFLD. In this review, we focus on recent development and applications of PET/SPECT molecular probes that enable multispatial/temporal visualization and quantification of physiopathological progress at the molecular level in the NAFLD. We shall also discuss the limitations of current radioligands and future direction for PET/SPECT probe development.
Collapse
Affiliation(s)
- Tuo Shao
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- 1 Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
|
11
|
Song X, Wang S, Zhao C, Zhang W, Wang G, Jia S. Visual method for evaluating liver function: targeted in vivo fluorescence imaging of the asialoglycoprotein receptor. BIOMEDICAL OPTICS EXPRESS 2019; 10:5015-5024. [PMID: 31646026 PMCID: PMC6788595 DOI: 10.1364/boe.10.005015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The visual evaluation of liver function (LF) has always been a hot topic in research on liver diseases. In vivo fluorescence imaging (IVFI) of the Cy5.5-galactosylated polylysine (Cy5.5-GP) probe targeting asialoglycoprotein receptor (ASGPR), for evaluating LF in chronic alcoholic liver injury (cALI) mice was investigated in this study. The decrease of fluorescence signals in the livers showed a biological relationship with the liver ASGPR expression, histology, and serum marker levels of LF in cALI mice. The targeted IVFI of ASGPR as a novel method can intuitively and noninvasively display the characteristics of liver's ASGPR level to provide a reference for evaluating LF.
Collapse
Affiliation(s)
- Xiaojing Song
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuyou Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chong Zhao
- Beijing Hapten and Protein Biomedical Institute, Beijing, 102206, China
| | - Weibo Zhang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangjun Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuyong Jia
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
12
|
Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals (Basel) 2019; 12:ph12030137. [PMID: 31527492 PMCID: PMC6789861 DOI: 10.3390/ph12030137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews the use of metal complexes as contrast agents (CA) and radiopharmaceuticals for the anatomical and functional imaging of the liver. The main focus was on two established imaging modalities: magnetic resonance imaging (MRI) and nuclear medicine, the latter including scintigraphy and positron emission tomography (PET). The review provides an overview on approved pharmaceuticals like Gd-based CA and 99mTc-based radiometal complexes, and also on novel agents such as 68Ga-based PET tracers. Metal complexes are presented by their imaging modality, with subsections focusing on their structure and mode of action. Uptake mechanisms, metabolism, and specificity are presented, in context with advantages and limitations of the diagnostic application and taking into account the respective imaging technique.
Collapse
|
13
|
Li S, Sun X, Chen M, Ying Z, Wan Y, Pi L, Ren B, Cao Q. Liver Fibrosis Conventional and Molecular Imaging Diagnosis Update. JOURNAL OF LIVER 2019; 8:236. [PMID: 31341723 PMCID: PMC6653681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver fibrosis is a serious, life-threatening disease with high morbidity and mortality that result from diverse causes. Liver biopsy, considered the "gold standard" to diagnose, grade, and stage liver fibrosis, has limitations in terms of invasiveness, cost, sampling variability, inter-observer variability, and the dynamic process of fibrosis. Compelling evidence has demonstrated that all stages of fibrosis are reversible if the injury is removed. There is a clear need for safe, effective, and reliable non-invasive assessment modalities to determine liver fibrosis in order to manage it precisely in personalized medicine. However, conventional imaging methods used to assess morphological and structural changes related to liver fibrosis, including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), are only useful in assessing advanced liver disease, including cirrhosis. Functional imaging techniques, including MR elastography (MRE), US elastography, and CT perfusion are useful for assessing moderate to advanced liver fibrosis. MRE is considered the most accurate noninvasive imaging technique, and US elastography is currently the most widely used noninvasive means. However, these modalities are less accurate in early-stage liver fibrosis and some factors affect the accuracy of these techniques. Molecular imaging is a target-specific imaging mechanism that has the potential to accurately diagnose early-stage liver fibrosis. We provide an overview of recent advances in molecular imaging for the diagnosis and staging of liver fibrosis which will enable clinicians to monitor the progression of disease and potentially reverse liver fibrosis. We compare the promising technologies with conventional and functional imaging and assess the utility of molecular imaging in precision and personalized clinical medicine in the early stages of liver fibrosis.
Collapse
Affiliation(s)
- Shujing Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, The first affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R.China
| | - Xicui Sun
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Minjie Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yamin Wan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan province, P.R.China
| | - Liya Pi
- Department of Pediatrics in the College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Spleno-hepatic index to predict portal hypertension by equilibrium radionuclide ventriculography. Nucl Med Commun 2018; 39:1138-1142. [PMID: 30371604 DOI: 10.1097/mnm.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Structural and morphological changes accompanying liver cirrhosis lead to portal hypertension (PHT), which is the first step of most of the complications in patients with liver cirrhosis. Therefore, the development of noninvasive techniques to detect PHT is crucial for prognosis and treatment. AIM The aim of our study was to assess the diagnostic performance of a new spleno-hepatic index (SHI) measured from equilibrium radionuclide ventriculography (ERV) images in detecting patients with cirrhotic PHT. METHODS AND RESULTS A total of 38 patients with PHT were compared with 30 controls without liver disease. The SHI was measured on the sum of the tomographic images from the ERV and calculated according to the following formula: SHI=(mean splenic count×longest hepatic length)/mean hepatic count. Mean SHI was 54±14 and 36±8 (P<0.001) among patients with PHT and controls, respectively. A cutoff value of 40 for the SHI allowed a sensitivity of 90% and specificity of 77% to detect PHT. SHI greater than 51 was 100% specific. In a subset of 25 patients, SHI was not correlated with hepatic venous pressure gradient measured invasively in the right hepatic vein (R=-0.08, P=0.70). CONCLUSION Quantification of SHI derived from ERV could be used to detect liver cirrhosis with PHT although it is not linearly correlated with the hepatic venous pressure gradient. SHI should be considered as a useful index for the identification of PHT in patients referred for the detection/exploration of cirrhotic cardiomyopathy by ERV.
Collapse
|
15
|
Huang L, Li Z, Zhang D, Li H, Shi C, Zhang P, Su X, Zhang X. Highly Specific and Sensitive Radioiodinated Agent for In Vivo Imaging of Superoxide through Superoxide-Initiated Retention. Anal Chem 2018; 90:12971-12978. [DOI: 10.1021/acs.analchem.8b03642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Deliang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Hua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
16
|
Zhang D, Zhuang R, Guo Z, Gao M, Huang L, You L, Zhang P, Li J, Su X, Wu H, Chen X, Zhang X. Desmin- and vimentin-mediated hepatic stellate cell-targeting radiotracer 99mTc-GlcNAc-PEI for liver fibrosis imaging with SPECT. Am J Cancer Res 2018; 8:1340-1349. [PMID: 29507624 PMCID: PMC5835940 DOI: 10.7150/thno.22806] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) accumulation in liver fibrosis is caused by the activation of hepatic stellate cells (HSCs). The goal of this study was to develop a 99mTc-labeled N-acetylglucosamine (GlcNAc) that specifically interacts with desmin and vimentin expressed on activated HSCs to monitor the progression and prognosis of liver fibrosis using single-photon emission computed tomography (SPECT) imaging. Methods: GlcNAc-conjugated polyethylenimine (PEI) was first prepared and radiolabeled with 99mTc. Noninvasive SPECT imaging with 99mTc-GlcNAc-PEI was used to assess liver fibrosis in a carbon tetrachloride (CCl4) mouse model. The liver uptake value (LUV) of 99mTc-GlcNAc-PEI was measured by drawing the region of interest (ROI) of the whole liver as previously suggested. The LUV of the CCl4 groups was compared with that of the olive oil group. Next, we estimated the correlation between the results of SPECT imaging and physiological indexes. After treatment with clodronate liposome, the LUV of 99mTc-GlcNAc-PEI in fibrotic mice was compared with that in control mice. Results:99mTc-GlcNAc-PEI is a hydrophilic compound with high radiochemical purity (>98%) and good stability. It could specifically target desmin and vimentin on the surface of activated HSCs with high affinity (the Kd values were 53.75 ± 9.50 nM and 20.98 ± 3.56 nM, respectively). The LUV of 99mTc-GlcNAc-PEI was significantly different between the CCl4 and control groups as early as 4 weeks of CCl4 administration (3.30 ± 0.160 vs 2.34 ± 0.114%/cc; P ˂ 0.05). There was a strong correlation between the LUV and Sirius Red quantification (R = 0.92, P ˂ 0.001). Compared with control, clodronate liposome treatment reduced the LUV of 99mTc-GlcNAc-PEI (4.62 ± 0.352 vs 2.133 ± 0.414%/cc; P ˂ 0.05). Conclusion:99mTc-GlcNAc-PEI SPECT/CT was useful in assessing liver fibrosis and monitoring the treatment response.
Collapse
|
17
|
Gao YY, Chen H, Zhou YY, Wang LT, Hou Y, Xia XH, Ding Y. Intraorgan Targeting of Gold Conjugates for Precise Liver Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31458-31468. [PMID: 28838233 DOI: 10.1021/acsami.7b08969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intraorgan targeting of chemical drugs at tumor tissues is essential in the treatment of solid tumors that express the same target receptor as normal tissues. Here, asialoglycoprotein receptor (ASGP-R)-targeting paclitaxel-conjugated gold nanoparticles (Gal/PTX-GNPs) are fabricated as a demonstration to realize the precise treatment of liver cancer. The enhanced biological specificity and therapeutic performance of drugs loaded on nanoparticles not only rely on the ligands on carriers for receptor recognition but are also determined by the performance of gold conjugates with designed structure. The tumor cell selectivity of the designed conjugates in liver tumor (HepG2) cells is close to six times of that incubated with control conjugates without galactose modification in liver normal (L02) cells. The drug level in tumor versus liver of Gal/PTX-GNPs is 121.0% at 8 h post injection, a 15.7-fold increase in the tumor specificity compared to that of GNPs conjugated with PTX only. This intraorgan-targeting strategy results in a considerable improvement of performance in treating both Heps heterotopic and orthotopic xenograft tumor models, which is expected to be used for the enhanced antitumor efficacy and reduced hepatotoxicity in liver cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yanglong Hou
- Department of Materials Science and Engineering, College of Engineering and Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University , Beijing 100871, China
| | | | | |
Collapse
|
18
|
Müller A, Hochrath K, Stroeder J, Hittatiya K, Schneider G, Lammert F, Buecker A, Fries P. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8720367. [PMID: 28194423 PMCID: PMC5286538 DOI: 10.1155/2017/8720367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 01/06/2023]
Abstract
Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks) in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/-) mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.
Collapse
Affiliation(s)
- Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. 100, Bdg. 50.1, 66421 Homburg, Germany
| | - Katrin Hochrath
- Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Department of Internal Medicine II, Saarland University, Saarland University Medical Center, Bdg. 77, Kirrberger Str. 100, 66421 Homburg, Germany
| | - Jonas Stroeder
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. 100, Bdg. 50.1, 66421 Homburg, Germany
| | - Kanishka Hittatiya
- Institute of Pathology, University Hospital Bonn, Bdg. 62, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Günther Schneider
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. 100, Bdg. 50.1, 66421 Homburg, Germany
| | - Frank Lammert
- Department of Internal Medicine II, Saarland University, Saarland University Medical Center, Bdg. 77, Kirrberger Str. 100, 66421 Homburg, Germany
| | - Arno Buecker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. 100, Bdg. 50.1, 66421 Homburg, Germany
| | - Peter Fries
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. 100, Bdg. 50.1, 66421 Homburg, Germany
| |
Collapse
|
19
|
Marion-Letellier R, Bohn P, Modzelewski R, Vera P, Aziz M, Guérin C, Savoye G, Savoye-Collet C. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging. World J Gastroenterol 2017; 23:216-223. [PMID: 28127195 PMCID: PMC5236501 DOI: 10.3748/wjg.v23.i2.216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics.
METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score.
RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively).
CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats.
Collapse
|