1
|
Tran PHN, Lee TS. Harnessing organelle engineering to facilitate biofuels and biochemicals production in yeast. J Microbiol 2025; 63:e2501006. [PMID: 40195834 DOI: 10.71150/jm.2501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| |
Collapse
|
2
|
Guo X, Bai Z, Zhao H, Shi S. Development of a multigene expression system using 2A peptides in Rhodosporidium toruloides. Biotechnol Bioeng 2024; 121:3893-3905. [PMID: 39285630 DOI: 10.1002/bit.28843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 11/12/2024]
Abstract
In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as Rhodosporidium toruloides. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in R. toruloides. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in R. toruloides.
Collapse
Affiliation(s)
- Xiao Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China
| | - Zhenzhen Bai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Engineering, Beijing, China
| |
Collapse
|
3
|
Azambuja SPH, de Mélo AHF, Bertozzi BG, Inoue HP, Egawa VY, Rosa CA, Rocha LO, Teixeira GS, Goldbeck R. Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance. Food Res Int 2024; 190:114637. [PMID: 38945626 DOI: 10.1016/j.foodres.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/02/2024]
Abstract
Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.
Collapse
Affiliation(s)
- Suéllen P H Azambuja
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Allan H F de Mélo
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Bruno G Bertozzi
- Food Microbiology Laboratory I, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Heitor P Inoue
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Viviane Y Egawa
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Carlos A Rosa
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Liliana O Rocha
- Food Microbiology Laboratory I, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Gleidson S Teixeira
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Muñoz-Miranda LA, Zepeda-Peña AC, Casas-Godoy L, Pereira-Santana A, Méndez-Zamora A, Barrera-Martínez I, Rodríguez-Zapata L, Gschaedler-Mathis AC, Figueroa-Yáñez LJ. CRISPRi-induced transcriptional regulation of IAH1 gene and its influence on volatile compounds profile in Kluyveromyces marxianus DU3. World J Microbiol Biotechnol 2024; 40:121. [PMID: 38441729 DOI: 10.1007/s11274-023-03811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 03/07/2024]
Abstract
Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.
Collapse
Affiliation(s)
- Luis A Muñoz-Miranda
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Andrea Catalina Zepeda-Peña
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Leticia Casas-Godoy
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Alejandro Pereira-Santana
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. Subsede Sureste, Parque Científico y Tecnológico de Yucatán, Mérida, Yucatán, México
| | - Andrés Méndez-Zamora
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México
| | - Iliana Barrera-Martínez
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Subsede Zapopan, Zapopan, Jalisco, México
| | - Luis Rodríguez-Zapata
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, Yucatán, México
| | - Anne Christine Gschaedler-Mathis
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| | - Luis J Figueroa-Yáñez
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Subsede Zapopan, Zapopan, Jalisco, México.
| |
Collapse
|
5
|
Songdech P, Butkinaree C, Yingchutrakul Y, Promdonkoy P, Runguphan W, Soontorngun N. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 2024; 24:foae006. [PMID: 38331422 PMCID: PMC10878408 DOI: 10.1093/femsyr/foae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.
Collapse
Affiliation(s)
- Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Peerada Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
6
|
Qiao W, Dong G, Xu S, Li L, Shi S. Engineering propionyl-CoA pools for de novo biosynthesis of odd-chain fatty acids in microbial cell factories. Crit Rev Biotechnol 2023; 43:1063-1072. [PMID: 35994297 DOI: 10.1080/07388551.2022.2100736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted great interest due to their wide applications in the food, pharmaceutical and petrochemical industries. Microorganisms can naturally de novo produce fatty acids (FAs), where mainly, even-chain with acetyl-CoA instead of odd-chain with propionyl-CoA is used as the primer. Usually, the absence of the precursor propionyl-CoA is considered the main reason that limits the efficient production of OcFAs. It is thus crucial to explore/evaluate/identify promising propionyl-CoA biosynthetic pathways to achieve large-scale biosynthesis of OcFAs. This review discusses the latest advances in microbial metabolism engineering toward producing propionyl-CoA and considers future research directions and challenges toward optimized production of OcFAs.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
7
|
Zhang Y, Su M, Chen Y, Wang Z, Nielsen J, Liu Z. Engineering yeast mitochondrial metabolism for 3-hydroxypropionate production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:64. [PMID: 37031180 PMCID: PMC10082987 DOI: 10.1186/s13068-023-02309-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND With unique physiochemical environments in subcellular organelles, there has been growing interest in harnessing yeast organelles for bioproduct synthesis. Among these organelles, the yeast mitochondrion has been found to be an attractive compartment for production of terpenoids and branched-chain alcohols, which could be credited to the abundant supply of acetyl-CoA, ATP and cofactors. In this study we explored the mitochondrial potential for production of 3-hydroxypropionate (3-HP) and performed the cofactor engineering and flux control at the acetyl-CoA node to maximize 3-HP synthesis. RESULTS Metabolic modeling suggested that the mitochondrion serves as a more suitable compartment for 3-HP synthesis via the malonyl-CoA pathway than the cytosol, due to the opportunity to obtain a higher maximum yield and a lower oxygen consumption. With the malonyl-CoA reductase (MCR) targeted into the mitochondria, the 3-HP production increased to 0.27 g/L compared with 0.09 g/L with MCR expressed in the cytosol. With enhanced expression of dissected MCR enzymes, the titer reached to 4.42 g/L, comparable to the highest titer achieved in the cytosol so far. Then, the mitochondrial NADPH supply was optimized by overexpressing POS5 and IDP1, which resulted in an increase in the 3-HP titer to 5.11 g/L. Furthermore, with induced expression of an ACC1 mutant in the mitochondria, the final 3-HP production reached 6.16 g/L in shake flask fermentations. The constructed strain was then evaluated in fed-batch fermentations, and produced 71.09 g/L 3-HP with a productivity of 0.71 g/L/h and a yield on glucose of 0.23 g/g. CONCLUSIONS In this study, the yeast mitochondrion is reported as an attractive compartment for 3-HP production. The final 3-HP titer of 71.09 g/L with a productivity of 0.71 g/L/h was achieved in fed-batch fermentations, representing the highest titer reported for Saccharomyces cerevisiae so far, that demonstrated the potential of recruiting the yeast mitochondria for further development of cell factories.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mo Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, Trabelsi H, Alzahrani KJ, Reshamwala SMS, Awasthi MK, Ramakrishna S, Singh V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. BIORESOURCE TECHNOLOGY 2023; 372:128668. [PMID: 36693507 DOI: 10.1016/j.biortech.2023.128668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Snovia Nixon
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nilesh Kumar
- M.Tech. Programme in Bioprocess Engineering, Institute of Chemical Technology, Mumbai, India; DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debarun Dhali
- EV Biotech BV, Zernikelaan 8, 9747 AA Groningen, The Netherlands
| | - Heykel Trabelsi
- Carbocode GmbH, Byk-Gulden-Strasse 2, 78467 Konstanz, Germany
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suresh Ramakrishna
- College of Medicine, Hanyang University, Seoul, South Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
9
|
Srivastava RK, Nedungadi SV, Akhtar N, Sarangi PK, Subudhi S, Shadangi KP, Govarthanan M. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160260. [PMID: 36400296 DOI: 10.1016/j.scitotenv.2022.160260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products. Different wastes (organic/inorganic) generation with their negative issues are due to numbers of developmental and social activities, reported. Currently, various efforts are found for these wastes minimization via generation of different types of value-added products (biogas, bioH2, alcoholic fuel, organic acids and others products) and these wastes in municipal cities are also reported with production of advanced biofuels as promising outcomes. For hydrolysis of complex organic resources including lignocellulosic biomasses, physicochemical, structural or compositional changes are needed that aid in conversion into sugar and organic compounds such as biofuels. So, efficient and effective pretreatment processes selection (physical, biological, chemical or combined one) is critical to achieve these hydrolysis goals and resultant cellulose or hemicellulose components can be accessible by biological catalysis. These can achieve final hydrolysis and fermentative or monomer sugars. And later, synthesis of fuels or value-added products during microbial fermentation or biotransformation processes can be achieved. This review discusses pretreatment techniques for improved hydrolysis for fermentative sugar with emphasis on reduced quantities of toxic compounds (furfural compound) in hydrolyzed biomasses. Minimum deterioration fuel economy also reported with production of different bioproducts including biofuels. Additionally, impacts of toxic products and gasses emission are also discussed with their minimization.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India.
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | - Nasim Akhtar
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | | | - Sanjukta Subudhi
- Advanced Biofuels program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
10
|
Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, Szakacs G, Binod P. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. BIORESOURCE TECHNOLOGY 2023; 370:128555. [PMID: 36586428 DOI: 10.1016/j.biortech.2022.128555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.
Collapse
Affiliation(s)
- Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India.
| | - K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 689 122, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarkhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - George Szakacs
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, 1111 Budapest, Szent Gellert ter 4, Hungary
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
11
|
Joshi S, Mishra S. Recent advances in biofuel production through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 352:127037. [PMID: 35318143 DOI: 10.1016/j.biortech.2022.127037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Rising global energy demands and climate crisis has created an unprecedented need for the bio-based circular economy to ensure sustainable development with the minimized carbon footprint. Along with conventional biofuels such as ethanol, microbes can be used to produce advanced biofuels which are equivalent to traditional fuels in their energy efficiencies and are compatible with already established infrastructure and hence can be directly blended in higher proportions without overhauling of the pre-existing setup. Metabolic engineering is at the frontiers to develop microbial chassis for biofuel bio-foundries to meet the industrial needs for clean energy. This review does a thorough inquiry of recent developments in metabolic engineering for increasing titers, rates, and yields (TRY) of biofuel production by engineered microorganisms.
Collapse
Affiliation(s)
- Swati Joshi
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India; Central University of Gujarat, Gandhinagar, Gujarat, India.
| | - SukhDev Mishra
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Liu H, Zhou P, Qi M, Guo L, Gao C, Hu G, Song W, Wu J, Chen X, Chen J, Chen W, Liu L. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nat Commun 2022; 13:1886. [PMID: 35393407 PMCID: PMC8991263 DOI: 10.1038/s41467-022-29560-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Saccharomyces cerevisiae is widely employed as a cell factory for the production of biofuels. However, product toxicity has hindered improvements in biofuel production. Here, we engineer the actin cytoskeleton in S. cerevisiae to increase both the cell growth and production of n-butanol and medium-chain fatty acids. Actin cable tortuosity is regulated using an n-butanol responsive promoter-based autonomous bidirectional signal conditioner in S. cerevisiae. The budding index is increased by 14.0%, resulting in the highest n-butanol titer of 1674.3 mg L-1. Moreover, actin patch density is fine-tuned using a medium-chain fatty acid responsive promoter-based autonomous bidirectional signal conditioner. The intracellular pH is stabilized at 6.4, yielding the highest medium-chain fatty acids titer of 692.3 mg L-1 in yeast extract peptone dextrose medium. Engineering the actin cytoskeleton in S. cerevisiae can efficiently alleviate biofuels toxicity and enhance biofuels production.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Ding W, Meng Q, Dong G, Qi N, Zhao H, Shi S. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J 2022; 17:e2100579. [PMID: 35086163 DOI: 10.1002/biot.202100579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Propionate is widely used as a preservative in the food and animal feed industries. Propionate is currently produced by petrochemical processes, and fermentative production of propionate remains challenging. METHODS AND RESULTS In this study, a synthetic propionate pathway was constructed in the budding yeast Saccharomyces cerevisiae, for propionate production under aerobic conditions. Through expression of tdcB and aldH from Escherichia coli and kivD from Lactococcus lactis, L-threonine was converted to propionate via 2-ketobutyrate and propionaldehyde. The resulting yeast aerobically produced 0.21 g/L propionate from glucose in a shake flask. Subsequent overexpression of pathway genes and elimination of competing pathways increased propionate production to 0.37 g/L. To further increase propionate production, carbon flux was pulled into the propionate pathway by weakened expression of pyruvate kinase (PYK1), together with overexpression of phosphoenolpyruvate carboxylase (ppc). The final propionate production reached 1.05 g/L during fed-batch fermentation in a fermenter. CONCLUSIONS AND IMPLICATIONS In this work, a yeast cell factory was constructed using synthetic biology and metabolic engineering strategies to enable propionate production under aerobic conditions. Our study demonstrates engineered S. cerevisiae as a promising alternative for the production of propionate and its derivatives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 9, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Qiongyu Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Nailing Qi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
14
|
Wang X, Zhang Q, Liu F, Jin Y, Li X. Experimental investigation on n-butanol/methyl oleate dual fuel RCCI combustion in a single cylinder engine at high-load condition. Sci Rep 2021; 11:24211. [PMID: 34930977 PMCID: PMC8688428 DOI: 10.1038/s41598-021-03693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022] Open
Abstract
Reactivity controlled compression ignition (RCCI) engines have a high thermal efficiency as well as low emissions of soot and nitrogen oxides (NOx). However, there is a conflict between combustion stability and harmful emissions at high engine load. Therefore, this work presented a novel approach for regulating n-butanol/methyl oleate dual fuel RCCI at high engine load in attaining lower pollutant emissions while maintaining stable combustion and avoiding excessive in-cylinder pressure. The tests were conducted on a single cylinder engine under rated speed and 90% full load. In this study, n-butanol was selected as a low-reactivity fuel for port injection, and n-butanol/methyl oleate blended fuel was used for in-cylinder direct injection. Combustion and emission characteristics of the engine were first investigated with varied ratios of n-butanol port injection (PFI) and direct injection (DI). Results showed that as the ratio of n-butanol PFI and DI rose, the peak cylinder pressure and heat release rate increased, while NOx and soot emissions reduced, and carbon monoxide (CO) and hydrocarbon (HC) emissions increased under most test conditions. When RNBPI = 40% and RNBDI = 20%, the soot and NOx emissions of the engine were near the lowest values of all test conditions, yet the peak in-cylinder pressure and fuel consumption could not increase significantly. Therefore, the possibility of optimizing the combustion process and lowering emissions by adjusting the pilot injection strategy was investigated utilizing these fuel injection ratios. The results revealed that with an appropriate pilot injection ratio and interval, the peak in-cylinder pressure and NOx emission were definitely reduced, while soot, CO, and HC emissions did not significantly increase.
Collapse
Affiliation(s)
- Xin Wang
- College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Qian Zhang
- College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, 471003, China
| | - Fangjie Liu
- College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yifan Jin
- College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xin Li
- College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
15
|
Lin L, Zhang Z, Tang H, Guo Y, Zhou B, Liu Y, Huang R, Du L, Pang H. Enhanced sucrose fermentation by introduction of heterologous sucrose transporter and invertase into Clostridium beijerinckii for acetone-butanol-ethanol production. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201858. [PMID: 34567584 PMCID: PMC8456130 DOI: 10.1098/rsos.201858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/31/2021] [Indexed: 05/12/2023]
Abstract
A heterologous pathway for sucrose transport and metabolism was introduced into Clostridium beijerinckii to improve sucrose use for n-butanol production. The combined expression of StSUT1, encoding a sucrose transporter from potato (Solanum tuberosum), and SUC2, encoding a sucrose invertase from Saccharomyces cerevisiae, remarkably enhanced n-butanol production. With sucrose, sugarcane molasses and sugarcane juice as substrates, the C. beijerinckii strain harbouring StSUT1 and SUC2 increased acetone-butanol-ethanol production by 38.7%, 22.3% and 52.8%, respectively, compared with the wild-type strain. This is the first report to demonstrate enhanced sucrose fermentation due to the heterologous expression of a sucrose transporter and invertase in Clostridium. The metabolic engineering strategy used in this study can be widely applied in other microorganisms to enhance the production of high-value compounds from sucrose-based biomass.
Collapse
Affiliation(s)
- Lihua Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Hongchi Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Yuan Guo
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Bingqing Zhou
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning, Guangxi 530005, People's Republic of China
| | - Hao Pang
- Guangxi Key Laboratory of Bio-refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning, Guangxi 530007, People's Republic of China
| |
Collapse
|
16
|
Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes (Basel) 2021; 12:genes12020181. [PMID: 33514005 PMCID: PMC7911632 DOI: 10.3390/genes12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.
Collapse
|
17
|
Meng J, Qiu Y, Shi S. CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories. Front Bioeng Biotechnol 2020; 8:594347. [PMID: 33330425 PMCID: PMC7710542 DOI: 10.3389/fbioe.2020.594347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Synthetic yeast cell factories provide a remarkable solution for the sustainable supply of a range of products, ranging from large-scale industrial chemicals to high-value pharmaceutical compounds. Synthetic biology is a field in which metabolic pathways are intensively studied and engineered. The clustered, regularly interspaced, short, palindromic repeat-associated (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has emerged as the state-of-the-art gene editing technique for synthetic biology. Recently, the use of different CRISPR/Cas9 systems has been extended to the field of yeast engineering for single-nucleotide resolution editing, multiple-gene editing, transcriptional regulation, and genome-scale modifications. Such advancing systems have led to accelerated microbial engineering involving less labor and time and also enhanced the understanding of cellular genetics and physiology. This review provides a brief overview of the latest research progress and the use of CRISPR/Cas9 systems in genetic manipulation, with a focus on the applications of Saccharomyces cerevisiae cell factory engineering.
Collapse
Affiliation(s)
- Jie Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yue Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
Jia H, Chen T, Qu J, Yao M, Xiao W, Wang Y, Li C, Yuan Y. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
20
|
n-Butanol production by Saccharomyces cerevisiae from protein-rich agro-industrial by-products. Braz J Microbiol 2020; 51:1655-1664. [PMID: 32888143 DOI: 10.1007/s42770-020-00370-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
n-Butanol is a renewable resource with a wide range of applications. Its physicochemical properties make it a potential substitute for gasoline. Saccharomyces cerevisiae can produce n-butanol via amino acid catabolic pathways, but the use of pure amino acids is economically unfeasible for large-scale production. The aim of this study was to optimize the production of n-butanol by S. cerevisiae from protein-rich agro-industrial by-products (sunflower and poultry offal meals). By-products were characterized according to their total protein and free amino acid contents and subjected to enzymatic hydrolysis. Protein hydrolysates were used as nitrogen sources for the production of n-butanol by S. cerevisiae, but only poultry offal meal hydrolysate (POMH) afforded detectable levels of n-butanol. Under optimized conditions (carbon/nitrogen ratio of 2 and working volume of 60%), 59.94 mg/L of n-butanol was produced using POMH and glucose as substrates. The low-cost agro-industrial by-product showed great potential to be used in the production of n-butanol by S. cerevisiae. Other protein-rich residues may also find application in biofuel production by yeasts.
Collapse
|
21
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
22
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
23
|
Hammer SK, Zhang Y, Avalos JL. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in Saccharomyces cerevisiae. ACS Synth Biol 2020; 9:546-555. [PMID: 32049515 DOI: 10.1021/acssynbio.9b00420] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recursive elongation pathways produce compounds of increasing carbon-chain length with each iterative cycle. Of particular interest are 2-ketoacids derived from recursive elongation, which serve as precursors to a valuable class of advanced biofuels known as branched-chain higher alcohols (BCHAs). Protein engineering has been used to increase the number of iterative elongation cycles completed, yet specific production of longer-chain 2-ketoacids remains difficult to achieve. Here, we show that mitochondrial compartmentalization is an effective strategy to increase specificity of recursive pathways to favor longer-chain products. Using 2-ketoacid elongation as a proof of concept, we show that overexpression of the three elongation enzymes-LEU4, LEU1, and LEU2-in mitochondria of an isobutanol production strain results in a 2.3-fold increase in the isopentanol to isobutanol product ratio relative to overexpressing the same elongation enzymes in the cytosol, and a 31-fold increase relative to wild-type enzyme expression. Reducing the loss of intermediates allows us to further boost isopentanol production to 1.24 ± 0.06 g/L of isopentanol. In this strain, isopentanol accounts for 86% of the total BCHAs produced, while achieving the highest isopentanol titer reported for Saccharomyces cerevisiae. Localizing the elongation enzymes in mitochondria enables the development of strains in which isopentanol constitutes as much as 93% of BCHA production. This work establishes mitochondrial compartmentalization as a new approach to favor high titers and product specificities of larger products from recursive pathways.
Collapse
Affiliation(s)
- Sarah K. Hammer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Azambuja SPH, Goldbeck R. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. World J Microbiol Biotechnol 2020; 36:48. [PMID: 32152786 DOI: 10.1007/s11274-020-02828-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The search for gasoline substitutes has grown in recent decades, leading to the increased production of ethanol as viable alternative. However, research in recent years has shown that butanol exhibits various advantages over ethanol as a biofuel. Furthermore, butanol can also be used as a chemical platform, serving as an intermediate product and as a solvent in industrial reactions. This alcohol is naturally produced by some Clostridium species; however, Clostridial fermentation processes still have inherent problems, which focuses the interest on Saccharomyces cerevisiae for butanol production, as an alternative organism for the production of this alcohol. S. cerevisiae exhibits great adaptability to industrial conditions and can be modified with a wide range of genetic tools. Although S. cerevisiae is known to naturally produce isobutanol, the n-butanol synthesis pathway has not been well established in wild S. cerevisiae strains. Two strategies are most commonly used for of S. cerevisiae butanol production: the heterologous expression of the Clostridium pathway or the amino acid uptake pathways. However, butanol yields produced from S. cerevisiae are lower than ethanol yield. Thus, there are still many challenges needed to be overcome, which can be minimized through genetic and evolutive engineering, for butanol production by yeast to become a reality.
Collapse
Affiliation(s)
- Suéllen P H Azambuja
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
25
|
Yu H, Chen Z, Wang N, Yu S, Yan Y, Huo YX. Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng 2019; 56:28-38. [PMID: 31449878 DOI: 10.1016/j.ymben.2019.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
The wild-type transcription factors are sensitive to their corresponding signal molecules. Using wild-type transcription factors as biosensors to screen industrial overproducers are generally impractical because of their narrow detection ranges. This study took transcription factor BmoR as an example and aimed to expand the detection range of BmoR for screening alcohols overproducers. Firstly, a BmoR mutation library was established, and the mutations distributed randomly in all predicted functional domains of BmoR. Structure of BmoR-isobutanol complex were modelled, and isobutanol binding sites were confirmed by site-directed mutagenesis. Subsequently, the effects of the mutations on the detection range or output were confirmed in the BmoR mutants. Four combinatorial mutants containing one increased-detection-range mutation and one enhanced-output mutation were constructed. Compared with wild-type BmoR, F276A/E627N BmoR and D333N/E627N BmoR have wider detection ranges (0-100 mM) and relatively high outputs to the isobutanol added quantitatively or produced intracellularly, demonstrating they have potential for screening isobutanol overproduction strains. This work presented an example of engineering the wild-type transcription factors with physiological significance for industrial utilization.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, 30602, GA, USA
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China.
| |
Collapse
|
26
|
Tian L, Conway PM, Cervenka ND, Cui J, Maloney M, Olson DG, Lynd LR. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:186. [PMID: 31367231 PMCID: PMC6652007 DOI: 10.1186/s13068-019-1524-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. In particular, Clostridium thermocellum is a promising host for consolidated bioprocessing (CBP) because of its strong native ability to ferment cellulose. RESULTS We tested 12 different enzyme combinations to identify an n-butanol pathway with high titer and thermostability in C. thermocellum. The best producing strain contained the thiolase-hydroxybutyryl-CoA dehydrogenase-crotonase (Thl-Hbd-Crt) module from Thermoanaerobacter thermosaccharolyticum, the trans-enoyl-CoA reductase (Ter) enzyme from Spirochaeta thermophila and the butyraldehyde dehydrogenase and alcohol dehydrogenase (Bad-Bdh) module from Thermoanaerobacter sp. X514 and was able to produce 88 mg/L n-butanol. The key enzymes from this combination were further optimized by protein engineering. The Thl enzyme was engineered by introducing homologous mutations previously identified in Clostridium acetobutylicum. The Hbd and Ter enzymes were engineered for changes in cofactor specificity using the CSR-SALAD algorithm to guide the selection of mutations. The cofactor engineering of Hbd had the unexpected side effect of also increasing activity by 50-fold. CONCLUSIONS Here we report engineering C. thermocellum to produce n-butanol. Our initial pathway designs resulted in low levels (88 mg/L) of n-butanol production. By engineering the protein sequence of key enzymes in the pathway, we increased the n-butanol titer by 2.2-fold. We further increased n-butanol production by adding ethanol to the growth media. By combining all these improvements, the engineered strain was able to produce 357 mg/L of n-butanol from cellulose within 120 h.
Collapse
Affiliation(s)
- Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | | | | | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
27
|
Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Biotechnol 2019; 57:1-9. [DOI: 10.1016/j.copbio.2018.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
|
28
|
Swidah R, Ogunlabi O, Grant CM, Ashe MP. n-Butanol production in S. cerevisiae: co-ordinate use of endogenous and exogenous pathways. Appl Microbiol Biotechnol 2018; 102:9857-9866. [PMID: 30171268 PMCID: PMC6208969 DOI: 10.1007/s00253-018-9305-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022]
Abstract
n-Butanol represents a key commodity chemical and holds significant potential as a biofuel. It can be produced naturally by Clostridia species via the ABE pathway. However, butanol production via such systems can be associated with significant drawbacks. Therefore, substantial efforts have been made toward engineering a suitable industrial host for butanol production. For instance, we previously generated a metabolically engineered Saccharomyces cerevisiae strain that produces ~300 mg/L butanol from combined endogenous and exogenous pathways. In this current study, the endogenous and exogenous pathways of butanol production were further characterised, and their relative contribution to the overall butanol titre was assessed. Deletion of any single component of the exogenous ABE pathway was sufficient to significantly reduce butanol production. Further evidence for a major contribution from the ABE pathway came with the discovery that specific yeast deletion mutants only affected butanol production from this pathway and had a significant impact on butanol levels. In previous studies, the threonine-based ketoacid (TBK) pathway has been proposed to explain endogenous butanol synthesis in ADH1 mutants. However, we find that key mutants in this pathway have little impact on endogenous butanol production; hence, this pathway does not explain endogenous butanol production in our strains. Instead, endogenous butanol production appears to rely on glycine metabolism via an α-ketovalerate intermediate. Indeed, yeast cells can utilise α-ketovalerate as a supplement to generate high butanol titres (> 2 g/L). The future characterisation and optimisation of the enzymatic activities required for this pathway provides an exciting area in the generation of robust butanol production strategies.
Collapse
Affiliation(s)
- R Swidah
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - O Ogunlabi
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - C M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK
| | - M P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Rd., M13 9PT, Manchester, UK.
| |
Collapse
|
29
|
Li W, Chen SJ, Wang JH, Zhang CY, Shi Y, Guo XW, Chen YF, Xiao DG. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Appl Microbiol Biotechnol 2018; 102:1783-1795. [DOI: 10.1007/s00253-017-8715-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
30
|
Xin F, Yan W, Zhou J, Wu H, Dong W, Ma J, Zhang W, Jiang M. Exploitation of novel wild type solventogenic strains for butanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:252. [PMID: 30250504 PMCID: PMC6145368 DOI: 10.1186/s13068-018-1252-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/17/2023]
Abstract
Butanol has been regarded as an important bulk chemical and advanced biofuel; however, large scaling butanol production by solventogenic Clostridium sp. is still not economically feasible due to the high cost of substrates, low butanol titer and yield caused by the toxicity of butanol and formation of by-products. Renewed interests in biobutanol as biofuel and rapid development in genetic tools have spurred technological advances to strain modifications. Comprehensive reviews regarding these aspects have been reported elsewhere in detail. Meanwhile, more wild type butanol producers with unique properties were also isolated and characterized. However, few reviews addressed these discoveries of novel wild type solventogenic Clostridium sp. strains. Accordingly, this review aims to comprehensively summarize the most recent advances on wild type butanol producers in terms of fermentation patterns, substrate utilization et al. Future perspectives using these native ones as chassis for genetic modification were also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
31
|
Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review. ENERGIES 2017. [DOI: 10.3390/en10122110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Shi S, Choi YW, Zhao H, Tan MH, Ang EL. Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1343-1351. [PMID: 28712783 DOI: 10.1016/j.biortech.2017.06.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to develop a universal methodology for the discovery of biosensors sensitive to particular stresses or metabolites by using a transcriptome analysis, in order to address the need for in vivo biosensors to drive the engineering of microbial cell factories. The method was successfully applied to the discovery of 1-butanol sensors. In particular, the genome-wide transcriptome profiling of S. cerevisiae exposed to three similar short-chain alcohols, 1-butanol, 1-propanol, and ethanol, identified genes that were differentially expressed only under the treatment of 1-butanol. From these candidates, two promoters that responded specifically to 1-butanol were characterized in a dose-dependent manner and were used to distinguish differences in production levels among different 1-butanol producer strains. This strategy opens up new opportunities for the discovery of promoter-based biosensors and can potentially be used to identify biosensors for any metabolite that causes cellular transcriptomic changes.
Collapse
Affiliation(s)
- Shuobo Shi
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| | - Yook Wah Choi
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
33
|
Liang J, Liu Z, Low XZ, Ang EL, Zhao H. Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method. Nucleic Acids Res 2017; 45:e94. [PMID: 28334760 PMCID: PMC5499748 DOI: 10.1093/nar/gkx132] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/21/2017] [Indexed: 11/12/2022] Open
Abstract
DNA assembly forms the cornerstone of modern synthetic biology. Despite the numerous available methods, scarless multi-fragment assembly of large plasmids remains challenging. Furthermore, the upcoming wave in molecular biological automation demands a rethinking of how we perform DNA assembly. To streamline automation workflow and minimize operator intervention, a non-enzymatic assembly method is highly desirable. Here, we report the optimization and operationalization of a process called Twin-Primer Assembly (TPA), which is a method to assemble polymerase chain reaction-amplified fragments into a plasmid without the use of enzymes. TPA is capable of assembling a 7 kb plasmid from 10 fragments at ∼80% fidelity and a 31 kb plasmid from five fragments at ∼50% fidelity. TPA cloning is scarless and sequence independent. Even without the use of enzymes, the performance of TPA is on par with some of the best in vitro assembly methods currently available. TPA should be an invaluable addition to a synthetic biologist's toolbox.
Collapse
Affiliation(s)
- Jing Liang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Xi Z Low
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ee L Ang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore 138669, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore 138669, Singapore.,NUS High School of Mathematics and Science, Singapore 129957, Singapore
| |
Collapse
|
34
|
Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Sci Rep 2017; 7:11284. [PMID: 28900255 PMCID: PMC5595793 DOI: 10.1038/s41598-017-11624-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 11/25/2022] Open
Abstract
Iterative ketoacid elongation has been an essential tool in engineering artificial metabolism, in particular the synthetic alcohols. However, precise control of product specificity is still greatly challenged by the substrate promiscuity of the ketoacid decarboxylase, which unselectively hijacks ketoacid intermediates from the elongation cycle along with the target ketoacid. In this work, preferential tuning of the Lactococcus lactis ketoisovalerate decarboxylase (Kivd) specificity toward 1-pentanol synthesis was achieved via saturated mutagenesis of the key residue V461 followed by screening of the resulting alcohol spectrum. Substitution of V461 with the small and polar amino acid glycine or serine significantly improved the Kivd selectivity toward the 1-pentanol precursor 2-ketocaproate by lowering its catalytic efficiency for the upstream ketoacid 2-ketobutyrate and 2-ketovalerate. Conversely, replacing V461 with bulky or charged side chains displayed severely adverse effect. Increasing supply of the iterative addition unit acetyl-CoA by acetate feeding further drove 2-ketoacid flux into the elongation cycle and enhanced 1-pentanol productivity. The Kivd V461G variant enabled a 1-pentanol production specificity around 90% of the total alcohol content with or without oleyl alcohol extraction. This work adds insight to the selectivity of Kivd active site.
Collapse
|
35
|
Yang HF, Zhang XN, Li Y, Zhang YH, Xu Q, Wei DQ. Theoretical Studies of Intracellular Concentration of Micro-organisms' Metabolites. Sci Rep 2017; 7:9048. [PMID: 28831069 PMCID: PMC5567373 DOI: 10.1038/s41598-017-08793-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023] Open
Abstract
With the rapid growth of micro-organism metabolic networks, acquiring the intracellular concentration of microorganisms’ metabolites accurately in large-batch is critical to the development of metabolic engineering and synthetic biology. Complementary to the experimental methods, computational methods were used as effective assessing tools for the studies of intracellular concentrations of metabolites. In this study, the dataset of 130 metabolites from E. coli and S. cerevisiae with available experimental concentrations were utilized to develop a SVM model of the negative logarithm of the concentration (-logC). In this statistic model, in addition to common descriptors of molecular properties, two special types of descriptors including metabolic network topologic descriptors and metabolic pathway descriptors were included. All 1997 descriptors were finally reduced into 14 by variable selections including genetic algorithm (GA). The model was evaluated through internal validations by 10-fold and leave-one-out (LOO) cross-validation, as well as external validations by predicting -logC values of the test set. The developed SVM model is robust and has a strong predictive potential (n = 91, m = 14, R2 = 0.744, RMSE = 0.730, Q2 = 0.57; R2p = 0.59, RMSEp = 0.702, Q2p = 0.58). An effective tool could be provided by this analysis for the large-batch prediction of the intracellular concentrations of the micro-organisms’ metabolites.
Collapse
Affiliation(s)
- Hai-Feng Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Nan Zhang
- Chongqing key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, and College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Chinese Traditional Medicine, Chongqing Medical University, Chongqing, China
| | - Yong-Hong Zhang
- Medicine Engineering Research Center, and College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Lu Y, Zhu J, Shi J, Liu Y, Shao D, Jiang C. Immobilized enzymes from Geotrichum spp. improve wine quality. Appl Microbiol Biotechnol 2017; 101:6637-6649. [DOI: 10.1007/s00253-017-8424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
|
37
|
Nitta K, Laviña WA, Pontrelli S, Liao JC, Putri SP, Fukusaki E. Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. J Biosci Bioeng 2017; 124:498-505. [PMID: 28669528 DOI: 10.1016/j.jbiosc.2017.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Metabolomics is the comprehensive analysis of metabolites in biological systems that uses multivariate analyses such as principal component analysis (PCA) or partial least squares/projections to latent structures regression (PLSR) to understand the metabolome state and extract important information from biological systems. In this study, orthogonal PLSR (OPLSR) model-based metabolomics approach was applied to 1-butanol producing Escherichia coli to facilitate in strain improvement strategies. Here, metabolite data obtained by liquid chromatography/mass spectrometry (LC/MS) was used to construct an OPLSR model to correlate metabolite changes with 1-butanol production and rationally identify gene targets for strain improvement. Using this approach, acetyl-CoA was determined as the rate-limiting step of the pathway while free CoA was found to be insufficient for 1-butanol production. By resolving the problems addressed by the OPLSR model, higher 1-butanol productivity was achieved. In this study, the usefulness of OPLSR-based metabolomics approach for understanding the whole metabolome state and determining the most relevant metabolites was demonstrated. Moreover, it was able to provide valuable insights for selection of rational gene targets for strain improvement.
Collapse
Affiliation(s)
- Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Walter A Laviña
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sammy Pontrelli
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab Eng 2017; 41:135-143. [PMID: 28400330 DOI: 10.1016/j.ymben.2017.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022]
Abstract
High titer 1-butanol production in Escherichia coli has previously been achieved by overexpression of a modified clostridial 1-butanol production pathway and subsequent deletion of native fermentation pathways. This strategy couples growth with production as 1-butanol pathway offers the only available terminal electron acceptors required for growth in anaerobic conditions. With further inclusion of other well-established metabolic engineering principles, a titer of 15g/L has been obtained. In achieving this titer, many currently existing strategies have been exhausted, and 1-butanol toxicity level has been surpassed. Therefore, continued engineering of the host strain for increased production requires implementation of alternative strategies that seek to identify non-obvious targets for improvement. In this study, a metabolomics-driven approach was used to reveal a CoA imbalance resulting from a pta deletion that caused undesirable accumulation of pyruvate, butanoate, and other CoA-derived compounds. Using metabolomics, the reduction of butanoyl-CoA to butanal catalyzed by alcohol dehydrogenase AdhE2 was determined as a rate-limiting step. Fine-tuning of this activity and subsequent release of free CoA restored the CoA balance that resulted in a titer of 18.3g/L upon improvement of total free CoA levels using cysteine supplementation. By enhancing AdhE2 activity, carbon flux was directed towards 1-butanol production and undesirable accumulation of pyruvate and butanoate was diminished. This study represents the initial report describing the improvement of 1-butanol production in E. coli by resolving CoA imbalance, which was based on metabolome analysis and rational metabolic engineering strategies.
Collapse
|
39
|
Schadeweg V, Boles E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:257. [PMID: 27924150 PMCID: PMC5123364 DOI: 10.1186/s13068-016-0673-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/17/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. Nevertheless, n-butanol yields and titers obtained so far with genetically engineered yeast strains are only low. RESULTS In our recent work, we showed that n-butanol production via a clostridial acetoacetyl-CoA-derived pathway in engineered yeast was limited by the availability of coenzyme A (CoA) and cytosolic acetyl-CoA. Increasing their levels resulted in a strain producing up to 130 mg/L n-butanol under anaerobic conditions. Here, we show that under aerobic conditions. this strain can even produce up to 235 mg/L n-butanol probably due to a more efficient NADH re-oxidation. Nevertheless, expression of a bacterial water-forming NADH oxidase (nox) significantly reduced n-butanol production although it showed a positive effect on growth and glucose consumption. Screening for an improved version of an acetyl-CoA forming NAD+-dependent acetylating acetaldehyde dehydrogenase, adhEA267T/E568K/R577S, and its integration into n-butanol-producing strain further improved n-butanol production. Moreover, deletion of the competing NADP+-dependent acetaldehyde dehydrogenase Ald6 had a superior effect on n-butanol formation. To increase the endogenous supply of CoA, amine oxidase Fms1 was overexpressed together with pantothenate kinase coaA from Escherichia coli, and could completely compensate the beneficial effect on n-butanol synthesis of addition of pantothenate to the medium. By overexpression of each of the enzymes of n-butanol pathway in the n-butanol-producing yeast strain, it turned out that trans-2-enoyl-CoA reductase (ter) was limiting n-butanol production. Additional overexpression of ter finally resulted in a yeast strain producing n-butanol up to a titer of 0.86 g/L and a yield of 0.071 g/g glucose. CONCLUSIONS By further optimizing substrate supply and redox power in the form of coenzyme A, acetyl-CoA and NADH, n-butanol production with engineered yeast cells could be improved to levels never reached before with S. cerevisiae via an acetoacetyl-CoA-derived pathway in synthetic medium. Moreover, our results indicate that the NAD+/NADH redox balance and the trans-2-enoyl-CoA reductase reaction seem to be bottlenecks for n-butanol production with yeast.
Collapse
Affiliation(s)
- Virginia Schadeweg
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt am Main, Germany
| |
Collapse
|