1
|
Sabba F, Farmer M, Dunlap P, Qin C, Kozak J, Barnard J, Wells G, Downing L. Unlocking the potential of sidestream EBPR: exploring the coexistence of PAO, GAO and DGAO for effective phosphorus and nitrogen removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:469-481. [PMID: 40087960 DOI: 10.2166/wst.2025.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
Wastewater treatment facilities use enhanced biological phosphorus removal (EBPR) to meet discharge quality limits. However, the EBPR process can experience upsets due to a lack of influent carbon or inadequate anaerobic zones. By using a sidestream EBPR (S2EBPR) process, carbon can be generated internally through fermentation processes and a higher anaerobic mass fraction can be attained in smaller volumes. This study investigates nutrient removal and microbial community trends in a full-scale S2EBPR demonstration at the Calumet Water Reclamation Plant. The study aims to improve a process model of the system by better representing the activity of glycogen-accumulating organisms (GAO) and potential competitors of phosphorus-accumulating organisms (PAO), which were found in high abundance in this study. Modifying anaerobic hydrolysis, GAO glycogen storage and ORP activity parameters resulted in model prediction improvements of approximately 5% for nitrate and nitrite and 10-60% for phosphorus. The study also uses shotgun metagenomic sequencing to profile denitrification pathways of PAO and GAO. It shows that denitrifying GAO may contribute to nitric oxide reduction to a greater degree than denitrifying PAO. This study improves process modeling predictions for S2EBPR and highlights the potential role of denitrifying PAO and GAO in combined phosphorus and nitrogen removal in S2EBPR.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA E-mail:
| | - McKenna Farmer
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA
| | - Patrick Dunlap
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA
| | - Cindy Qin
- Metropolitan Water Reclamation District of Greater Chicago, Chicago, IL 60611, USA
| | - Joseph Kozak
- Metropolitan Water Reclamation District of Greater Chicago, Chicago, IL 60611, USA
| | - James Barnard
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA
| | - George Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, USA
| |
Collapse
|
2
|
Srivastava G, Aboudi K, Tyagi VK, Kazmi AA. Role of intracellular storage polymers in simultaneous biological nutrient removal and resources recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123720. [PMID: 39693972 DOI: 10.1016/j.jenvman.2024.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Simultaneous biological nutrient removal (SBNR) using an anaerobic-anoxic-oxic phase is the key feature of advanced wastewater treatment plants (WWTPs). Removing ammonia, total nitrogen, and phosphorus concurrently with organic matter and suspended solids from wastewater is essential to meeting stringent effluent discharge standards via SBNR in WWTPs. More insight into the mechanisms of SBNR, i.e., simultaneous nitrification-denitrification (SND) and enhanced biological phosphorus removal (EBPR) processes, the intracellular carbon reserves, i.e., polyhydroxyalkanoates (PHA) and specifically poly-β-hydroxybutyrates (PHB), will play a critical role in nutrients removal and resource recovery in WWTPs. Volatile fatty acids (VFA) in wastewater are the preferable source of PHA formation. However, municipal wastewater could not supply sufficient VFA fractions owing to short sewer lines; therefore, developing pre-fermentation chambers and other technological integration in the WWTPs can play an effective role in VFA production from raw sewage, resulting in the effective formation of PHA. On the other hand, PHA is a value-added biochemical, i.e., a potential substitute for fossil fuel plastics. WWTPs complying with SBNR are the bio-refineries for PHA (bioplastic precursors) production using diverse microbial populations. This review enlightens three dimensions of progressive systems and engineering-based viewpoints: (i) Increasing the SBNR by optimizing operational conditions subject to the substrate storage mechanisms of treatment systems; (ii) Technical solutions to enhance the VFA availability in sewage in WWTPs to achieve effective SBNR; and (iii) production of PHB (PHA) in WWTPs.
Collapse
Affiliation(s)
- Ghazal Srivastava
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Kaoutar Aboudi
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, P.O. Box n 40, Puerto Real, 11510, Cádiz, Spain
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee, Uttarakhand, 247667, India
| | - Absar Ahmad Kazmi
- Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
3
|
Chen CX, Koskue V, Duan H, Gao L, Shon HK, Martin GJO, Chen GQ, Freguia S. Impact of nutrient deficiency on biological sewage treatment - Perspectives towards urine source segregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174174. [PMID: 38925384 DOI: 10.1016/j.scitotenv.2024.174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.
Collapse
Affiliation(s)
- Chee Xiang Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Veera Koskue
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Gao
- South East Water Corporation, 2268, Seaford, VIC 3198, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, NSW 2007, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
4
|
Seshan H, Santillan E, Constancias F, Chandra Segaran US, Williams RBH, Wuertz S. Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166066. [PMID: 37549699 DOI: 10.1016/j.scitotenv.2023.166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying the adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of amplicon sequence variants associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
Collapse
Affiliation(s)
- Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Uma Shankari Chandra Segaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore..
| |
Collapse
|
5
|
Villard D, Nesbø Goa IA, Leena Angell I, Eikaas S, Saltnes T, Johansen W, Rudi K. Spatiotemporal succession of phosphorous accumulating biofilms during the first year of establishment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:381-391. [PMID: 37522440 PMCID: wst_2023_214 DOI: 10.2166/wst.2023.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Many wastewater treatment plants are dependent on the utilization of microorganisms in biofilms. Our knowledge about the establishment of these biofilms is limited, particular with respect to biofilms involved in enhanced biological phosphorus removal (EBPR). These biofilms rely on polyphosphate-accumulating organisms (PAOs), requiring alternating oxic and anaerobic conditions for phosphorous uptake. This challenge has been solved using the Hias process, which combines moving-bed biofilm-reactor (MBBR) technology with physical transfer of biofilm-carriers from oxic to anaerobic zones. We combined biofilm fractionation with temporal analyses to unveil the establishment in the Hias process. A stable phosphorous removal efficiency of >95% was reached within 16 weeks of operation. Phosphorus removal, however, was not correlated with the establishment of known PAOs. The biofilms seemed associated with an outer microbiota layer with rapid turnover and an inner layer with a slow expansion. The inner layer showed an overrepresentation of known PAOs. In conclusion, our spatiotemporal analyses of phosphorous accumulating biofilm establishment lead to a new model for biofilm growth, while the mechanisms for phosphorous removal remain largely unresolved.
Collapse
Affiliation(s)
- Didrik Villard
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway E-mail:
| | - Inger Andrea Nesbø Goa
- Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| | - Inga Leena Angell
- Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| | | | - Torgeir Saltnes
- Hias, Ottestad, Hamar, Norway; Hias How2O, Ottestad, Hamar, Norway
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Knut Rudi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway; Faculty of Chemistry, Biotechnology and Food Science, University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Deng X, Yuan J, Chen L, Chen H, Wei C, Nielsen PH, Wuertz S, Qiu G. CRISPR-Cas phage defense systems and prophages in Candidatus Accumulibacter. WATER RESEARCH 2023; 235:119906. [PMID: 37004306 DOI: 10.1016/j.watres.2023.119906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Accumulibacter plays a major role in enhanced biological phosphorus removal (EBPR) from wastewater. Although bacteriophages have been shown to represent fatal threats to Ca. Accumulibacter organisms and thus interfere with the stability of the EBPR process, little is known about the ability of different Ca. Accumulibacter strains to resist phage infections. We conducted a systematic analysis of the occurrence and characteristics of clustered regularly interspaced short palindromic repeats and associated proteins (CRISPR-Cas) systems and prophages in Ca. Accumulibacter lineage members (43 in total, including 10 newly recovered genomes). Results indicate that 28 Ca. Accumulibacter genomes encode CRISPR-Cas systems. They were likely acquired via horizontal gene transfer, conveying a distinct adaptivity to phage predation to different Ca. Accumulibacter members. Major differences in the number of spacers show the unique phage resistance of these members. A comparison of the spacers in closely related Ca. Accumulibacter members from distinct geographical locations indicates that habitat isolation may have resulted in the acquisition of resistance to different phages by different Ca. Accumulibacter. Long-term operation of three laboratory-scale EBPR bioreactors revealed high relative abundances of Ca. Accumulibacter with CRISPSR-Cas systems. Their specific resistance to phages in these reactors was indicated by spacer analysis. Metatranscriptomic analyses showed the activation of the CRISPR-Cas system under both anaerobic and aerobic conditions. Additionally, 133 prophage regions were identified in 43 Ca. Accumulibacter genomes. Twenty-seven of them (in 19 genomes) were potentially active. Major differences in the occurrence of CRISPR-Cas systems and prophages in Ca. Accumulibacter will lead to distinct responses to phage predation. This study represents the first systematic analysis of CRISPR-Cas systems and prophages in the Ca. Accumulibacter lineage, providing new perspectives on the potential impacts of phages on Ca. Accumulibacter and EBPR systems.
Collapse
Affiliation(s)
- Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
7
|
Jia Z, Yuan Q, Roots P, Sabba F, Rosenthal AF, Kozak JA, Wells GF. Partial Nitritation/Anammox and biological phosphorus removal integration in a single bioreactor under mainstream conditions. BIORESOURCE TECHNOLOGY 2023; 373:128714. [PMID: 36754238 DOI: 10.1016/j.biortech.2023.128714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anammox-based nitrogen removal and enhanced biological phosphorus removal (EBPR) are increasingly applied for nutrient removal from wastewater, but are typically operated in separate reactors. Here, a novel process for integrated partial nitritation/anammox (PN/A) and EBPR in a single reactor employing integrated fixed film activated sludge was tested. The reactor was fed with mainstream municipal wastewater (5.4 ± 1.3 g COD/g N) at 20 °C for 243 days. Robust ammonium, total inorganic nitrogen, and orthophosphate removal efficiencies of 94 ± 4 %, 87 ± 7 % and 92 ± 7 % were achieved. Nitrite-oxidizing organisms suppression and ammonia-oxidizing organisms retention were achieved via solids retention time control, intermittent aeration, and suspended versus attached biomass population segregation. The contribution of anammox to nitrogen removal increased from 24 % to 74 %. In parallel, a substantial enrichment of Tetrasphaera polyphosphate accumulating organisms was observed. This work demonstrates a novel intensified bioprocess coupling PN/A and EBPR in the same reactor for efficient nutrient removal from wastewater.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Quan Yuan
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Paul Roots
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Black & Veatch, KS, USA
| | - Alex F Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joseph A Kozak
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL 60804, USA
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Surface-layer protein is a public-good matrix exopolymer for microbial community organisation in environmental anammox biofilms. THE ISME JOURNAL 2023; 17:803-812. [PMID: 36871068 DOI: 10.1038/s41396-023-01388-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Extracellular polymeric substances (EPS) are core biofilm components, yet how they mediate interactions within and contribute to the structuring of biofilms is largely unknown, particularly for non-culturable microbial communities that predominate in environmental habitats. To address this knowledge gap, we explored the role of EPS in an anaerobic ammonium oxidation (anammox) biofilm. An extracellular glycoprotein, BROSI_A1236, from an anammox bacterium, formed envelopes around the anammox cells, supporting its identification as a surface (S-) layer protein. However, the S-layer protein also appeared at the edge of the biofilm, in close proximity to the polysaccharide-coated filamentous Chloroflexi bacteria but distal to the anammox bacterial cells. The Chloroflexi bacteria assembled into a cross-linked network at the edge of the granules and surrounding anammox cell clusters, with the S-layer protein occupying the space around the Chloroflexi. The anammox S-layer protein was also abundant at junctions between Chloroflexi cells. Thus, the S-layer protein is likely transported through the matrix as an EPS and also acts as an adhesive to facilitate the assembly of filamentous Chloroflexi into a three-dimensional biofilm lattice. The spatial distribution of the S-layer protein within the mixed species biofilm suggests that it is a "public-good" EPS, which facilitates the assembly of other bacteria into a framework for the benefit of the biofilm community, and enables key syntrophic relationships, including anammox.
Collapse
|
9
|
Sabba F, Farmer M, Jia Z, Di Capua F, Dunlap P, Barnard J, Qin CD, Kozak JA, Wells G, Downing L. Impact of operational strategies on a sidestream enhanced biological phosphorus removal (S2EBPR) reactor in a carbon limited wastewater plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159280. [PMID: 36216061 DOI: 10.1016/j.scitotenv.2022.159280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Water resource recovery facilities are faced with stringent effluent phosphorus limits to reduce nutrient pollution. Enhanced biological phosphorus removal (EBPR) is the most common biological route to remove phosphorus; however, many facilities struggle to achieve consistent performance due to limited carbon availability in the influent wastewater. A promising process to improve carbon availability is through return activated sludge (RAS) fermentation via sidestream EBPR (S2EBPR). In this study, a full-scale S2EBPR pilot was operated with a sidestream plus carbon configuration (SSRC) at a carbon-limited facility. A model based on the pilot test was developed and calibrated in the SUMO platform and used to explore routes for improving orthophosphate (OP) effluent compliance. Modeling results showed that RAS diversion by itself was not sufficient to drive OP removal to permit limits of 1 mg L-1, therefore, other strategies were evaluated. Supplemental carbon addition of MicroC® at 1.90 L min-1 and controlling the phosphorus concentration below 3.5 mgP L-1 in the primary effluent (PE) proved to be valid supplemental strategies to achieve OP removal below 1 mg L-1 most of the time. In particular, the proposed supplemental carbon flow rate would result in an improvement of the rbCOD:P ratio from 17:1 to 26:1. The synergistic approach of RAS diversion and supplemental carbon addition increased the polyphosphate accumulating organisms (PAO) population while minimizing the supplemental carbon needed to achieve consistent phosphorus removal. Overall, this pilot and modeling study shows that joint strategies, including RAS diversion, carbon addition and PE control, can be effective to achieve optimal control of OP effluent.
Collapse
Affiliation(s)
| | - McKenna Farmer
- Northwestern University, Dept of Civil and Environmental Engineering, Evanston, IL, USA
| | - Zhen Jia
- Northwestern University, Dept of Civil and Environmental Engineering, Evanston, IL, USA
| | | | | | | | - Cindy Dongqi Qin
- Metropolitan Water Reclamation District of Greater Chicago, IL, USA
| | - Joseph A Kozak
- Metropolitan Water Reclamation District of Greater Chicago, IL, USA
| | - George Wells
- Northwestern University, Dept of Civil and Environmental Engineering, Evanston, IL, USA
| | | |
Collapse
|
10
|
Wang Z, Zhao P, Li X, Sun Q, She D. Magnesium chloride-modified potassium humate-based carbon material for efficient removal of phosphate from water. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Liu H, Zeng W, Meng Q, Fan Z, Peng Y. Phosphorus removal performance, intracellular metabolites and clade-level community structure of Tetrasphaera-dominated polyphosphate accumulating organisms at different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156913. [PMID: 35753450 DOI: 10.1016/j.scitotenv.2022.156913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tetrasphaera are polyphosphate accumulating organisms (PAOs) that play an important role in enhanced biological phosphorus removal (EBPR) from wastewater. The effect of a wide range of temperature changes (1-30 °C) on phosphorus removal, metabolism and clade-level community structure of Tetrasphaera-dominated PAOs was investigated. At 10 °C, the bioactivities of Tetrasphaera-dominated communities were obviously inhibited and the EBPR efficiency was only 73 %. Yet at 20-30 °C, EBPR efficiency reached 99 % and the relative abundance of Tetrasphaera was up to 90 %. The temperature variation changed the community distribution of Tetrasphaera clades, which was possibly a main reason for EBPR performance. Amino acids and PHA with different contents were intracellular metabolite of Tetrasphaera-dominated communities during phosphorus release and uptake at different temperatures. Moreover, Tetrasphaera fermented protein and amino acids and released VFAs. The outcomes suggested the great potential of Tetrasphaera-PAOs in the treatment of wastewater with varying temperatures and limited carbon sources.
Collapse
Affiliation(s)
- Hongjun Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
12
|
Zeng S, Kan E. Sustainable use of Ca(OH) 2 modified biochar for phosphorus recovery and tetracycline removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156159. [PMID: 35609690 DOI: 10.1016/j.scitotenv.2022.156159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
To prevent possible secondary pollution from phosphorus-loaded biochar (BC) in agricultural systems, this study investigated the sustainable use of Ca(OH)2 modified wood biochars (Ca-BCs) for P recovery while significantly lowering the tetracycline (TC) adsorption onto Ca-BCs. Ca-BCs were prepared via calcination of mixtures of Ca(OH)2 and wood BC under 100-500 °C for removing P and TC from water. Compared to the pristine BC (without Ca(OH)2 modification), Ca-BC100 (Ca-BC prepared at 100 °C) showed a significant increase of P adsorption capacity from 4.00 to 138.70 mg/g due to reactive interaction between P and Ca(OH)2 on Ca-BC while decrease of TC adsorption capacity from 62.17 to 20.86 mg/g owing to decrease of surface area from 260.50 to 120.26 m2/g. Batch adsorption tests implied that the P adsorption on Ca-BC100 would occur mainly via electrostatic attraction (pH > 2.1) and formation of hydroxylapatite (Ca5(PO4)3(OH)) between phosphate and Ca(OH)2. In addition, Ca-BC100 reacted with TC via electrostatic attraction (pH > 7.6), complexation, hydrogen bond, and π-π interactions. P and TC adsorption onto Ca-BC100 was a chemical, endothermic, and spontaneous process. The dynamic adsorption experiments using a fixed bed column filled with Ca-BC100 indicated that Ca-BC100 could continuously and effectively remove P and TC from water. Ca-BC100 also effectively lowered P and COD in the dairy wastewater. Under the environmentally relevant conditions, continuous treatment of water containing P and TC using the pristine BC followed by Ca-BC100 showed the pristine BC removed 96% of TC and only 6% of P from water while Ca-BC100 made high recovery of P (94% of P) with negligible TC. Therefore, Ca-BC100 could be used for effective recovery of P with negligible TC from wastewater, and then applied to agricultural systems as a sustainable and safe P-rich biofertilizer.
Collapse
Affiliation(s)
- Shengquan Zeng
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA; Department of Wildlife, and Natural Resources, Tarleton State University, TX 76401, USA.
| |
Collapse
|
13
|
Xu Y, Liao H, Zhang J, Lu H, He X, Zhang Y, Wu Z, Wang H, Lu M. A Novel Ca-Modified Biochar for Efficient Recovery of Phosphorus from Aqueous Solution and Its Application as a Phosphorus Biofertilizer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162755. [PMID: 36014620 PMCID: PMC9413443 DOI: 10.3390/nano12162755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/05/2023]
Abstract
Recovery phosphorus (P) from P-contaminated wastewater is an efficient and environmentally friendly mean to prevent water pollution and alleviate the P shortage crisis. In this study, oyster shell as calcium sources and peanut shells as carbon sources (mass ratio 1:1) were used to prepare a novel Ca-modified biochar (OBC) via co-pyrolysis, and its potential application after P adsorption as a P biofertilizer for soil was also investigated. The results shown that OBC had a remarkable P adsorption capacity from wastewater in a wide range of pH 4−12. The maximum P adsorption capacity of OBC was about 168.2 mg/g with adsorbent dosage 1 g/L, which was about 27.6 times that of the unmodified biochar. The adsorption isotherm and kinetic data were better described by Langmuir isotherm model (R2 > 0.986) and the pseudo second-order model (R2 > 0.975), respectively. Characterization analysis of OBC before and after P adsorption by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and specific surface area and porosity analyzer (BET) indicated that the remarkable P adsorption capacity of OBC was mainly ascribed to chemical precipitation, electrostatic adsorption, and hydrogen bonding. Pot experiment results showed that OBC after P adsorption could significantly promote the germination and growth of Spinacia, which manifested that OBC after P adsorption exhibited a good ability to be reused as P fertilizer for soil.
Collapse
Affiliation(s)
- Yue Xu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huan Liao
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Zhang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Lu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xinghua He
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
15
|
Haryono MAS, Law YY, Arumugam K, Liew LCW, Nguyen TQN, Drautz-Moses DI, Schuster SC, Wuertz S, Williams RBH. Recovery of High Quality Metagenome-Assembled Genomes From Full-Scale Activated Sludge Microbial Communities in a Tropical Climate Using Longitudinal Metagenome Sampling. Front Microbiol 2022; 13:869135. [PMID: 35756038 PMCID: PMC9230771 DOI: 10.3389/fmicb.2022.869135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/05/2022] [Indexed: 01/23/2023] Open
Abstract
The analysis of metagenome data based on the recovery of draft genomes (so called metagenome-assembled genomes, or MAG) has assumed an increasingly central role in microbiome research in recent years. Microbial communities underpinning the operation of wastewater treatment plants are particularly challenging targets for MAG analysis due to their high ecological complexity, and remain important, albeit understudied, microbial communities that play ssa key role in mediating interactions between human and natural ecosystems. Here we consider strategies for recovery of MAG sequence from time series metagenome surveys of full-scale activated sludge microbial communities. We generate MAG catalogs from this set of data using several different strategies, including the use of multiple individual sample assemblies, two variations on multi-sample co-assembly and a recently published MAG recovery workflow using deep learning. We obtain a total of just under 9,100 draft genomes, which collapse to around 3,100 non-redundant genomic clusters. We examine the strengths and weaknesses of these approaches in relation to MAG yield and quality, showing that co-assembly may offer advantages over single-sample assembly in the case of metagenome data obtained from closely sampled longitudinal study designs. Around 1,000 MAGs were candidates for being considered high quality, based on single-copy marker gene occurrence statistics, however only 58 MAG formally meet the MIMAG criteria for being high quality draft genomes. These findings carry broader broader implications for performing genome-resolved metagenomics on highly complex communities, the design and implementation of genome recoverability strategies, MAG decontamination and the search for better binning methodology.
Collapse
Affiliation(s)
- Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Ying Yu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Larry C-W Liew
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Qiu G, Law Y, Zuniga-Montanez R, Deng X, Lu Y, Roy S, Thi SS, Hoon HY, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35 °C. WATER RESEARCH 2022; 216:118301. [PMID: 35364353 DOI: 10.1016/j.watres.2022.118301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
17
|
Chen L, Chen H, Hu Z, Tian Y, Wang C, Xie P, Deng X, Zhang Y, Tang X, Lin X, Li B, Wei C, Qiu G. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. WATER RESEARCH 2022; 216:118258. [PMID: 35320769 DOI: 10.1016/j.watres.2022.118258] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
18
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Chen G, Bai R, Zhang Y, Zhao B, Xiao Y. Application of metagenomics to biological wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150737. [PMID: 34606860 DOI: 10.1016/j.scitotenv.2021.150737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Biological wastewater treatment is a process in which the microbial metabolism of complex communities transforms pollutants into low- or non-toxic products. Due to the absence of an in-depth understanding of the diversity and complexity of microbial communities, it is very likely to ignore the potential mechanisms of microbial community in wastewater treatment. Metagenomics is a technology based on molecular biology, in which massive gene sequences are obtained from environmental samples and analyzed by bioinformatics to determine the composition and function of a microbial community. Metagenomics can identify the state of microbes in their native environments more effectively than traditional molecular methods. This review summarizes the application of metagenomics to assess microbial communities in biological wastewater treatment, such as the biological removal of phosphorus and nitrogen by bacteria, the study of antibiotic resistance genes (ARGs), and the reduction of heavy metals by microbial communities, with an emphasis on the contribution of microbial diversity and metabolic diversity. Technical bottlenecks in the application of metagenomics to biological wastewater treatment are elucidated, and future research directions for metagenomics are proposed, among which the application of multi-omics will be an important research method for future biological wastewater treatment.
Collapse
Affiliation(s)
- Geng Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiqing Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biyi Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
20
|
Xue J, Wang H, Li P, Zhang M, Yang J, Lv Q. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149454. [PMID: 34435587 DOI: 10.1016/j.scitotenv.2021.149454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
A novel limestone-modified biochar derived from sewage sludge was prepared to reclaim phosphorus (P) from aqueous solution, and the potential application of P-laden biochar as soil amendments was also investigated. The limestone-modified biochar demonstrated excellent performance on phosphate recovery from aqueous solution in a wide range of pH (2.0-11.0), with maximum adsorption capacity of the biochar (Limestone/sludge mass ratio of 3:1) up to 231.28 mg P/g, which was 10.7 times that of the original sludge biochar. The adsorption was well described by the pseudo second-order model and Langmuir isotherm model. According to the adsorption thermodynamic parameters, the phosphate adsorption was spontaneous (ΔG0 < 0) and endothermic (ΔH0 > 0) so that increasing the temperature was beneficial to adsorption. Characterization analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS) proved that electrostatic attraction, surface complexation and brushite (CaHPO4.2H2O) precipitation were the dominant mechanism. The P-laden biochar exhibited an excellent ability to be reused as a new slow-release P fertilizer for soil. Pot experiment results showed that the treatment of P-laden LB 3:1 (P content of 22.8%) addition (1 wt%) significantly promoted Indian Lettuce germination (increasing by 14.4%), plant height (increasing by 18.6%), and dry biomass (53.0%) compared with the control, though it underperformed compared to commercial fertilizer.
Collapse
Affiliation(s)
- Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China.
| | - Peng Li
- Shandong Gold Group CO., LTD, Jinan 250100, China
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Qi Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| |
Collapse
|
21
|
Srinivasan VN, Li G, Wang D, Tooker NB, Dai Z, Onnis-Hayden A, Bott C, Dombrowski P, Schauer P, Pinto A, Gu AZ. Oligotyping and metagenomics reveal distinct Candidatus Accumulibacter communities in side-stream versus conventional full-scale enhanced biological phosphorus removal (EBPR) systems. WATER RESEARCH 2021; 206:117725. [PMID: 34653799 DOI: 10.1016/j.watres.2021.117725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Candidatus Accumulibacter phosphatis (CAP) and its clade-level micro-diversity has been associated with and implicated in functional differences in phosphorus removal performance in enhanced biological phosphorus removal (EBPR) systems. Side-stream EBPR (S2EBPR) is an emerging process that has been shown to present a suite of advantages over the conventional EBPR design, however, large knowledge gaps remain in terms of its underlying ecological mechanisms. Here, we compared and revealed the higher-resolution differences in microbial ecology of CAP between a full-scale side-stream EBPR configuration and a conventional A2O EBPR process that were operated in parallel and with the same influent feed. Even though the relative abundance of CAP, revealed by 16S rRNA gene amplicon sequencing, was similar in both treatment trains, a clade-level analysis, using combined 16S rRNA-gene based amplicon sequencing and oligotyping analysis and metagenomics analysis, revealed the distinct CAP microdiversity between the S2EBPR and A2O configurations that likely attributed to the improved performance in S2EBPR in comparison to conventional EBPR. Furthermore, genome-resolved metagenomics enabled extraction of three metagenome-assembled genomes (MAGs) belonging to CAP clades IIB (RCAB4-2), IIC (RC14) and II (RC18), from full-scale EBPR sludge for the first time, including a distinct Ca. Accumulibacter clade that is dominant and associated only with the S2EBPR configuration. The results also revealed the temporally increasing predominance of RC14, which belonged to Clade IIC, during the implementation of the S2EBPR configuration. Finally, we also show the existence of previously uncharacterized diversity of clades of CAP, namely the clades IIB and as yet unidentified clade of type II, in full-scale EBPR communities, highlighting the unknown diversity of CAP communities in full-scale EBPR systems.
Collapse
Affiliation(s)
- Varun N Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States; Brown and Caldwell, One Tech Drive, Andover, MA 01810, United States
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States; Department of Civil and Environmental Engineering, University of Massachusetts-Amherst, Amherst, MA 01002, United States
| | - Zihan Dai
- Infrastructure and Environment Division, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States
| | - Charles Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23454, United States
| | - Paul Dombrowski
- Woodard & Curran, Inc., 1699 King Street, Enfield, CT 06082, United States
| | - Peter Schauer
- Clean Water Services, 16060 SW 85th Avenue, Tigard, OR 97224, United States
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States; Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, United States; Civil and Environmental Engineering, Cornell University, Ithaca NY 14853, United States.
| |
Collapse
|
22
|
Poh PK, Ong YH, Arumugam K, Nittami T, Yeoh HK, Bessarab I, William R, Chua ASM. Tropical-based EBPR process: The long-term stability, microbial community and its response towards temperature stress. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2598-2608. [PMID: 34260796 DOI: 10.1002/wer.1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Temperature is known to influence the operational efficiency of enhanced biological phosphorus removal (EBPR) systems. This study investigated the impact of thermal stress above 30°C on the properties of an EBPR community established with tropical inoculum. The results confirmed the stability of the 30°C EBPR system with high P-removal efficiency over 210 days. Accumulibacter was abundant in the community. When the EBPR sludge was subjected to a sudden temperature increase to 35°C under multiple cycles of anaerobic-aerobic phases, each lasting 4 h, high P-removal was maintained over 2 days, before gradually failing when the Competibacter appeared to outcompete Accumulibacter. These data suggested that the EBPR capacity is robust when subjected to occasional thermal stress. However, it could not be maintained even for a short time under temperature stress at 40°C. Thus, the threshold temperature for tropical EBPR failure is between 35°C and 40°C. PRACTITIONER POINTS: EBPR was stably maintained at 30°C with Accumulibacter being dominant. Good EBPR activities persisted for a short period at 35°C. EBPR was deteriorated at 40°C. The threshold temperature for tropical EBPR failure is between 35°C and 40°C.
Collapse
Affiliation(s)
- Phiak Kim Poh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ying Hui Ong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Tadashi Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Hak Koon Yeoh
- Engineering Department, Tenet Engineering Sdn Bhd, Puchong, Selangor, Malaysia
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore
| | - Rohan William
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
McDaniel EA, Wahl SA, Ishii S, Pinto A, Ziels R, Nielsen PH, McMahon KD, Williams RBH. Prospects for multi-omics in the microbial ecology of water engineering. WATER RESEARCH 2021; 205:117608. [PMID: 34555741 DOI: 10.1016/j.watres.2021.117608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | | | - Shun'ichi Ishii
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Yokosuka 237-0061, Japan
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Ryan Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
24
|
Metabolic Differentiation of Co-occurring Accumulibacter Clades Revealed through Genome-Resolved Metatranscriptomics. mSystems 2021; 6:e0047421. [PMID: 34227830 PMCID: PMC8407102 DOI: 10.1128/msystems.00474-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Natural microbial communities consist of closely related taxa that may exhibit phenotypic differences and inhabit distinct niches. However, connecting genetic diversity to ecological properties remains a challenge in microbial ecology due to the lack of pure cultures across the microbial tree of life. "Candidatus Accumulibacter phosphatis" (Accumulibacter) is a polyphosphate-accumulating organism that contributes to the enhanced biological phosphorus removal (EBPR) biotechnological process for removing excess phosphorus from wastewater and preventing eutrophication from downstream receiving waters. Distinct Accumulibacter clades often coexist in full-scale wastewater treatment plants and laboratory-scale enrichment bioreactors and have been hypothesized to inhabit distinct ecological niches. However, since individual strains of the Accumulibacter lineage have not been isolated in pure culture to date, these predictions have been made solely on genome-based comparisons and enrichments with varying strain compositions. Here, we used genome-resolved metagenomics and metatranscriptomics to explore the activity of coexisting Accumulibacter strains in an engineered bioreactor environment. We obtained four high-quality genomes of Accumulibacter strains that were present in the bioreactor ecosystem, one of which is a completely contiguous draft genome scaffolded with long Nanopore reads. We identified core and accessory genes to investigate how gene expression patterns differed among the dominating strains. Using this approach, we were able to identify putative pathways and functions that may confer distinct functions to Accumulibacter strains and provide key functional insights into this biotechnologically significant microbial lineage. IMPORTANCE "Candidatus Accumulibacter phosphatis" is a model polyphosphate-accumulating organism that has been studied using genome-resolved metagenomics, metatranscriptomics, and metaproteomics to understand the EBPR process. Within the Accumulibacter lineage, several similar but diverging clades are defined by the shared sequence identity of the polyphosphate kinase (ppk1) locus. These clades are predicted to have key functional differences in acetate uptake rates, phage defense mechanisms, and nitrogen-cycling capabilities. However, such hypotheses have largely been made based on gene content comparisons of sequenced Accumulibacter genomes, some of which were obtained from different systems. Here, we performed time series genome-resolved metatranscriptomics to explore gene expression patterns of coexisting Accumulibacter clades in the same bioreactor ecosystem. Our work provides an approach for elucidating ecologically relevant functions based on gene expression patterns between closely related microbial populations.
Collapse
|
25
|
Martínez Arbas S, Busi SB, Queirós P, de Nies L, Herold M, May P, Wilmes P, Muller EEL, Narayanasamy S. Challenges, Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome Studies. Front Genet 2021; 12:666244. [PMID: 34194470 PMCID: PMC8236828 DOI: 10.3389/fgene.2021.666244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, multi-omic studies have enabled resolving community structure and interrogating community function of microbial communities. Simultaneous generation of metagenomic, metatranscriptomic, metaproteomic, and (meta) metabolomic data is more feasible than ever before, thus enabling in-depth assessment of community structure, function, and phenotype, thus resulting in a multitude of multi-omic microbiome datasets and the development of innovative methods to integrate and interrogate those multi-omic datasets. Specifically, the application of reference-independent approaches provides opportunities in identifying novel organisms and functions. At present, most of these large-scale multi-omic datasets stem from spatial sampling (e.g., water/soil microbiomes at several depths, microbiomes in/on different parts of the human anatomy) or case-control studies (e.g., cohorts of human microbiomes). We believe that longitudinal multi-omic microbiome datasets are the logical next step in microbiome studies due to their characteristic advantages in providing a better understanding of community dynamics, including: observation of trends, inference of causality, and ultimately, prediction of community behavior. Furthermore, the acquisition of complementary host-derived omics, environmental measurements, and suitable metadata will further enhance the aforementioned advantages of longitudinal data, which will serve as the basis to resolve drivers of community structure and function to understand the biotic and abiotic factors governing communities and specific populations. Carefully setup future experiments hold great potential to further unveil ecological mechanisms to evolution, microbe-microbe interactions, or microbe-host interactions. In this article, we discuss the challenges, emerging strategies, and best-practices applicable to longitudinal microbiome studies ranging from sampling, biomolecular extraction, systematic multi-omic measurements, reference-independent data integration, modeling, and validation.
Collapse
Affiliation(s)
- Susana Martínez Arbas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pedro Queirós
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emilie E. L. Muller
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
26
|
Saw NMMT, Suwanchaikasem P, Zuniga-Montanez R, Qiu G, Marzinelli EM, Wuertz S, Williams RBH. Influence of Extraction Solvent on Nontargeted Metabolomics Analysis of Enrichment Reactor Cultures Performing Enhanced Biological Phosphorus Removal (EBPR). Metabolites 2021; 11:269. [PMID: 33925970 PMCID: PMC8145293 DOI: 10.3390/metabo11050269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.
Collapse
Affiliation(s)
- Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Pipob Suwanchaikasem
- Singapore Phenome Centre, Nanyang Technological University, Singapore 636921, Singapore;
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
| | - Ezequiel M. Marzinelli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (N.M.M.T.S.); (R.Z.-M.); (G.Q.); (E.M.M.); (S.W.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
27
|
Chan SH, Ismail MH, Tan CH, Rice SA, McDougald D. Microbial predation accelerates granulation and modulates microbial community composition. BMC Microbiol 2021; 21:91. [PMID: 33773594 PMCID: PMC8004422 DOI: 10.1186/s12866-021-02156-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Bacterial communities are responsible for biological nutrient removal and flocculation in engineered systems such as activated floccular sludge. Predators such as bacteriophage and protozoa exert significant predation pressure and cause bacterial mortality within these communities. However, the roles of bacteriophage and protozoan predation in impacting granulation process remain limited. Recent studies hypothesised that protozoa, particularly sessile ciliates, could have an important role in granulation as these ciliates were often observed in high abundance on surfaces of granules. Bacteriophages were hypothesized to contribute to granular stability through bacteriophage-mediated extracellular DNA release by lysing bacterial cells. This current study investigated the bacteriophage and protozoan communities throughout the granulation process. In addition, the importance of protozoan predation during granulation was also determined through chemical killing of protozoa in the floccular sludge. RESULTS Four independent bioreactors seeded with activated floccular sludge were operated for aerobic granulation for 11 weeks. Changes in the phage, protozoa and bacterial communities were characterized throughout the granulation process. The filamentous phage, Inoviridae, increased in abundance at the initiation phase of granulation. However, the abundance shifted towards lytic phages during the maturation phase. In contrast, the abundance and diversity of protozoa decreased initially, possibly due to the reduction in settling time and subsequent washout. Upon the formation of granules, ciliated protozoa from the class Oligohymenophorea were the dominant group of protozoa based on metacommunity analysis. These protozoa had a strong, positive-correlation with the initial formation of compact aggregates prior to granule development. Furthermore, chemical inhibition of these ciliates in the floccular sludge delayed the initiation of granule formation. Analysis of the bacterial communities in the thiram treated sludge demonstrated that the recovery of 'Candidatus Accumulibacter' was positively correlated with the formation of compact aggregates and granules. CONCLUSION Predation by bacteriophage and protozoa were positively correlated with the formation of aerobic granules. Increases in Inoviridae abundance suggested that filamentous phages may promote the structural formation of granules. Initiation of granules formation was delayed due to an absence of protozoa after chemical treatment. The presence of 'Candidatus Accumulibacter' was necessary for the formation of granules in the absence of protozoa.
Collapse
Affiliation(s)
- Siew Herng Chan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuan Hao Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- The iThree Institute, University of Technology Sydney, Sydney, Australia.
| | - Diane McDougald
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
- The iThree Institute, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Roy S, Guanglei Q, Zuniga-Montanez R, Williams RB, Wuertz S. Recent advances in understanding the ecophysiology of enhanced biological phosphorus removal. Curr Opin Biotechnol 2021; 67:166-174. [PMID: 33582603 DOI: 10.1016/j.copbio.2021.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an efficient, cost-effective, and sustainable method for removing excess phosphorus from wastewater. Polyphosphate accumulating organisms (PAOs) exhibit a unique physiology alternating between anaerobic conditions for uptake of carbon substrates and aerobic or anoxic conditions for phosphorus uptake. The implementation of high-throughput sequencing technologies and advanced molecular tools along with biochemical characterization has provided many new perspectives on the EBPR process. These approaches have helped identify a wide range of carbon substrates and electron acceptors utilized by PAOs that in turn influence interactions with microbial community members and determine overall phosphorus removal efficiency. In this review, we systematically discuss the microbial diversity and metabolic response to a range of environmental conditions and process control strategies in EBPR.
Collapse
Affiliation(s)
- Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Qiu Guanglei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Rohan Bh Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
29
|
Zhang J, Xia Q, Hong X, Chen J, Liu D. Synthesis of layered double hydroxides with nitrate and its adsorption properties of phosphate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:100-110. [PMID: 33460410 DOI: 10.2166/wst.2020.567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, different ratios of layered double hydroxides (LDHs) were synthesized via co-precipitation method. The synthesized LDHs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption-desorption analysis, point of zero charges (pHpzc), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Phosphate adsorption performances were estimated by batch adsorption experiments; desorption hysteresis and adsorption mechanism were also investigated. The XRD, SEM and TEM results confirmed the multilayer structure of the synthesized LDHs. The pseudo-second-order kinetic model and the Freundlich model describe the adsorption behavior of LDHs best. The maximum adsorption capacity is 185.86 mg-KH2PO4/g for Mg2Al-NO3 LDH. When the dosage of LDHs was greater than 2 g/L, the phosphorus content in the solution decreased from 30 mg-P/L to 0.077 mg-P/L after adsorption by Mg2Al-NO3 LDH. All the results reveal that Mg2Al-NO3 LDH is a potential adsorbent for removing phosphate from aqueous solution.
Collapse
Affiliation(s)
- Jiangpo Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Qi Xia
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Xiaofeng Hong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jianjun Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu 610065, China
| | - Daijun Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu 610065, China
| |
Collapse
|
30
|
Khalil U, Bilal Shakoor M, Ali S, Rizwan M, Nasser Alyemeni M, Wijaya L. Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Phase Transitions by an Abundant Protein in the Anammox Extracellular Matrix Mediate Cell-to-Cell Aggregation and Biofilm Formation. mBio 2020; 11:mBio.02052-20. [PMID: 32900808 PMCID: PMC7482068 DOI: 10.1128/mbio.02052-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
By employing biophysical and liquid-liquid phase separation concepts, this study revealed how a highly abundant extracellular protein enhances the key environmental and industrial bioprocess of anaerobic ammonium oxidation (anammox). Extracellular proteins of environmental biofilms are understudied and poorly annotated in public databases. Understanding the function of extracellular proteins is also increasingly important for improving bioprocesses and resource recovery. Here, protein functions were assessed based on theoretical predictions of intrinsically disordered domains, known to promote adhesion and liquid-liquid phase separation, and available surface layer protein properties. A model is thus proposed to explain how the protein promotes aggregation and biofilm formation by extracellular matrix remodeling and phase transitions. This work provides a strong foundation for functional investigations of extracellular proteins involved in biofilm development. This study describes the first direct functional assignment of a highly abundant extracellular protein from a key environmental and biotechnological biofilm performing an anaerobic ammonium oxidation (anammox) process. Expression levels of Brosi_A1236, belonging to a class of proteins previously suggested to be cell surface associated, were in the top one percentile of all genes in the “Candidatus Brocadia sinica”-enriched biofilm. The Brosi_A1236 structure was computationally predicted to consist of immunoglobulin-like anti-parallel β-strands, and circular dichroism conducted on the isolated surface protein indicated that β-strands are the dominant higher-order structure. The isolated protein was stained positively by the β-sheet-specific stain thioflavin T, along with cell surface- and matrix-associated regions of the biofilm. The surface protein has a large unstructured content, including two highly disordered domains at its C terminus. The disordered domains bound to the substratum and thereby facilitated the adhesion of negatively charged latex microspheres, which were used as a proxy for cells. The disordered domains and isolated whole surface protein also underwent liquid-liquid phase separation to form liquid droplets in suspension. Liquid droplets of disordered protein wet the surfaces of microspheres and bacterial cells and facilitated their coalescence. Furthermore, the surface layer protein formed gels as well as ordered crystalline structures. These observations suggest that biophysical remodeling through phase transitions promotes aggregation and biofilm formation.
Collapse
|
32
|
Wang L, Shen N, Oehmen A, Zhou Y. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). ENVIRONMENTAL RESEARCH 2020; 188:109729. [PMID: 32521304 DOI: 10.1016/j.envres.2020.109729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of different carbon sources on enriched Accumulibacter PAO cultures at high temperature (30 °C) and compared the carbon transformation with low temperature (20 °C) cases reported in literature, revealing several key metabolic differences. While PAOs seemed to prefer propionate anaerobically as compared to other VFAs at high temperature, high aerobic glycogen replenishment was realized with propionate as the anaerobic carbon source, a trait not previously observed at low temperatures. Therefore, it was found that propionate is not correlated with high P removal by Accumulibacter PAO at high temperatures. A combined substrate of acetate, propionate and perhaps butyrate seemed to be a better carbon source combination, since the total VFA uptake rate increased by up to 46%, and this increased the aerobic P-removal efficiency by up to 38.4% and reduced the glycogen recovery by more than 63% compared to the use of only propionate as substrate. This study improves our understanding of how to stimulate successful EBPR operation in warm climates by augmenting the P removal performance of PAOs.
Collapse
Affiliation(s)
- Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
33
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Role of Phosphate-Accumulating Bacteria in Biological Phosphorus Removal from Wastewater. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Qiu G, Liu X, Saw NMMT, Law Y, Zuniga-Montanez R, Thi SS, Ngoc Nguyen TQ, Nielsen PH, Williams RBH, Wuertz S. Metabolic Traits of Candidatus Accumulibacter clade IIF Strain SCELSE-1 Using Amino Acids As Carbon Sources for Enhanced Biological Phosphorus Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2448-2458. [PMID: 31790213 DOI: 10.1021/acs.est.9b02901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite recent evidence from full-scale plants suggesting that Candidatus Accumulibacter may be capable of using amino acids, this metabolic trait has never been confirmed in a bioreactor experiment. Here we show that an enriched culture of Ca. Accumulibacter clade IIF strain SCELSE-1 could metabolize 11 of 20 α-amino acids, with aspartate, glutamate, asparagine, and glutamine resulting in the highest phosphorus removal. The anaerobic uptake of aspartate and glutamate was achieved through a glutamate/aspartate-proton symporter fully powered by the proton motive force (PMF). Under anaerobic conditions aspartate was deaminized and routed into core carbon metabolic pathways to form polyhydroxyalkanoates (PHA). The lack of genes encoding NADH dependent isocitrate dehydrogenase in the Ca. Accumulibacter genome resulted in a kinetic barrier for glutamate to be channelled to the TCA cycle. Glutamate was stored as glutamate polymer. When amino acids (aspartate or glutamate) and acetate were supplied together, Ca. Accumulibacter took up both carbon sources simultaneously, with the uptake rate of each carbon source largely preserved. Overall energy savings (up to 17%) were achieved under mixed carbon scenarios, due to the ability of Ca. Accumulibacter to rearrange its anaerobic carbon metabolism based on the reducing power, PMF and ATP balance.
Collapse
Affiliation(s)
- Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Department of Civil and Environmental Engineering, One Shields Avenue , University of California , Davis , California 95616 , United States
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Centre for Microbial Communities, Department of Chemistry and Bioscience , Aalborg University , DK-9220 , Aalborg , Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering , National University of Singapore , Singapore 119077 , Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Department of Civil and Environmental Engineering, One Shields Avenue , University of California , Davis , California 95616 , United States
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
35
|
Yang Y, Pan J, Zhou Z, Wu J, Liu Y, Lin JG, Hong Y, Li X, Li M, Gu JD. Complex microbial nitrogen-cycling networks in three distinct anammox-inoculated wastewater treatment systems. WATER RESEARCH 2020; 168:115142. [PMID: 31605831 DOI: 10.1016/j.watres.2019.115142] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 09/29/2019] [Indexed: 05/05/2023]
Abstract
Microbial nitrogen removal mediated by anaerobic ammonium oxidation (anammox) are cost-effective, yet it is time-consuming to accumulate the slow-growing anammox bacteria in conventional wastewater treatment plants (WWTPs). Inoculation of anammox enriched pellets is an effective way to establish anammox and achieve shortcut nitrogen removal in full-scale WWTPs. However, little is known about the complex microbial nitrogen-cycling networks in these anammox-inoculated WWTPs. Here, we applied metagenomic and metatranscriptomic tools to study the microbial nitrogen removal in three conventional WWTPs, which have been inoculated exogenous anammox pellets, representing partial-nitrification anammox (PNA) and nitrification-denitrification nitrogen removal processes. In the PNA system of Bali (BL), ammonia was partially oxidized by ammonia-oxidizing bacteria (AOB) Nitrosomonas and the oxidized nitrite and the remaining ammonium were directly converted to N2 by anammox bacteria Ca. Brocadia and Ca. Kuenenia. In the nitrification-denitrification system of Wenshan (WS), ammonia-oxidizing archaea (AOA) Thaumarchaeota unexpectedly dominated the nitrifying community in the presence of AOB Nitrosomonas. Meanwhile, the biomass yield of Ca. Brocadia was likely inhibited by the high biodegradable organic compound input and limited by substrate competitions from AOA, AOB, complete ammonia oxidizers (comammox) Nitrospira, nitrite-oxidizing bacteria (NOB) Nitrospira, and heterotrophic denitrifiers. Unexpectedly, comammox Nitrospira was the predominant nitrifier in the presence of AOB Nitrosomonas in the organic carbon-rich nitrification-denitrification system of Linkou (LK). These results clearly showed that distinct active groups were working in concert for an effective nitrogen removal in different WWTPs. This study confirmed the feasibility of anammox application in ammonium-rich systems by direct inoculation of the exogenous anammox pellets and improved our understanding of microbial nitrogen cycling in anammox-driven conventional WWTPs from both physiochemical and omics perspectives.
Collapse
Affiliation(s)
- Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, People's Republic of China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, People's Republic of China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Xiaoyan Li
- Department of Civil and Environmental Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
36
|
Profiling population-level diversity and dynamics of Accumulibacter via high throughput sequencing of ppk1. Appl Microbiol Biotechnol 2019; 103:9711-9722. [DOI: 10.1007/s00253-019-10183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
|
37
|
Hodgson B, Sharvelle S. Development of generalized empirical models for comparing effectiveness of wastewater nutrient removal technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27915-27929. [PMID: 31350691 DOI: 10.1007/s11356-019-05761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of nutrient removal approaches was quantified at four wastewater treatment facilities (WWTFs) using mechanistic models. Generalized empirical models were developed applying statistical methods on the predicted values characterizing nutrient removal as a function of influent wastewater quality. The empirical models provide a framework to estimate nutrient removal effectiveness and inform system-level decisions on technology adoption. When carbon limited, more sophisticated approaches like five-stage Bardenpho and nitrite shunt provide the most notable benefit in removal efficiency (67% ± 3.3% and 89% ± 2.8%, respectively for total nitrogen (TN)), but little benefit is estimated under non-carbon-limited conditions between traditional solutions like anaerobic, anoxic, oxic (A2O), and advanced process configurations like five-stage Bardenpho (82% ± 2.8% and 85% ± 3.3%, respectively for TN). Sidestream physical/chemical processes can provide improvement in removal efficiency particularly at carbon-limited WWTFs, but negligible benefit is estimated with adoption of sidestream biological processes.
Collapse
Affiliation(s)
- Brock Hodgson
- Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372, Fort Collins, CO, 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, Campus Delivery 1372, Fort Collins, CO, 80523, USA
| |
Collapse
|
38
|
Liu X, Shen F, Qi X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:694-702. [PMID: 30812004 DOI: 10.1016/j.scitotenv.2019.02.227] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/12/2023]
Abstract
CaO-biochar composites were prepared by mixed ball milling and pyrolysis of agricultural wastes eggshell and rice straw. The resulting CaO-biochar composites (E-C) showed excellent performance for phosphate adsorption from aqueous solution in a wide range of solution pH (5-11), and a maximum adsorption capacity of 231 mg/g could be obtained by E-C sample that was prepared from the eggshell and rice straw with a mass ratio of 1:1 (E-C 1:1). The adsorption of phosphate onto the E-C samples could be well described by pseudo-second-order (R2 > 0.975) and Langmuir models (R2 > 0.979). Thermodynamic analysis revealed that the adsorption process was spontaneous (ΔG0 < 0) and endothermic (ΔH0 > 0). This work provides a promising method to prepare functionalized biochar adsorbents from agricultural wastes for the recovery of phosphate from aqueous solution, and the phosphate adsorbed CaO-biochar composites can be directly applied as a slow-release fertilizer to farmland soil, which have the functions of improving soil physical structure, increasing soil fertility, and regulating soil pH.
Collapse
Affiliation(s)
- Xiaoning Liu
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China
| | - Xinhua Qi
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin 300191, China.
| |
Collapse
|
39
|
Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr Opin Biotechnol 2019; 57:111-118. [PMID: 30959426 DOI: 10.1016/j.copbio.2019.03.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
We have critically assessed some of the dogmas in the microbiology of enhanced biological phosphorus removal (EBPR) and argue that the genus Tetrasphaera can be as important as Ca. Accumulibacter for phosphorus removal; and that proliferation of their competitors, the glycogen accumulating organisms, does not appear to be a practical problem for EBPR efficiency even under tropical conditions. An increasing number of EBPR-related genomes are changing our understanding of their physiology, for example, their potential to participate in denitrification. Rather than trying to identify organisms that adhere to strict phenotype metabolic models, we advocate for broader analyses of the whole microbial communities in EBPR plants by iterative studies with isolates, lab enrichments, and full-scale systems.
Collapse
|
40
|
Qiu G, Zuniga-Montanez R, Law Y, Thi SS, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. WATER RESEARCH 2019; 149:496-510. [PMID: 30476778 DOI: 10.1016/j.watres.2018.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
41
|
Zeng F, Jin W, Zhao Q. Operation performance of an A/O process combined sewage sludge treatment and phosphorus recovery using human urine. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2597-2607. [PMID: 30767924 DOI: 10.2166/wst.2019.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel sewage sludge treatment process is developed in which sludge anaerobically phosphorus (P) released with the temperature control/ultrasonic treatment and recovery with human urine are incorporated to a conventional anaerobic/aerobic (A/O) process. The results showed that temperature affected the anaerobic P release and the maximum orthophosphate (PO4 3-P) release rate was 21.68 mg PO4 3-P/(g MLVSS.h) at 20 °C. The optimal specific energy of ultrasonic treatment was 15,000 kJ/kg TS, at which the solubilization degree of soluble chemical oxygen demand (SCOD) was 37.93%, which verified that the anaerobic sludge flocs were broken and the organic matter was obviously released. Human urine and P-rich sludge stream could be verified as a feasible way of P recovery in the form of struvite. The output of P in the combined A/O treatment process consisted of three pathways (i.e., effluent wastewater, sewage sludge, and P recovery). The influent P could be recovered by 22.84% and about 1.48 g/d potential struvite could be recovered from the anaerobic sludge flow using 0.27 L/d-human urine. The mass balances of COD and nitrogen (N) indicated that the combined A/O process also improved the organic mineralization and the removal of N.
Collapse
Affiliation(s)
- Fanzhe Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Wenbiao Jin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China E-mail:
| |
Collapse
|
42
|
Dai H, Lu X, Peng L, Li X, Dai Z. Enrichment culture of denitrifying phosphorus removal sludge and its microbial community analysis. ENVIRONMENTAL TECHNOLOGY 2017; 38:2800-2810. [PMID: 28041535 DOI: 10.1080/09593330.2016.1278276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
An efficient one-step domestication method with mixed electron acceptors and short-time post-aeration was developed for the enrichment culture of denitrifying phosphorus removal sludge. The acclimation time, performance of nitrogen and phosphorus simultaneous removal and microbial community structure were investigated to reveal the difference among the obtained phosphorus removal sludge using different acclimation ways. Results showed that the proposed method with optimal proportion of nitrite and nitrate could significantly shorten domestication time (28 days) compared with the traditional two-step method (60 days), but exerted nearly no influence on the removal efficiency of nitrogen and phosphorus. High-throughput sequencing revealed that similar microbial community structure of DPAOs sludge was obtained with different acclimation methods. Compared with seed sludge, microbial community shifted obviously, and the dominant microbial population of Dechloromonas-related phosphorus removal bacteria increased significantly. It could be inferred that the appropriate concentration of nitrite was conducive to the rapid enrichment of DPAOs under alternative anaerobic/anoxic operation. Meanwhile, anaerobic/oxic condition was favorable for the enrichment of Candidatus Accumulibacter-related phosphorus removal organisms, and short-time post-aeration in the proposed method could reduce the potential public health hazard.
Collapse
Affiliation(s)
- Hongliang Dai
- a School of Energy and Environment , Southeast University , Nanjing , China
- b ERC Taihu Lake Water Environment (Wuxi) , Wuxi , China
| | - Xiwu Lu
- a School of Energy and Environment , Southeast University , Nanjing , China
- b ERC Taihu Lake Water Environment (Wuxi) , Wuxi , China
| | - Lihong Peng
- a School of Energy and Environment , Southeast University , Nanjing , China
- b ERC Taihu Lake Water Environment (Wuxi) , Wuxi , China
| | - Xiang Li
- a School of Energy and Environment , Southeast University , Nanjing , China
- b ERC Taihu Lake Water Environment (Wuxi) , Wuxi , China
| | - Zheqin Dai
- a School of Energy and Environment , Southeast University , Nanjing , China
- b ERC Taihu Lake Water Environment (Wuxi) , Wuxi , China
| |
Collapse
|
43
|
Crovadore J, Soljan V, Calmin G, Chablais R, Cochard B, Lefort F. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents. Heliyon 2017; 3:e00427. [PMID: 29062974 PMCID: PMC5647474 DOI: 10.1016/j.heliyon.2017.e00427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/06/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
Collapse
Affiliation(s)
- Julien Crovadore
- Plants and pathogens group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland
| | - Vice Soljan
- Puratis Sàrl, EPFL Innovation Park, Building C, 1015 Lausanne, Switzerland
| | - Gautier Calmin
- Faculty of Engineering and Architecture, HES-SO University of Applied Sciences and Arts Western Switzerland, Rue de la Jeunesse 1, 2800 Delémont, Switzerland
| | - Romain Chablais
- Plants and pathogens group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland
| | - Bastien Cochard
- Plants and pathogens group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland
| | - François Lefort
- Plants and pathogens group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland
| |
Collapse
|
44
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
45
|
Cokro AA, Law Y, Williams RBH, Cao Y, Nielsen PH, Wuertz S. Non-denitrifying polyphosphate accumulating organisms obviate requirement for anaerobic condition. WATER RESEARCH 2017; 111:393-403. [PMID: 28110143 DOI: 10.1016/j.watres.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is a widely used process in wastewater treatment that requires anaerobic/aerobic or anaerobic/anoxic cycling. Surprisingly, phosphorus (P) release was observed in the presence of nitrate in the anoxic compartment of the activated sludge tank in a full-scale treatment plant with the Modified Ludzack Ettinger configuration. We therefore studied the potential of this full-scale activated sludge community to perform EBPR under anoxic/aerobic cycling. The polyphosphate accumulating organism (PAO) Candidatus Accumulibacter represented 3.3% of total bacteria based on 16S rRNA gene amplicon sequencing, and metagenome analysis suggested it was likely to be dominated by Clade IIC. Using acetate as the carbon source in batch experiments, active denitrifying organisms (DPAOs) were estimated to comprise 39-44% of the total PAO population in the sludge, with the remaining 56-61% unable to utilize nitrate. When propionate was provided as the organic carbon source, 95% of the PAO population was unable to denitrify. EBPR occurred under defined anoxic/aerobic conditions, despite the presence of DPAOs, when synthetic wastewater was supplemented with either acetate or propionate or when primary effluent was supplied. In addition, the P release and subsequent uptake rates under anoxic/aerobic conditions were comparable to those observed under anaerobic/aerobic conditions. In contrast, a significant reduction in P release rate was observed when acetate was provided under oxic conditions. We postulate that non-DPAOs that recognize the anoxic condition as pseudo-anaerobic were the key players in anoxic/aerobic EBPR.
Collapse
Affiliation(s)
- A Anisa Cokro
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Yeshi Cao
- Public Utilities Board, 40 Scotts Road, Environment Building, Singapore 228231, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, DK-9220, Aalborg, Denmark
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
46
|
Tan CH, Lee KWK, Burmølle M, Kjelleberg S, Rice SA. All together now: experimental multispecies biofilm model systems. Environ Microbiol 2017; 19:42-53. [DOI: 10.1111/1462-2920.13594] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chuan Hao Tan
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Kai Wei Kelvin Lee
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of CopenhagenCopenhagen Denmark
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| |
Collapse
|
47
|
Rice SA, Wuertz S, Kjelleberg S. Next-generation studies of microbial biofilm communities. Microb Biotechnol 2016; 9:677-80. [PMID: 27471123 PMCID: PMC4993187 DOI: 10.1111/1751-7915.12390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 11/30/2022] Open
Abstract
As we look into the future of microbial biofilm research, there is clearly an emerging focus on communities rather than populations. This represents an essential change in direction to more accurately understand how and why microorganisms assemble into communities, as well as the functional implications for such a life style. For example, current research studies shows that communities display emergent properties or functions that are not predicted from the individual single species populations, including elevated stress tolerance and resistance to antibiotics. Models for mixed species biofilms can be very simple, comprised only a handful of species or can be extremely species rich, with hundreds or thousands of species present. The future holds much promise for this area of research, where investigators will increasingly be able to resolve, at the molecular and biochemical levels, interspecies relationships and mechanisms of interaction. The outcome of these studies will greatly enhance our understanding of the ecological and evolutionary factors that drive community function in natural and engineered systems.
Collapse
Affiliation(s)
- Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|