1
|
Li D, Tian T, Ko CN, Yang C. Prospect of targeting lysine methyltransferase NSD3 for tumor therapy. Pharmacol Res 2023; 194:106839. [PMID: 37400043 DOI: 10.1016/j.phrs.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Nuclear receptor binding SET domain protein 3 (NSD3) has recently been recognized as a new epigenetic target in the fight against cancer. NSD3, which is amplified, overexpressed or mutated in a variety of tumors, promotes tumor development by regulating the cell cycle, apoptosis, DNA repair and EMT. Therefore, the inhibition, silencing or knockdown of NSD3 are highly promising antitumor strategies. This paper summarizes the structure and biological functions of NSD3 with an emphasis on its carcinogenic or cancer-promoting activity. The development of NSD3-specific inhibitors or degraders is also discussed and reviewed in this paper.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China.
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
2
|
Yang GJ, Li D, Ko CN, Guo S, Yang C. Editorial: Immunomodulatory role of metalloproteases in chronic inflammatory diseases. Front Immunol 2023; 14:1196791. [PMID: 37114053 PMCID: PMC10126522 DOI: 10.3389/fimmu.2023.1196791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung Nga Ko
- C−MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, Hong Kong SAR, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
3
|
Rafikova K, Meriç N, Güzel R, Arslan N, Ertekin Binbay N, Kayan C, Okumuş V, Zazybin A, seilkhanov T, Binbay V, Aydemir M. Transition Metals of Arene Derivatives with Functionalized Ionic Liquid: DFT Investigation, Biological Applications and Electrochemical Behavior of Complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Wu S, Wang S, Li Z, Wu C, Ma DL, Miao X. G-quadruplex-selective iridium(III) complex as a novel electrochemiluminescence probe for switch-on assay of double-stranded DNA. Anal Bioanal Chem 2022; 414:3755-3763. [PMID: 35396609 DOI: 10.1007/s00216-022-04018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/01/2022]
Abstract
In this work, we synthesized an iridium(III) complex and studied its selective ability to interact with a specific G-quadruplex DNA sequence (GTGGGTAGGGCGGGTTGG). Results showed that the iridium(III) complex exhibits high selectivity for the G-quadruplex DNA and could be used as an efficient electrochemiluminescence (ECL) probe in a switch-on assay format for the detection of double-stranded DNA (dsDNA). To construct the assay, a hairpin-structured capture probe (CP) which was modified by thiol at its 3' end and contained the G-quadruplex sequence at its 5' end was firstly immobilized on a gold electrode. Upon the specific recognition of the dsDNA sequence with the corresponding CP, the hairpin structure of the CP was opened to free G-quadruplex sequence, forming the G-quadruplex structure with the assistance of K+. Then, the iridium(III) complex was able to specifically interact with the G-quadruplex to produce an obvious ECL signal that was proportional to the dsDNA concentration. Notably, this iridium(III) complex/G-quadruplex-based strategy was universal and was not limited to the analysis of DNA using specific sequences, thus opening a new avenue for the application of the G-quadruplex-selective iridium(III) complex in the field of ECL.
Collapse
Affiliation(s)
- Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Songen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR.
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Rana P, Gaur R, Kaushik B, Rana P, Yadav S, Yadav P, Sharma P, Gawande MB, Sharma RK. Surface engineered Iridium-based magnetic photocatalyst paving a path towards visible light driven C-H arylation and cyanation reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Laser-Induced Synthesis of Composite Materials Based on Iridium, Gold and Platinum for Non-Enzymatic Glucose Sensing. MATERIALS 2020; 13:ma13153359. [PMID: 32751164 PMCID: PMC7436056 DOI: 10.3390/ma13153359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
A simple approach for in situ laser-induced modification of iridium-based materials to increase their electrocatalytic activity towards enzyme-free glucose sensing was proposed. For this purpose, we deposited gold and platinum separately and as a mixture on the surface of pre-synthesized iridium microstructures upon laser irradiation at a wavelength of 532 nm. Then, we carried out the comparative investigation of their morphology, elemental and phase composition as well as their electrochemical properties. The best morphology and, as a result, the highest sensitivity (~9960 µA/mM cm2) with respect to non-enzymatic determination of D-glucose were demonstrated by iridium-gold-platinum microstructures also showing low limit of detection (~0.12 µM), a wide linear range (0.5 µM–1 mM) along with good selectivity, reproducibility and stability.
Collapse
|
7
|
Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A. One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 2020; 10:1762. [PMID: 32020015 PMCID: PMC7000682 DOI: 10.1038/s41598-020-58697-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 μM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, USA
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Sedgwick AC, Brewster JT, Harvey P, Iovan DA, Smith G, He XP, Tian H, Sessler JL, James TD. Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chem Soc Rev 2020; 49:2886-2915. [DOI: 10.1039/c8cs00986d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metals and lanthanide ions display unique properties that enable the development of non-invasive diagnostic tools for imaging. In this review, we highlight various metal-based imaging strategies used to interrogate neurodegeneration.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Peter Harvey
- Department of Biological Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Sir Peter Mansfield Imaging Centre
| | - Diana A. Iovan
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Graham Smith
- Division of Radiotherapy & Imaging
- Institute of Cancer Research
- London
- UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | | |
Collapse
|
9
|
Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Spain E, Carrara S, Adamson K, Ma H, O’Kennedy R, De Cola L, Forster RJ. Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance. ACS OMEGA 2018; 3:17116-17124. [PMID: 31458332 PMCID: PMC6643842 DOI: 10.1021/acsomega.8b01758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/27/2018] [Indexed: 06/10/2023]
Abstract
An electrochemical biosensor for the detection of cardiac troponin I, cTnI, an important cardiac biomarker, is described. A combination of a novel monoclonal antibody, mAb20B3, and a novel Ir(III)-based metal complex was used for detection using faradaic electrochemical impedance spectroscopy. A limit of detection of 10 ag/mL was achieved, which is significantly lower than established assays. The ability to detect these ultralow concentrations enables rapid and early stage detection of cardiac events and opens up the possibility of developing a point-of-care device.
Collapse
Affiliation(s)
- Elaine Spain
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| | - Serena Carrara
- Universitè
de Strasbourg, CNRS, ISIS & icFRC, 8 Allée Gaspard Monge, 67083 Strasbourg, France
| | - Kellie Adamson
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
- School
of Chemistry, National University of Ireland
Galway, H91 TK33 Galway, Ireland
| | - Hui Ma
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| | - Richard O’Kennedy
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
- Qatar
Biomedical Research Institute, Hamad Bin
Khalifa University, Doha, Qatar
| | - Luisa De Cola
- Universitè
de Strasbourg, CNRS, ISIS & icFRC, 8 Allée Gaspard Monge, 67083 Strasbourg, France
| | - Robert J. Forster
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| |
Collapse
|
11
|
Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Mikrochim Acta 2018; 185:569. [PMID: 30506518 DOI: 10.1007/s00604-018-3089-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
A highly sensitive electrochemical sensor is described for the determination of H2O2. It is based on based on the use of polyaniline that was generated in-situ and within 1 min on a glassy carbon electrode (GCE) with the aid of the Fe(II)/H2O2 system. Initially, a 2-dimensional composite was prepared from graphene oxide and polyamidoamine dendrimer through covalent interaction. It was employed as a carrier for Fe(II) ions. Then, the nanocomposite was drop-coated onto the surface of the GCE. When exposed to H2O2, the Fe(II) on the GCE is converted to Fe(III), and free hydroxy radicals are formed. The Fe(III) ions and the hydroxy radicals catalyze the oxidation of aniline to produce electroactive polyaniline on the GCE. The resulting sensor, best operated at a working potential as low as 50 mV (vs. SCE) which excludes interference by dissolved oxygen, has a linear response in the 500 nM to 2 mM H2O2 concentration range, and the detection limit is 180 nM. The sensor was successfully applied to the determination of H2O2 in spiked milk and fetal bovine serum samples. Graphical abstract Schematic presentation of a sensitive electrochemical sensor employed for detection of H2O2 in sophisticated matrices by using graphene oxide-PAMAM dendrimer as initiator container and Fe2+/H2O2 system as signal enhancer.
Collapse
|
12
|
|
13
|
Li D, Meng L, Xiao P, Jiang D, Dang S, Chen M. Enhanced non-enzymatic electrochemical sensing of hydrogen peroxide based on Cu 2 O nanocubes/Ag-Au alloy nanoparticles by incorporation of RGO nanosheets. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
A cyclometalated iridium(III) complex used as a conductor for the electrochemical sensing of IFN-γ. Sci Rep 2017; 7:42740. [PMID: 28198433 PMCID: PMC5309891 DOI: 10.1038/srep42740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
A novel iridium(III) complex was prepared and used as a conductor for sensitive and enzyme-free electrochemical detection of interferon gamma (IFN-γ). This assay is based on a dual signal amplification mechanism involving positively charged gold nanoparticles ((+)AuNPs) and hybridization chain reaction (HCR). To construct the sensor, nafion (Nf) and (+)AuNPs composite membrane was first immobilized onto the electrode surface. Subsequently, a loop-stem structured capture probe (CP) containing a special IFN-γ interact strand was modified onto the (+)AuNP surface via the formation of Au-S bonds. Upon addition of IFN-γ, the loop-stem structure of CP was opened, and the newly exposed "sticky" region of CP then hybridized with DNA hairpin-1 (H1), which in turn opened its hairpin structure for hybridizing with DNA hairpin-2 (H2). Happen of HCR between H1 and H2 thus generated a polymeric duplex DNA (dsDNA) chain. Meanwhile, the iridium(III) complex could interact with the grooves of the dsDNA polymer, producing a strong current signal that was proportional to IFN-γ concentration. Thus, sensitive detection of IFN-γ could be realized with a detection limit down to 16.3 fM. Moreover, satisfied results were achieved by using this method for the detection of IFN-γ in human serum samples.
Collapse
|