1
|
Weston NM, Green JC, Keoprasert TN, Sun D. Dendritic morphological development of traumatic brain injury-induced new neurons in the dentate gyrus is important for post-injury cognitive recovery and is regulated by Notch1. Exp Neurol 2024; 382:114963. [PMID: 39303845 PMCID: PMC11502241 DOI: 10.1016/j.expneurol.2024.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent problem with survivors suffering from chronic cognitive impairments. Following TBI there is a series of neuropathological changes including neurogenesis. It is well established that neurogenesis in the dentate gyrus (DG) of the hippocampus is important for hippocampal dependent learning and memory functions. Following TBI, injury-enhanced hippocampal neurogenesis is believed to contribute to post-injury cognitive recovery. Behavioral function is connected to synaptic plasticity and neuronal dendritic branching is critical for successful synapse formation. To ascertain the functional contribution of injury-induced DG new neurons in post-TBI cognitive recovery, it is necessary to study their dendritic morphological development and the molecular mechanisms controlling this process. Utilizing transgenic mice with tamoxifen-induced GFP expression and Notch1 knock-out in nestin+ neural stem cells, this study examined dendritic morphology, the role of Notch1 in regulating dendritic complexity of injury-induced DG new neurons, and their association to post-TBI cognitive recovery. We found that at 8 weeks after a moderate TBI, injury-induced DG new neurons in the injured control mice displayed a similar dendritic morphology as the cells in non-injured mice accompanied with cognitive recovery. In comparison, in Notch1 conditional knock-out mice, DG new neurons in the injured mice had a significant reduction in dendritic morphological development including dendritic arbors, volume span, and number of branches in comparison to the cells in non-injured mice concomitant with persistent cognitive dysfunction. The results of this study confirm the importance of post-injury generated new neurons in cognitive recovery following TBI and the role of Notch1 in regulating their maturation process.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Jakob C Green
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Timothy N Keoprasert
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States.
| |
Collapse
|
2
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
3
|
Li H, Sung HH, Huang YC, Cheng YJ, Yeh HF, Pi H, Giniger E, Chien CT. Fringe-positive Golgi outposts unite temporal Furin 2 convertase activity and spatial Delta signal to promote dendritic branch retraction. Cell Rep 2022; 40:111372. [PMID: 36130510 PMCID: PMC11463699 DOI: 10.1016/j.celrep.2022.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.
Collapse
Affiliation(s)
- Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chun Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Fong Yeh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Haiwei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
4
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA. Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease. Neural Regen Res 2022; 17:31-37. [PMID: 34100423 PMCID: PMC8451546 DOI: 10.4103/1673-5374.313016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The presenilin genes (PSEN1 and PSEN2) are mainly responsible for causing early-onset familial Alzheimer's disease, harboring ~300 causative mutations, and representing ~90% of all mutations associated with a very aggressive disease form. Presenilin 1 is the catalytic core of the γ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein, Notch-1, N- and E-cadherin, LRP, Syndecan, Delta, Jagged, CD44, ErbB4, and Nectin1a. Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity. Therefore, an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling, synaptic dysfunction, memory impairment, and increased Aβ42/Aβ40 ratio, contributing to neurodegeneration during the initial stages of Alzheimer's disease pathogenesis. This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer's disease. Furthermore, we emphasize the importance of Alzheimer's disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer's disease pathogenesis throughout neuronal differentiation impairment.
Collapse
Affiliation(s)
- Mercedes A Hernandez-Sapiens
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Edwin E Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ulises Gómez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Jorge Matias-Guiu
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Ricardo R Cevallos
- Biochemistry and Molecular Genetics Department, University of Alabama, Birmingham, Alabama
| | - Juan C Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
6
|
Fathi D, Abulsoud AI, Saad MA, Nassar NN, Maksimos MM, Rizk SM, Senousy MA. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sci 2021; 284:119904. [PMID: 34453945 DOI: 10.1016/j.lfs.2021.119904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
AIM Alcohol abuse is a significant causative factor of death worldwide. The Notch1 signaling pathway is involved in alcohol tolerance, withdrawal and dependence. Agomelatine is a known antidepressant acting as a melatonin receptor (MT1/2) agonist and a 5-hydroxytryptamine receptor-2C antagonist. However, its effects on alcohol cravings and alcohol withdrawal symptoms have not been investigated. In this study, we assessed the possibility of using agomelatine for the treatment of these symptoms in a rat model of alcoholism and the possible role of Notch1 signaling. MAIN METHODS We induced alcoholism in rats using a free-choice drinking model for 60 days. From day 61, free-choice was continued until day 82 for the craving model, whereas only water was offered in the withdrawal model. Meanwhile, the treated groups for both models received agomelatine (50 mg/kg/day) orally from day 61 to 82, followed by behavioral, histopathological and biochemical assessment. KEY FINDINGS Agomelatine treatment caused significant decrease in alcohol consumption with a positive effect on anxiety-like behavior in the open field, memory in the Morris water maze and immobility in the forced swim test. Moreover, agomelatine induced the expression of Notch1 pathway markers, including Notch1, NICD, CREB, CCNE-2, Hes-1, both total and phosphorylated ERK1/2, MMP9, Per2and RGS-2 in the hippocampal formation. By contrast, NMDAR expression was reduced. Furthermore, agomelatine normalized the serum levels of BDNF, cortisol, dopamine and glutamate which were disrupted by alcohol consumption. SIGNIFICANCE Based on these findings, agomelatine reversed alcohol cravings and withdrawal symptoms associated with alcohol dependence by modulating the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina M Maksimos
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Institute for Microbiology, Faculty of Life Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Gill S, Kumara VMR. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021; 10:793. [PMID: 33918242 PMCID: PMC8103521 DOI: 10.3390/cells10040793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is considered as one of the most extensively synthesized and used chemicals for industrial and consumer products. Previous investigations have established that exposure to BPA has been linked to developmental, reproductive, cardiovascular, immune, and metabolic effects. Several jurisdictions have imposed restrictions and/or have banned the use of BPA in packaging material and other consumer goods. Hence, manufacturers have replaced BPA with its analogues that have a similar chemical structure. Some of these analogues have shown similar endocrine effects as BPA, while others have not been assessed. In this investigation, we compared the neurodevelopmental effects of BPA and its major replacement Bisphenol F (BPF) on rat fetal neural stem cells (rNSCs). rNSCs were exposed to cell-specific differentiation media with non-cytotoxic doses of BPA or BPF at the range of 0.05 M to 100 M concentrations and measured the degree of cell proliferation, differentiation, and morphometric parameters. Both of these compounds increased cell proliferation and impacted the differentiation rates of oligodendrocytes and neurons, in a concentration-dependent manner. Further, there were concentration-dependent decreases in the maturation of oligodendrocytes and neurons, with a concomitant increase in immature oligodendrocytes and neurons. In contrast, neither BPA nor BPF had any overall effect on cellular proliferation or the cytotoxicity of astrocytes. However, there was a concentration-dependent increase in astrocyte differentiation and morphological changes. Morphometric analysis for the astrocytes, oligodendrocytes, and neurons showed a reduction in the arborization. These data show that fetal rNSCs exposed to either BPA or BPF lead to comparable changes in the cellular differentiation, proliferation, and arborization processes.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Health Products and Food Branch, Tunney’s Pasture, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | | |
Collapse
|
8
|
Delétage N, Le Douce J, Callizot N, Godfrin Y, Lemarchant S. SCO-spondin-derived Peptide Protects Neurons from Glutamate-induced Excitotoxicity. Neuroscience 2021; 463:317-336. [PMID: 33577953 DOI: 10.1016/j.neuroscience.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Subcommissural organ (SCO)-spondin is a brain-specific glycoprotein produced during embryogenesis, that strongly contributes to neuronal development. The SCO becomes atrophic in adults, halting SCO-spondin production and its neuroprotective functions. Using rat and human neuronal cultures, we evaluated the neuroprotective effect of an innovative peptide derived from SCO-spondin against glutamate excitotoxicity. Primary neurons were exposed to glutamate and treated with the linear (NX210) and cyclic (NX210c) forms of the peptide. Neuronal survival and neurite networks were assessed using immunohistochemistry or biochemistry. The mechanism of action of both peptide forms was investigated by exposing neurons to inhibitors targeting receptors and intracellular mediators that trigger apoptosis, neuronal survival, or neurite growth. NX210c promoted neuronal survival and prevented neurite network retraction in rat cortical and hippocampal neurons, whereas NX210 was efficient only in neuronal survival (cortical neurons) or neurite networks (hippocampal neurons). They triggered neuroprotection via integrin receptors and γ-secretase substrate(s), activation of the PI3K/mTOR pathway and disruption of the apoptotic cascade. The neuroprotective effect of NX210c was confirmed in human cortical neurons via the reduction of lactate dehydrogenase release and recovery of normal basal levels of apoptotic cells. Together, these results show that NX210 and NX210c protect against glutamate neurotoxicity through common and distinct mechanisms of action and that, most often, NX210c is more efficient than NX210. Proof of concept in central nervous system animal models are under investigation to evaluate the neuroprotective action of SCO-spondin-derived peptide.
Collapse
Affiliation(s)
| | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France.
| | - Yann Godfrin
- Axoltis Pharma, 60 Avenue Rockefeller, 69008 Lyon, France; Godfrin Life Sciences, 8 impasse de la source, 69300 Caluire-et-Cuire, France.
| | | |
Collapse
|
9
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
10
|
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Sci Rep 2020; 10:7046. [PMID: 32341405 PMCID: PMC7184603 DOI: 10.1038/s41598-020-63928-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81-9.20, Fisher's exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02-6.73, Fisher's exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction (PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.
Collapse
Affiliation(s)
- Weizhen Ji
- Departments of Pediatrics, New Haven, CT, USA
| | | | - Joshua Copel
- Departments of Pediatrics, New Haven, CT, USA
- Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | | | | | - Martina Brueckner
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
- Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT, USA
| | - Mustafa K Khokha
- Departments of Pediatrics, New Haven, CT, USA
- Genetics, New Haven, CT, USA
| | - Laura R Ment
- Departments of Pediatrics, New Haven, CT, USA.
- Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| |
Collapse
|
11
|
Yuan P, Han W, Xie L, Cheng L, Chen H, Chen J, Jiang L. The implications of hippocampal neurogenesis in adolescent rats after status epilepticus: a novel role of notch signaling pathway in regulating epileptogenesis. Cell Tissue Res 2020; 380:425-433. [PMID: 31900663 DOI: 10.1007/s00441-019-03146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Seizure-induced neurogenesis has a widely recognized pro-epileptogenic function. Given the critical role of Notch signaling during the maintenance and neurogenesis of neural stem cells, we hypothesized that Notch may affect epileptogenesis and its progression through its role in neurogenesis in the adolescent rat brain. We used the lithium-pilocarpine-induced epilepsy model in adolescent Sprague-Dawley rats in order to evaluate hippocampal neurogenesis and epileptogenesis following the onset of status epilepticus (SE). We used western blotting analyses and qPCR to measure levels of Notch signaling at different phases after seizures and immunofluorescence to detect the proliferation and differentiation of neural stem cells after seizure. Following the administration of DAPT, a Notch γ-secretase inhibitor, into the lateral ventricles, we observed a suppression of abnormal neurogenesis in the acute phase and a reduction of gliosis in the chronic phase after SE. Accordingly, the frequency and duration of spontaneous seizures in chronic phase were decreased. Our results clarify the basic concept regarding the involvement of Notch signaling in the regulation of hippocampal neurogenesis and epileptogenesis, thereby potentially offering a novel and alternative treatment for epilepsy.
Collapse
Affiliation(s)
- Ping Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Wei Han
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Lingling Xie
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China
| | - Li Cheng
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China
| | - Jin Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China.
| | - Li Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical UniSversity, Chongqing, People's Republic of China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2nd Road, YuZhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
12
|
Baik SH, Rajeev V, Fann DYW, Jo DG, Arumugam TV. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav 2020; 10:e01444. [PMID: 31804775 PMCID: PMC6955834 DOI: 10.1002/brb3.1444] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/24/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Intermittent fasting (IF) has been suggested to have neuroprotective effects through the activation of multiple signaling pathways. Rodents fasted intermittently exhibit enhanced hippocampal neurogenesis and long-term potentiation (LTP) at hippocampal synapses compared with sedentary animals fed an ad libitum (AL) diet. However, the underlying mechanisms have not been studied. In this study, we evaluated the mechanistic gap in understanding IF-induced neurogenesis. METHODS We evaluated the impact of 3 months of IF (12, 16, and 24 hr of food deprivation on a daily basis) on hippocampal neurogenesis in C57BL/6NTac mice using immunoblot analysis. RESULTS Three-month IF significantly increased activation of the Notch signaling pathway (Notch 1, NICD1, and HES5), neurotrophic factor BDNF, and downstream cellular transcription factor, cAMP response element-binding protein (p-CREB). The expression of postsynaptic marker, PSD95, and neuronal stem cell marker, Nestin, was also increased in the hippocampus in response to 3-month IF. CONCLUSIONS These findings suggest that IF may increase hippocampal neurogenesis involving the Notch 1 pathway.
Collapse
Affiliation(s)
- Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,School of Pharmacy, Sungkyunkwan University, Suwon, Korea.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
13
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Zhao W, Gao X, Qiu S, Gao B, Gao S, Zhang X, Kang D, Han W, Dai P, Yuan Y. A subunit of V-ATPases, ATP6V1B2, underlies the pathology of intellectual disability. EBioMedicine 2019; 45:408-421. [PMID: 31257146 PMCID: PMC6642280 DOI: 10.1016/j.ebiom.2019.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 01/21/2023] Open
Abstract
Background Dominant deafness-onychodystrophy (DDOD) syndrome is a rare disorder mainly characterized by severe deafness, onychodystrophy and brachydactyly. We previously identified c.1516C > T (p.Arg506X) in ATP6V1B2 as cause of DDOD syndrome, accounting for all cases of this genetic disorder. Clinical follow-up of DDOD syndrome patients with cochlear implantation revealed the language rehabilitation was unsatisfactory although the implanted cochlea worked well, which indicates there might be learning and memory problems in DDOD syndrome patients. However, the underlying mechanisms were unknown. Methods atp6v1b2 knockdown zebrafish and Atp6v1b2 c.1516C > T knockin mice were constructed to explore the phenotypes and related mechanism. In mutant mice, auditory brainstem response test and cochlear morphology analysis were performed to evaluate the auditory function. Behavioral tests were used to investigate various behavioral and cognitive domains. Resting-state functional magnetic resonance imaging was used to evaluate functional connectivity in the mouse brain. Immunofluorescence, Western blot, and co-immunoprecipitation were performed to examine the expression and interactions between the subunits of V-ATPases. Findings atp6v1b2 knockdown zebrafish showed developmental defects in multiple organs and systems. However, Atp6v1b2 c.1516C > T knockin mice displayed obvious cognitive defects but normal hearing and cochlear morphology. Impaired hippocampal CA1 region and weaker interaction between the V1E and B2 subunits in Atp6v1b2Arg506X//Arg506X mice were observed. Interpretation Our study extends the phenotypic range of DDOD syndrome. The impaired hippocampal CA1 region may be the pathological basis of the behavioral defects in mutant mice. The molecular mechanism underlying V-ATPases dysfunction involves a weak interaction between subunits, although the assembly of V-ATPases can still take place.
Collapse
Affiliation(s)
- Weihao Zhao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China; Department of Otolaryngology General Hospital of Tibet Military Region, Lhasa 850007, China
| | - Xue Gao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China; Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing 100088, China
| | - Shiwei Qiu
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Bo Gao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Song Gao
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Xin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Dongyang Kang
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Weiju Han
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China.
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China.
| | - Yongyi Yuan
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China.
| |
Collapse
|
16
|
Sun C, Fu J, Qu Z, Li D, Si P, Qiao Q, Zhang W, Xue Y, Zhen J, Wang W. Chronic mild hypoxia promotes hippocampal neurogenesis involving Notch1 signaling in epileptic rats. Brain Res 2019; 1714:88-98. [PMID: 30768929 DOI: 10.1016/j.brainres.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
Abstract
Cognitive impairment is one of the most common and disabling co-morbidities of epilepsy. It is therefore imperative to find novel treatment approaches to rescue cognitive function among epilepsy patients. Adult neurogenesis is strongly implicated in cognitive function, and mild hypoxia is known to promote the proliferation and differentiation of both embryonic and adult neural stem cells (NSCs). In the present study, we investigated the effect of mild hypoxia on cognitive function and hippocampal neurogenesis of rats with pilocarpine-induced chronic epilepsy. Chronic epilepsy induced marked spatial learning and memory deficits in the Morris water maze that were rescued by consecutively 28 days mild hypoxia exposure (6 h/d at 3000 m altitude equivalent) during the chronic phase. Moreover, mild hypoxia reversed the suppression of hippocampal neurogenesis and the downregulation of NT-3 and BDNF expression in hippocampus and cortex of epileptic rats. Mild hypoxia in vitro also promoted hippocampus-derived NSC proliferation and neuronal differentiation. In addition, mild hypoxia enhanced Notch1 and Hes1 expression, suggesting that Notch1 signaling may be involved in neuroprotection of hypoxia. Our data may help to pave the way for identifying new therapeutic targets for rescuing cognition conflicts in epileptic patients by using hypoxia to promote hippocampus neurogenesis.
Collapse
Affiliation(s)
- Can Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Jian Fu
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Dongxiao Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Peipei Si
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qi Qiao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wenlin Zhang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yan Xue
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
17
|
Li L, Chen LP, Liu QH. Effect of the Notch signaling pathway on retinal ganglion cells and its neuroprotection in rats with acute ocular hypertension. Int J Ophthalmol 2018; 11:208-215. [PMID: 29487808 DOI: 10.18240/ijo.2018.02.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
AIM To explore the effect of the Notch signaling pathway on retinal ganglion cells (RGCs) and optic nerve in rats with acute ocular hypertension (OH). METHODS Totally 48 Sprague-Dawley (SD) rats were included, among which 36 rats were selected to establish acute OH models. OH rats received a single intravitreal injection of 2 µL phosphate buffered solution (PBS) and another group of OH rats received a single intravitreal injection of 10 µmol/L γ-secretase inhibitor (DAPT). Quantitative real-time polymerase chain reaction (qPCR) and Western blot assay were adopted to determine the mRNA level of Notch and the protein levels of Notch, Bcl-2, Bax, caspase-3, and growth-associated protein 43 (GAP-43). The RGC apoptosis conditions were assessed by TUNEL staining. RESULTS The OH rats and PBS-injected rats had increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, with severer macular edema and RGCs more loosely aligned, when compared with the normal rats. The DAPT-treated rats displayed increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, in comparison with the OH rats and PBS-injected rats. RGCs were hardly observed and macular edema became severe in the DAPT-treated rat. CONCLUSION The Notch signaling pathway may suppress the apoptosis of retinal ganglion cells and enhances the regeneration of the damaged optic nerves in rats with acute OH.
Collapse
Affiliation(s)
- Lei Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Li-Ping Chen
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
18
|
Petsophonsakul P, Richetin K, Andraini T, Roybon L, Rampon C. Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits. Brain Struct Funct 2017; 222:2585-2601. [PMID: 28062924 DOI: 10.1007/s00429-016-1359-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.
Collapse
Affiliation(s)
- Petnoi Petsophonsakul
- Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Kevin Richetin
- Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Trinovita Andraini
- Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
- Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Diseases Modeling, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund Stem Cell Center and MultiPark, Lund University, BMC A10, 221 84, Lund, Sweden
| | - Claire Rampon
- Research Center on Animal Cognition, Center for Integrative Biology, Université Paul Sabatier, UMR5169 CNRS, 118, route de Narbonne, 31062, Toulouse Cedex 9, France.
| |
Collapse
|
19
|
Guan J, Wei X, Qu S, Lv T, Fu Q, Yuan Y. Osthole prevents cerebral ischemia-reperfusion injury via the Notch signaling pathway. Biochem Cell Biol 2017; 95:459-467. [PMID: 28257582 DOI: 10.1139/bcb-2016-0233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia-reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Junhong Guan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiangtai Wei
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Tao Lv
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ye Yuan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
20
|
Regulation of striatal dopamine responsiveness by Notch/RBP-J signaling. Transl Psychiatry 2017; 7:e1049. [PMID: 28267151 PMCID: PMC5416667 DOI: 10.1038/tp.2017.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 12/30/2016] [Accepted: 01/18/2017] [Indexed: 01/03/2023] Open
Abstract
Dopamine signaling is essential for reward learning and fear-related learning, and thought to be involved in neuropsychiatric diseases. However, the molecular mechanisms underlying the regulation of dopamine responsiveness is unclear. Here we show the critical roles of Notch/RBP-J signaling in the regulation of dopamine responsiveness in the striatum. Notch/RBP-J signaling regulates various neural cell fate specification, and neuronal functions in the adult central nervous system. Conditional deletion of RBP-J specifically in neuronal cells causes enhanced response to apomorphine, a non-selective dopamine agonist, and SKF38393, a D1 agonist, and impaired dopamine-dependent instrumental avoidance learning, which is corrected by SCH23390, a D1 antagonist. RBP-J deficiency drastically reduced dopamine release in the striatum and caused a subtle decrease in the number of dopaminergic neurons. Lentivirus-mediated gene transfer experiments showed that RBP-J deficiency in the striatum was sufficient for these deficits. These findings demonstrated that Notch/RBP-J signaling regulates dopamine responsiveness in the striatum, which may explain the mechanism whereby Notch/RBP-J signaling affects an individual's susceptibility to neuropsychiatric disease.
Collapse
|