1
|
Oh JY, Villaseñor KE, Kian AC, Cormode DP. Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28982-29001. [PMID: 40343711 DOI: 10.1021/acsami.5c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Inorganic nanoparticles possess unique physicochemical properties that make them attractive candidates for diverse applications in nanomedicine, including as contrast agents and as therapeutics. However, many inorganic nanoparticles are composed of high-atomic-number elements, raising safety concerns due to potential long-term retention in the body. However, ultrasmall inorganic nanoparticles (UINPs), i.e., those that are less than ∼5 nm in diameter, can offer the advantage of rapid renal clearance from the body, reducing toxicity risks associated with prolonged exposure and thereby creating a path toward clinical translation. In this review, we discuss current knowledge on the design and functionalization of UINPs, exploring their capabilities from diagnosis to therapeutics, with examples including radiosensitization, photothermal, and anti-inflammatory catalytic therapies. In addition, we discuss their limitations, the approaches taken to solve their limitations, and progress of UINPs toward clinical translation. Through this discussion, we aim to provide a comprehensive perspective on how UINPs are advancing the field of nanomedicine, underscoring their potential to significantly improve bioimaging and therapeutic outcomes.
Collapse
Affiliation(s)
- Jun Yong Oh
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kathleen E Villaseñor
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrea C Kian
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Calatayud DG, Martín Arroyo MV, Caballero AC, Villegas M, Ge H, Botchway SW, Pascu SI, Peiteado M, Jardiel T. Rare Earths-Doped and Ceria-Coated Strontium Aluminate PlateletsVersatile Luminescent Platforms for Correlated Lifetime Imaging by Multiphoton FLIM and PLIM. ACS OMEGA 2025; 10:19950-19965. [PMID: 40415853 PMCID: PMC12096198 DOI: 10.1021/acsomega.5c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/27/2025]
Abstract
We report our recent advances in the design and synthesis of functional and hybrid composite nanomaterials with properties geared toward life sciences assays and as platforms for biomedical imaging applications. Using a stepwise reverse micelle procedure, we synthesized hybrid platelets comprising rare earth-doped strontium aluminate cores labeled Eu,Dy:SrAlO, where the phase nominally denoted as Sr0.95Eu0.02Dy0.03Al2O4 dominates the nature of the composite, as demonstrated by extensive X-ray diffraction investigations. These were coated with a biocompatible cerium oxide shell, giving rise to the hierarchical hybrids denoted CeO2@Eu,Dy:SrAlO. Such Eu/Dy codoped strontium aluminates exhibit broad luminescent emissions with high optical sensitivity. The CeO2 shell further imparts biocompatibility and water dispersibility, resulting in kinetically stable nanoplatelets which can translocate into living cells in lifetime imaging protocols that were optimized for imaging across nano- and microscales. Multiphoton fluorescence lifetime imaging microscopy (MP FLIM) confirmed the luminescent properties in thin films and living cellular environments. These nanohybrids represent a significant step forward in the development of functional molecules and materials, leveraging directed and self-assembly strategies for their synthesis. Their luminescence (detectable by fluorescence as well as phosphorescence emission intensity correlated with emission lifetime), negligible toxicity on the time scale of imaging assays and up to 72 h, and biocompatibility with cellular milieu enabled their tracing with living cells. Their cellular activity was estimated by standard MTT assays in PC-3 and provided a further insight into their behavior in biological environments. The inclusion of heavy cerium and strontium atoms enhanced X-ray attenuation, supporting multimodal imaging by integrating optical and X-ray-based methods, which paves the way for potential applications in computed tomography correlated to confocal microscopy coupled with fluorescence lifetime imaging. These findings highlight the versatility of these luminescent hybrids for bioimaging and as synthetic scaffolds toward nanomedicine applications, bridging advanced imaging modalities with functional materials design.
Collapse
Affiliation(s)
- David G. Calatayud
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
- Inorganic
Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, Campus
de Cantoblanco, 28049Madrid, Spain
| | - María Victoria Martín Arroyo
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Amador C. Caballero
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Marina Villegas
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Haobo Ge
- Department
of Chemistry, University of Bath, BA2 7AYBath, U.K.
| | - Stanley W. Botchway
- STFC
Research Complex at Harwell, Rutherford
Appleton Laboratory, Harwell, Science and Innovation Campus, Harwell, OxfordshireOX11 0QX, U.K.
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, BA2 7AYBath, U.K.
| | - Marco Peiteado
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| | - Teresa Jardiel
- Electroceramics
Department, Instituto de Cerámica
y VidrioCSIC, Kelsen 5, Campus de Cantoblanco, 28049Madrid, Spain
| |
Collapse
|
3
|
Takemiya K, Seo W, Voll RJ, Zhao S, Joseph G, Wang S, Zeng F, Nye JA, Murthy N, Taylor WR, Goodman MM. Synthesis, radiolabeling, and biological evaluation of methyl 6-deoxy-6-[ 18F]fluoro-4-thio-α-d-maltotrioside as a positron emission tomography bacterial imaging agent. RSC Adv 2025; 15:8809-8829. [PMID: 40124918 PMCID: PMC11927393 DOI: 10.1039/d5ra00693g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
We developed fluorine-18 ([18F]) labeled methyl 6-deoxy-6-fluoro-4-thio-α-d-maltotrioside ([18F]MFTMT) for bacterial imaging and evaluated its stability and efficacy in vitro and in vivo. We found that Staphylococcus aureus (S. aureus) internalized [18F]MFTMT whereas Escherichia coli (E. coli) and CHO-K1 cells did not, in in vitro. Positron emission tomography imaging with [18F]MFTMT revealed that radioactivity accumulated not only in the S. aureus-infected group but also in the E. coli-infected and non-infectious inflammation groups. Further studies revealed that rat serum digested [18F]MFTMT into [18F]-methyl 6-deoxy-6-fluoro-4-thio-α-d-maltoside ([18F]MFTM), while [18F]MFTMT was stable in human serum for 210 min. [18F]MFTM was identified as the only radioactive metabolite in vivo. Similar to [18F]MFTMT, [18F]MFTM was internalized only by S. aureus. [18F]MFTM was identified as the only radioactive metabolite in vivo. We found that the sodium-glucose co-transporter 1 (SGLT1) is expressed in inflammatory tissue, and SGLT1 overexpressing cells showed increased retention of [18F]MFTMT and [18F]MFTM in vitro. Our study showed that the thio-glycosyl bond is stable against enzymatic digestion, and maltotetraose or a longer maltodextrin backbone is desirable for bacteria-specific imaging to avoid nonspecific uptake by SGLT1.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Sheng Zhao
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - Giji Joseph
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Shelly Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Fanxing Zeng
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
- Department of Radiology and Radiological Science, Medical University of South Carolina 261 Calhoun Street Charleston South Carolina 29425 USA
| | - Niren Murthy
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
- Joseph Maxwell Cleland Atlanta VA Medical Center 1670 Clairmont Road Decatur Georgia 30033 USA
- Wallace H. Coulter Department of Biomedical Engineering, School of Medicine, Emory University 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| |
Collapse
|
4
|
Gaur S, Stein EB, Schneider DK, Masotti M, Davenport MS, George AK, Ellis JH. Gold nanoshells for prostate cancer treatment: evidence for deposition in abdominal organs. Abdom Radiol (NY) 2024; 49:1929-1939. [PMID: 38376575 DOI: 10.1007/s00261-024-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE Gold-silica nanoshell therapy [AuroShells with subsequent focal laser therapy (AuroLase)] is an emerging targeted treatment modality for prostate cancer. We reviewed pre- and post-treatment unenhanced CT imaging to assess for retained gold-silica nanoshells in the abdomen and pelvis. METHODS This single-institution retrospective study identified patients in the AuroLase pilot who underwent pre- and post-treatment unenhanced abdominopelvic CT. The attenuation, before and after gold-silica nanoshell administration, of the liver, spleen, pancreas, kidneys, prostate, blood pool, paraspinal musculature, and abnormal lymph nodes were manually measured by two readers. After inter-reader agreement was calculated using intraclass correlation (ICC), a permutation test was used to assess pre- and post-therapy attenuation differences. RESULTS Four patients met the inclusion criteria. Mean age was 72.3 ± 5.9 years. Median time interval between pre-treatment CT and treatment, and between treatment and post-treatment CT, was 232 days and 236.5 days, respectively. The two readers' attenuation measurements had very high agreement (ICC = 0.99, p < 0.001). The highest differences in organ attenuation between pre- and post-therapy scans were seen in all four patients in the liver and spleen (liver increased by an average of 28.9 HU, p = 0.010; spleen increased by an average of 63.7 HU, p = 0.012). A single measured lymph node increased by an average of 58.9 HU. In the remainder of the measured sites, the change in attenuation from pre- to post-therapy scans ranged from -0.1 to 3.8 HU (p > 0.05). CONCLUSION Increased attenuation of liver and spleen at CT can be an expected finding in patients who have received gold-silica nanoshell therapy.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Erica B Stein
- Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Daniel K Schneider
- Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Maria Masotti
- Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| | - Matthew S Davenport
- Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Arvin K George
- Department of Urology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5330, USA
| | - James H Ellis
- Department of Radiology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA.
| |
Collapse
|
5
|
Kim E, Park YK, Zhao T, Laugeman E, Zhao XN, Hao Y, Chung Y, Lee H. Image quality characterization of an ultra-high-speed kilovoltage cone-beam computed tomography imaging system on an O-ring linear accelerator. J Appl Clin Med Phys 2024; 25:e14337. [PMID: 38576183 PMCID: PMC11087174 DOI: 10.1002/acm2.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE The quality of on-board imaging systems, including cone-beam computed tomography (CBCT), plays a vital role in image-guided radiation therapy (IGRT) and adaptive radiotherapy. Recently, there has been an upgrade of the CBCT systems fused in the O-ring linear accelerators called HyperSight, featuring a high imaging performance. As the characterization of a new imaging system is essential, we evaluated the image quality of the HyperSight system by comparing it with Halcyon 3.0 CBCT and providing benchmark data for routine imaging quality assurance. METHODS The HyperSight features ultra-fast scan time, a larger kilovoltage (kV) detector, a more substantial kV tube, and an advanced reconstruction algorithm. Imaging protocols in the two modes of operation, treatment mode with IGRT and the CBCT for planning (CBCTp) mode were evaluated and compared with Halcyon 3.0 CBCT. Image quality metrics, including spatial resolution, contrast resolution, uniformity, noise, computed tomography (CT) number linearity, and calibration error, were assessed using a Catphan and an electron density phantom and analyzed with TotalQA software. RESULTS HyperSight demonstrated substantial improvements in contrast-to-noise ratio and noise in both IGRT and CBCTp modes compared to Halcyon 3.0 CBCT. CT number calibration error of HyperSight CBCTp mode (1.06%) closely matches that of a full CT scanner (0.72%), making it suitable for adaptive planning. In addition, the advanced hardware of HyperSight, such as ultra-fast scan time (5.9 s) or 2.5 times larger heat unit capacity, enhanced the clinical efficiency in our experience. CONCLUSIONS HyperSight represented a significant advancement in CBCT imaging. With its image quality, CT number accuracy, and ultra-fast scans, HyperSight has a potential to transform patient care and treatment outcomes. The enhanced scan speed and image quality of HyperSight are expected to significantly improve the quality and efficiency of treatment, particularly benefiting patients.
Collapse
Affiliation(s)
- Euidam Kim
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
- Department of Nuclear EngineeringHanyang University College of EngineeringSeoulSouth Korea
| | - Yang Kyun Park
- Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Tianyu Zhao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Eric Laugeman
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Xiaodong Neo Zhao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Yao Hao
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Yoonsun Chung
- Department of Nuclear EngineeringHanyang University College of EngineeringSeoulSouth Korea
| | - Hugh Lee
- Department of Radiation OncologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| |
Collapse
|
6
|
Pichardo AH, Littlewood J, Taylor A, Wilm B, Lévy R, Murray P. Multispectral optoacoustic tomography is more sensitive than micro-computed tomography for tracking gold nanorod labelled mesenchymal stromal cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202300109. [PMID: 37431566 PMCID: PMC7616740 DOI: 10.1002/jbio.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Tracking the fate of therapeutic cell types is important for assessing their safety and efficacy. Bioluminescence imaging (BLI) is an effective cell tracking technique, but poor spatial resolution means it has limited ability to precisely map cells in vivo in 3D. This can be overcome by using a bimodal imaging approach that combines BLI with a technique capable of generating high-resolution images. Here we compared the effectiveness of combining either multispectral optoacoustic tomography (MSOT) or micro-computed tomography (micro-CT) with BLI for tracking the fate of luciferase+ human mesenchymal stromal cells (MSCs) labelled with gold nanorods. Following subcutaneous administration in mice, the MSCs could be readily detected with MSOT but not with micro-CT. We conclude that MSOT is more sensitive than micro-CT for tracking gold nanorod-labelled cells in vivo and depending on the route of administration, can be used effectively with BLI to track MSC fate in mice.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - James Littlewood
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- iThera Medical GmbH, Munich, Germany
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Raphaël Lévy
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, Paris, France
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
8
|
Youden B, Wang F, Zhang X, Curry D, Majtenyi N, Shaaer A, Bingham K, Nguyen Q, Bragg L, Liu J, Servos M, Zhang X, Jiang R. Degradable Multifunctional Gold-Liposomes as an All-in-One Theranostic Platform for Image-Guided Radiotherapy. Int J Pharm 2022; 629:122413. [DOI: 10.1016/j.ijpharm.2022.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
|
9
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
10
|
Tokudome Y, Poologasundarampillai G, Tachibana K, Murata H, Naylor AJ, Yoneyama A, Nakahira A. Curable Layered Double Hydroxide Nanoparticles‐Based Perfusion Contrast Agents for X‐Ray Computed Tomography Imaging of Vascular Structures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasuaki Tokudome
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | | | - Koki Tachibana
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Hidenobu Murata
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Amy J. Naylor
- Institute of Inflammation and Ageing University of Birmingham Birmingham B15 2TT UK
| | - Akio Yoneyama
- SAGA Light Source 8-7 Yayoigaoka Tosu Saga 841-0005 Japan
| | - Atsushi Nakahira
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
11
|
Tarighatnia A, Fouladi MR, Tohidkia MR, Johal G, Nader ND, Aghanejad A, Ghadiri H. Engineering and quantification of bismuth nanoparticles as targeted contrast agent for computed tomography imaging in cellular and animal models. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Khademi S, Shakeri-Zadeh A, Solgi R, Azimian H, Ghadiri H. Observation of targeted gold nanoparticles in nasopharyngeal tumour nude mice model through dual-energy computed tomography. IET Nanobiotechnol 2021; 15:594-601. [PMID: 34695296 PMCID: PMC8675847 DOI: 10.1049/nbt2.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
This study was performed to specify the efficiency of imaging nanoparticle concentration as contrast media in dual‐energy computed tomography (DECT). Gold nanoparticles (AuNPs) and gold nanoparticles‐conjugated folic acid through cysteamine (FA‐Cya‐AuNPs) were both considered as contrast agents. Characterization of NPs was performed using Dynamic Light Scattering (DLS) and zeta potential. The hemocompatibility of NPs was confirmed by different blood parameters such as white blood cell, red cell distribution width, hemoglobin, lymphocytes counts and haemolysis assay. DECT algorithm was confirmed using calibration phantom at different concentrations of NPs and tube potentials (80 and 140 kVp). Then, DECT was used to quantify the concentration of both AuNPs and FA‐Cys‐AuNPs in human nasopharyngeal cancer cells. Mice were injected with non‐targeted AuNPs and targeted AuNps at a concentration of 3 × 103 μg/ml. Then, they were scanned with different tube potentials. The concentration of nanoparticles in the various organs of nude mice was measured through DECT imaging and inductively coupled plasma mass spectrometry (ICP‐MS) analysis. The results of DECT images were compared with ICP‐MS analysis and indicated that they were approximately similar. In sum, FA‐Cys‐AuNPs can be a proper candidate for targeted contrast media in DECT molecular scanning of human nasopharyngeal tumours.
Collapse
Affiliation(s)
- Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Razieh Solgi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
14
|
Koshevaya E, Krivoshapkina E, Krivoshapkin P. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. J Mater Chem B 2021; 9:5008-5024. [PMID: 34113950 DOI: 10.1039/d1tb00570g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of new safe and effective contrast agents (CAs) is a crucial factor to increase the effectiveness of computed tomography (CT). For now, tantalum oxide-based nanoparticles (TaOx NPs) are among the most promising CAs for CT due to their superior properties: high X-ray attenuation coefficient, excellent biocompatibility, and easily modifiable surface chemistry. Compared to the commercially available analogs (iodine-based CAs), TaOx NPs provide better contrast performance, long-circulation, and high safety profiles (reduced exposure of X-rays and CA dosage). Among the investigated nanoparticulate CAs they afford higher cost-effectiveness (Au, Pt, Lu). TaOx NPs can also be easily modified to include other imaging or therapeutic modalities. This review aims to summarize the current state-of-the-art knowledge in the field of tantalum oxide-based CAs used for single or multimodal imaging and theranostic purposes. The design specification of TaOx NPs in terms of size, surface functionalization, composition, and their influence on the contrast performance, toxicity, and pharmacokinetics are discussed. Finally, the future opportunities and challenges of TaOx NPs used as CT CAs are addressed.
Collapse
Affiliation(s)
- Ekaterina Koshevaya
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar 167000, Russia and State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | | | | |
Collapse
|
15
|
Schütz MB, Renner AM, Ilyas S, Lê K, Guliyev M, Krapf P, Neumaier B, Mathur S. 18F-Labeled magnetic nanovectors for bimodal cellular imaging. Biomater Sci 2021; 9:4717-4727. [PMID: 34032225 DOI: 10.1039/d1bm00616a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface modification of nanocarriers enables selective attachment to specific molecular targets within a complex biological environment. Besides the enhanced uptake due to specific interactions, the surface ligands can be utilized for radiolabeling applications for bimodal imaging ensured by positron emission topography (PET) and magnetic resonance imaging (MRI) functions in one source. Herein, we describe the surface functionalization of magnetite (Fe3O4) with folic acid as a target vector. Additionally, the magnetic nanocarriers were conjugated with appropriate ligands for subsequent copper-catalyzed azide-alkyne cycloaddition or carbodiimide coupling reactions to successfully achieve radiolabeling with the PET-emitter 18F. The phase composition (XRD) and size analysis (TEM) confirmed the formation of Fe3O4 nanoparticles (6.82 nm ± 0.52 nm). The quantification of various surface functionalities was performed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet-visible microscopy (UV-Vis). An innovative magnetic-HPLC method was developed in this work for the determination of the radiochemical yield of the 18F-labeled NPs. The as-prepared Fe3O4 particles demonstrated high radiochemical yields and showed high cellular uptake in a folate receptor overexpressing MCF-7 cell line, validating bimodal imaging chemical design and a magnetic HPLC system. This novel approach, combining folic acid-capped Fe3O4 nanocarriers as a targeting vector with 18F labeling, is promising to apply this probe for bimodal PET/MR-studies.
Collapse
Affiliation(s)
- Markus B Schütz
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Khan Lê
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| | - Mehrab Guliyev
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Philipp Krapf
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine-Nuclear Chemistry (INM-5), Forschungszentrum Jülich, D-52428 Jülich, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, D-50939 Cologne, Germany.
| |
Collapse
|
16
|
Kiraga Ł, Kucharzewska P, Strzemecki D, Rygiel TP, Król M. Non-radioactive imaging strategies for in vivo immune cell tracking. PHYSICAL SCIENCES REVIEWS 2021; 8:385-403. [PMID: 36975764 PMCID: PMC10037928 DOI: 10.1515/psr-2020-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In vivo tracking of administered cells chosen for specific disease treatment may be conducted by diagnostic imaging techniques preceded by cell labeling with special contrast agents. The most commonly used agents are those with radioactive properties, however their use in research is often impossible. This review paper focuses on the essential aspect of cell tracking with the exclusion of radioisotope tracers, therefore we compare application of different types of non-radioactive contrast agents (cell tracers), methods of cell labeling and application of various techniques for cell tracking, which are commonly used in preclinical or clinical studies. We discuss diagnostic imaging methods belonging to three groups: (1) Contrast-enhanced X-ray imaging, (2) Magnetic resonance imaging, and (3) Optical imaging. In addition, we present some interesting data from our own research on tracking immune cell with the use of discussed methods. Finally, we introduce an algorithm which may be useful for researchers planning leukocyte targeting studies, which may help to choose the appropriate cell type, contrast agent and diagnostic technique for particular disease study.
Collapse
Affiliation(s)
- Łukasz Kiraga
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| | - Paulina Kucharzewska
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| | | | - Tomasz P. Rygiel
- Cellis AG, 80002 Zurich, Switzerland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Król
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
- Cellis AG, 80002 Zurich, Switzerland
| |
Collapse
|
17
|
Panetta D, Gabelloni M, Faggioni L, Pelosi G, Aringhieri G, Caramella D, Salvadori PA. Cardiac Computed Tomography Perfusion: Contrast Agents, Challenges and Emerging Methodologies from Preclinical Research to the Clinics. Acad Radiol 2021; 28:e1-e13. [PMID: 32220550 DOI: 10.1016/j.acra.2019.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022]
Abstract
Computed Tomography (CT) has long been regarded as a purely anatomical imaging modality. Recent advances on CT technology and Contrast Agents (CA) in both clinical and preclinical cardiac imaging offer opportunities for the use of CT in functional imaging. Combined with modern ECG-gating techniques, functional CT has now become a reality allowing a comprehensive evaluation of myocardial global and regional function, perfusion and coronary angiography. This article aims at reviewing the current status of cardiac CT perfusion and micro-CT perfusion with established and experimental scanners and contrast agents, from clinical practice to the experimental domain of investigations based on animal models of heart diseases.
Collapse
|
18
|
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2020; 26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Collapse
Affiliation(s)
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Rajendran Jc Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Masonic Medical Research Institute, Utica, NY, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Rapid Sonochemically-Assisted Synthesis of Highly Stable Gold Nanoparticles as Computed Tomography Contrast Agents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most widely used modalities of clinical imaging is computed tomography (CT). Recent reports of new contrast agents toward CT imaging have been numerous. The production of gold nanoparticles (AuNPs) as contrast agents for CT is primarily a topic of intense interest. AuNPs have beneficial features for this application, including excellent X-ray attenuation, flexible sizes and shapes, tailorable surface chemistry, excellent biocompatibility and high levels of contrast generating matter. AuNPs with a size of about 18.5 nm and semi-spherical shape were synthesized using a sonochemical method. The attenuation rate of X-rays as measured in Hounsfield units per unit concentration (HU/mg) was measured. Ultrasound treatment for a duration of five min has been shown to produce highly stable AuNPs in different media (AuNPs in water and phosphate-buffered saline (PBS) was −42.1 mV and −39.5 mV, respectively). The CT value (HU = 395) of the AuNPs increased linearly with an increase in the AuNP dosage. The results confirm the use of ultrasonic treatment for the production of metal nanostructures, particularly highly stable non-toxic AuNPs, with good morphology and high-quality crystal structure using an easy and fast method. Synthesized AuNPs have the potential to be used as a CT contrast agent in medical imaging applications.
Collapse
|
20
|
Cuccione E, Chhour P, Si-Mohamed S, Dumot C, Kim J, Hubert V, Da Silva CC, Vandamme M, Chereul E, Balegamire J, Chevalier Y, Berthezène Y, Boussel L, Douek P, Cormode DP, Wiart M. Multicolor spectral photon counting CT monitors and quantifies therapeutic cells and their encapsulating scaffold in a model of brain damage. Nanotheranostics 2020; 4:129-141. [PMID: 32483519 PMCID: PMC7256015 DOI: 10.7150/ntno.45354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.
Collapse
Affiliation(s)
- Elisa Cuccione
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
- VOXCAN, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Salim Si-Mohamed
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Chloé Dumot
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Violaine Hubert
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Claire Crola Da Silva
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Marc Vandamme
- VOXCAN, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | | | - Joëlle Balegamire
- LAGEPP, University of Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| | - Yves Chevalier
- LAGEPP, University of Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| | - Yves Berthezène
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Loïc Boussel
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Philippe Douek
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Marlène Wiart
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| |
Collapse
|
21
|
Bouché M, Hsu JC, Dong YC, Kim J, Taing K, Cormode DP. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug Chem 2020; 31:303-314. [PMID: 31682405 PMCID: PMC7032998 DOI: 10.1021/acs.bioconjchem.9b00669] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C. Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kimberly Taing
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Jung SY, Gwak GH, Park JK, Oh JM. Finely crafted quasi-core-shell gadolinium/layered double hydroxide hybrids for switching on/off bimodal CT/MRI contrasting nanodiagnostic platforms. RSC Adv 2020; 10:5838-5844. [PMID: 35497407 PMCID: PMC9049243 DOI: 10.1039/c9ra08159c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023] Open
Abstract
We successfully synthesized a size-controlled hybrid of layered double hydroxide (LDH) platelets and Gd(OH)3 nanorods through the reverse micelle method. Under controlled synthetic conditions, the hybrid was developed to a quasi-core-shell structure, where the Gd(OH)3 nanorods were covered by the LDH platelet assembly, and this was investigated by X-ray diffraction and high-resolution transmission electron microscopy. The zeta potential measurement for the hybrid revealed that Gd(OH)3 was surrounded by LDH moieties. According to dynamic light scattering, the hydrodynamic radius of the hybrid was uniformly controlled under 150 nm, which was comparable to that of one Gd(OH)3 nanorod surrounded by an LDH moiety. Thus, the obtained hybrid exhibited a maximum Hounsfield unit of 180 at a concentration of 5 mg mL-1, implying its potential as a computed tomography contrast agent. The magnetic resonance relaxivities of the hybrid were examined at pH 5 and 7, simulating lysosomal and plasma conditions; the r 1 values were 7.3 and 2.9, respectively, which were highly dependent on the physiological conditions.
Collapse
Affiliation(s)
- Sang-Yong Jung
- Department of Energy and Materials Engineering, Dongguk University-Seoul 04620 Seoul South Korea
| | - Gyeong-Hyeon Gwak
- Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang Gyeongsangbukdo 37673 Republic of Korea
| | - Jin Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies Yongin 17035 Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul 04620 Seoul South Korea
| |
Collapse
|
23
|
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Sci Rep 2019; 9:14912. [PMID: 31624285 PMCID: PMC6797746 DOI: 10.1038/s41598-019-50332-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023] Open
Abstract
Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Portia S N Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Marine Breuilly
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Philippe Douek
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Harold I Litt
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Gil CJ, Tomov ML, Theus AS, Cetnar A, Mahmoudi M, Serpooshan V. In Vivo Tracking of Tissue Engineered Constructs. MICROMACHINES 2019; 10:E474. [PMID: 31315207 PMCID: PMC6680880 DOI: 10.3390/mi10070474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
Abstract
To date, the fields of biomaterials science and tissue engineering have shown great promise in creating bioartificial tissues and organs for use in a variety of regenerative medicine applications. With the emergence of new technologies such as additive biomanufacturing and 3D bioprinting, increasingly complex tissue constructs are being fabricated to fulfill the desired patient-specific requirements. Fundamental to the further advancement of this field is the design and development of imaging modalities that can enable visualization of the bioengineered constructs following implantation, at adequate spatial and temporal resolution and high penetration depths. These in vivo tracking techniques should introduce minimum toxicity, disruption, and destruction to treated tissues, while generating clinically relevant signal-to-noise ratios. This article reviews the imaging techniques that are currently being adopted in both research and clinical studies to track tissue engineering scaffolds in vivo, with special attention to 3D bioprinted tissue constructs.
Collapse
Affiliation(s)
- Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Deng L, Yasar S, Ahmed MF, Jayarathna S, Feng P, Wei B, Vedantham S, Karellas A, Cho SH. Investigation of transmission computed tomography (CT) image quality and x-ray dose achievable from an experimental dual-mode benchtop x-ray fluorescence CT and transmission CT system. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:431-442. [PMID: 30909268 PMCID: PMC7027361 DOI: 10.3233/xst-180457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To investigate the image quality and x-ray dose associated with a transmission computed tomography (CT) component implemented within the same platform of an experimental benchtop x-ray fluorescence CT (XFCT) system for multimodal preclinical imaging applications. METHODS Cone-beam CT scans were performed using an experimental benchtop CT + XFCT system and a cylindrically-shaped 3D-printed polymethyl methacrylate phantom (3 cm in diameter, 7 cm in height) loaded with various concentrations (0.05-1 wt. %) of gold nanoparticles (GNPs). Two commercial CT quality assurance phantoms containing 3D line-pair (LP) targets and contrast targets were also scanned. The x-ray beams of 40 and 62 kVp, both filtered by 0.08 mm Cu and 0.4 mm Al, were used with 17 ms of exposure time per projection at three current settings (2.5, 5, and 10 mA). The ordered-subset simultaneous algebraic reconstruction and total variation-minimization methods were used to reconstruct images. Sparse projection and short scan were considered to reduce the x-ray dose. The contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were calculated. RESULTS The lowest detectable concentration of GNPs (CNR > 5) and the highest spatial resolution (per MTF50%) were 0.10 wt. % and 9.5 LP/CM, respectively, based on the images reconstructed from 360 projections of the 40 kVp beam (or x-ray dose of 3.44 cGy). The background noise for the image resulting in the lowest GNP detection limit was 25 Hounsfield units. CONCLUSION The transmission CT component within the current experimental benchtop CT + XFCT system produced images deemed acceptable for multimodal (CT + XFCT) imaging purposes, with less than 4 cGy of x-ray dose.
Collapse
Affiliation(s)
- Luzhen Deng
- Key Laboratory of Optoelectronics Technology & System, Chongqing University, Ministry of Education, Chongqing 400044, China
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Selcuk Yasar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Md Foiez Ahmed
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sandun Jayarathna
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Feng
- Key Laboratory of Optoelectronics Technology & System, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Biao Wei
- Key Laboratory of Optoelectronics Technology & System, Chongqing University, Ministry of Education, Chongqing 400044, China
| | | | - Andrew Karellas
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA 85724
| | - Sang Hyun Cho
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Author to whom correspondence should be addressed,
| |
Collapse
|
26
|
Prasad R, Agawane SB, Chauhan DS, Srivastava R, Selvaraj K. In Vivo Examination of Folic Acid-Conjugated Gold-Silica Nanohybrids as Contrast Agents for Localized Tumor Diagnosis and Biodistribution. Bioconjug Chem 2018; 29:4012-4019. [PMID: 30376632 DOI: 10.1021/acs.bioconjchem.8b00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enhanced biocompatibility of nanosized contrast agent with high radiodensity and specific biodistribution is an important parameter for localized tumor imaging and organ safety. Various nanoparticles, especially gold nanorods (GNRs), have been applied for tumor diagnosis. However, their toxicity, nonspecific biodistribution, and easy aggregation are critical issues in cancer medicine. To avoid these issues, encapsulation of the GNRs in the core of nanoscopic mesoporous silica (MS) under ambient conditions, yielding multifunctional nanomaterials for cancer nanomedicine, is a recent and active development. Interestingly, GNR embedded MS nanohybrid (GNR-MS), though a promising material in nanomedicine, is rarely examined for tumor diagnosis, in vivo toxicity, organ safety, contrast ability, and excretion. Herein, we report a systematic in vivo examination of folic acid functionalized GNR-MS (GNR-MS-FA) for localized 4T1 breast tumor diagnosis, organ safety, and excretion using a one-time dose administration. The nanomaterials show good aqueous dispersibility, biocompatibility, high radiodensity, and tumor specific targeting ability ( in vitro as well as in vivo). The in vivo tumor diagnosis and specific biodistribution of injected nanomaterials clearly demonstrates their potential for the visualization of tumors deep in the body of mice. In addition, all organs including the healthy glomerulus of the kidney are observed to be free of tissue injuries thereby indicating the superior biocompatibility of the nanomaterials.
Collapse
Affiliation(s)
| | | | - Deepak S Chauhan
- Department of Bioscience and Bioengineering , IIT Bombay , Powai, Mumbai , 400076 , India
| | - Rohit Srivastava
- Department of Bioscience and Bioengineering , IIT Bombay , Powai, Mumbai , 400076 , India
| | | |
Collapse
|
27
|
Promdet P, Rodríguez-García B, Henry A, Nguyen C, Khuu T, Galan-Mascaros JR, Sorasaenee K. Multimodal Prussian blue analogs as contrast agents for X-ray computed tomography. Dalton Trans 2018; 47:11960-11967. [PMID: 30074599 DOI: 10.1039/c8dt01687a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prussian blue analogs (PBAs) are versatile materials with a wide range of applications. Due to their tunability, intrinsic biocompatibility, as well as low toxicity, these nanoscale coordination polymers have been successfully studied as multimodal contrast agents for multiple imaging techniques. Herein, we report the expanded biomedical application of PBAs to X-ray computed tomography (CT). In our systematic study of the series A{MnII[FeIII(CN)6]} (A = K+, Rb+, Cs+), we showed that derivatives incorporating Rb+ and Cs+ ions in the tetrahedral sites of the parent face-centered cubic cyano-bridged networks exhibited substantially increased X-ray attenuation coefficients, thus yielding significant contrast compared to the clinically approved X-ray contrast agent iohexol at the same concentrations. Additionally, our μ-CT studies revealed that these PBAs could be useful as dual-energy CT contrast agents for different biological specimens by using the lower varying scanning X-ray tube voltages. Finally, in vitro studies using U87-Luc cells treated with PBAs, including cellular CT imaging and bioluminescence cell viability assays, revealed that PBAs were taken up by the glioblastoma cells, with moderate biocompatibility at concentrations below the mM range.
Collapse
Affiliation(s)
- Premrudee Promdet
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci Rep 2018; 8:12119. [PMID: 30108247 PMCID: PMC6092324 DOI: 10.1038/s41598-018-30570-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Spectral photon-counting computed tomography (SPCCT) is a rapidly emerging imaging modality that provides energy-dependent information on individual x-ray photons, leading to accurate material decomposition and simultaneous quantification of multiple contrast generating materials. Development of SPCCT-specific contrast agents is needed to overcome the issues with currently used iodinated contrast agents, such as difficulty in differentiation from calcified structures, and yield SPCCT’s full promise. In this study, the contrast generation of different elements is investigated using a prototype SPCCT scanner based on a modified clinical CT system and suitable elements for novel contrast agent development for SPCCT imaging are identified. Furthermore, nanoparticles were synthesized from tantalum as a proof of concept spectral photon-counting CT agent and tested for their in vitro cytotoxicity and contrast generation to provide insight into the feasibility of nanoparticle contrast agent development from these elements. We found that gadolinium, ytterbium and tantalum generate high contrast in spectral photon-counting CT imaging and may be suitable elements for contrast agent development for this modality. Our proof of concept results with tantalum-based nanoparticles underscore this conclusion due to their detectability with spectral photon-counting CT, as well as their biocompatibility.
Collapse
|
29
|
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 2018; 23:1185-1204. [PMID: 30097748 DOI: 10.1007/s00775-018-1600-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
30
|
Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent Development of Inorganic Nanoparticles for Biomedical Imaging. ACS CENTRAL SCIENCE 2018; 4:324-336. [PMID: 29632878 PMCID: PMC5879478 DOI: 10.1021/acscentsci.7b00574] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 05/04/2023]
Abstract
Inorganic nanoparticle-based biomedical imaging probes have been studied extensively as a potential alternative to conventional molecular imaging probes. Not only can they provide better imaging performance but they can also offer greater versatility of multimodal, stimuli-responsive, and targeted imaging. However, inorganic nanoparticle-based probes are still far from practical use in clinics due to safety concerns and less-optimized efficiency. In this context, it would be valuable to look over the underlying issues. This outlook highlights the recent advances in the development of inorganic nanoparticle-based probes for MRI, CT, and anti-Stokes shift-based optical imaging. Various issues and possibilities regarding the construction of imaging probes are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Dokyoon Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jonghoon Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Il Park
- School
of Chemical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Nohyun Lee
- School
of Advanced Materials Engineering, Kookmin
University, Seoul 02707, Republic of Korea
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
32
|
Chan CKW, Zhang L, Cheng CK, Yang H, Huang Y, Tian XY, Choi CHJ. Recent Advances in Managing Atherosclerosis via Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702793. [PMID: 29239134 DOI: 10.1002/smll.201702793] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Atherosclerosis, driven by chronic inflammation of the arteries and lipid accumulation on the blood vessel wall, underpins many cardiovascular diseases with high mortality rates globally, such as stroke and ischemic heart disease. Engineered bio-nanomaterials are now under active investigation as carriers of therapeutic and/or imaging agents to atherosclerotic plaques. This Review summarizes the latest bio-nanomaterial-based strategies for managing atherosclerosis published over the past five years, a period marked by a rapid surge in preclinical applications of bio-nanomaterials for imaging and/or treating atherosclerosis. To start, the biomarkers exploited by emerging bio-nanomaterials for targeting various components of atherosclerotic plaques are outlined. In addition, recent efforts to rationally design and screen for bio-nanomaterials with the optimal physicochemical properties for targeting plaques are presented. Moreover, the latest preclinical applications of bio-nanomaterials as carriers of imaging, therapeutic, or theranostic agents to atherosclerotic plaques are discussed. Finally, a mechanistic understanding of the interactions between bio-nanomaterials and the plaque ("athero-nano" interactions) is suggested, the opportunities and challenges in the clinical translation of bio-nanomaterials for managing atherosclerosis are discussed, and recent clinical trials for atherosclerotic nanomedicines are introduced.
Collapse
Affiliation(s)
- Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lei Zhang
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongrong Yang
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
33
|
Kayyali MN, Brake L, Ramsey AJ, Wright AC, O'Malley BW, Li DD. A Novel Nano-approach for Targeted Inner Ear Imaging. ACTA ACUST UNITED AC 2017; 8. [PMID: 29104815 PMCID: PMC5669391 DOI: 10.4172/2157-7439.1000456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During the last decade, there have been major improvements in imaging modalities and the development of molecular imaging in general. However detailed inner ear imaging still provides very limited information to physicians. This is unsatisfactory as sensorineural hearing loss is the main cause of permanent hearing loss in adults and at least 134 genetic mutations that result in congenital hearing loss have been identified. We are still unable, in most cases where gross anatomical changes are not observed, to determine the exact cause of hearing loss at a cellular or molecular level in patients using non-invasive techniques. This limitation in inner ear diagnostic modalities is a major obstacle behind the delay in discovering treatments for many of the causes of sensorineural hearing loss. This paper initially investigated the use of targeted gold nanoparticles as contrast agents for inner ear imaging. These nanoparticles have many useful characteristics such as being easy to target and possessing minimal cytotoxicity. We were able to detect the nanoparticles diffusing in the hair cells using confocal microscopy. Regrettably, despite their many admirable characteristics, the gold nanoparticles were unable to significantly enhance CT imaging of the inner ear. Consequently, we investigated liposomal iodine as a potential solution for the unsatisfactory CT contrast obtained with the gold nanoparticles. Fortunately, significant enhancement of the micro-CT image was observed with either Lugol’s solution or liposomal iodine, with Lugol’s solution enabling fine inner ear structures to be detected.
Collapse
Affiliation(s)
- M N Kayyali
- Department of Otolaryngology, Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, USA
| | - L Brake
- Department of Otolaryngology, Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, USA
| | - A J Ramsey
- Department of Otolaryngology, Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, USA
| | - A C Wright
- Department of Radiology, University of Pennsylvania, USA
| | - B W O'Malley
- Department of Otolaryngology, Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, USA
| | - D Daqing Li
- Department of Otolaryngology, Head & Neck Surgery, University of Pennsylvania Health System, Philadelphia, USA
| |
Collapse
|
34
|
Caro C, Dalmases M, Figuerola A, García-Martín ML, Leal MP. Highly water-stable rare ternary Ag-Au-Se nanocomposites as long blood circulation time X-ray computed tomography contrast agents. NANOSCALE 2017; 9:7242-7251. [PMID: 28513714 DOI: 10.1039/c7nr01110e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
X-ray computed tomography (CT) is a powerful and widely used medical non-invasive technique that often requires intravenous administration of contrast agents (CAs) to better visualize soft tissues. In this work, we have developed a novel CT contrast agent based on ternary Ag-Au-Se chalcogenide nanoparticles (NP). A facile ligand exchange by using a 3 kDa PEGylated ligand with a dithiol dihydrolipoic acid as an anchor group resulted in highly water-soluble and monodisperse nanoparticles. These PEGylated ternary NPs were tested in vivo in mice, showing slow uptake by the mononuclear phagocyte system, long blood circulation times, low toxicity, and very good X-ray contrast, thus being promising candidates as CT contrast agents for clinical applications.
Collapse
Affiliation(s)
- Carlos Caro
- BIONAND, Andalusian Centre for Nanomedicine and Biotechnology (Junta de Andalucía-Universidad de Málaga), Málaga, Spain.
| | | | | | | | | |
Collapse
|
35
|
Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography. Bioconjug Chem 2017; 28:1581-1597. [PMID: 28485976 PMCID: PMC5481820 DOI: 10.1021/acs.bioconjchem.7b00194] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Efforts
to develop novel cell-based therapies originated with the
first bone marrow transplant on a leukemia patient in 1956. Preclinical
and clinical examples of cell-based treatment strategies have shown
promising results across many disciplines in medicine, with recent
advances in immune cell therapies for cancer producing remarkable
response rates, even in patients with multiple treatment failures.
However, cell-based therapies suffer from inconsistent outcomes, motivating
the search for tools that allow monitoring of cell delivery and behavior
in vivo. Noninvasive cell imaging techniques, also known as cell tracking,
have been developed to address this issue. These tools can allow real-time,
quantitative, and long-term monitoring of transplanted cells in the
recipient, providing insight on cell migration, distribution, viability,
differentiation, and fate, all of which play crucial roles in treatment
efficacy. Understanding these parameters allows the optimization of
cell choice, delivery route, and dosage for therapy and advances cell-based
therapy for specific clinical uses. To date, most cell tracking work
has centered on imaging modalities such as MRI, radionuclide imaging,
and optical imaging. However, X-ray computed tomography (CT) is an
emerging method for cell tracking that has several strengths such
as high spatial and temporal resolution, and excellent quantitative
capabilities. The advantages of CT for cell tracking are enhanced
by its wide availability and cost effectiveness, allowing CT to become
one of the most popular clinical imaging modalities and a key asset
in disease diagnosis. In this review, we will discuss recent advances
in cell tracking methods using X-ray CT in various applications, in
addition to predictions on how the field will progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachela Popovtzer
- Department of Engineering, Bar-Ilan University , Ramat Gan, 5290002, Israel
| | | |
Collapse
|
36
|
Mao J, Tang S, Hong D, Zhao F, Niu M, Han X, Qi J, Bao H, Jiang Y, Fu C, Long D, Meng X, Su H. Therapeutic efficacy of novel microwave-sensitized mPEG-PLGA@ZrO 2@(DOX + ILS) drug-loaded microspheres in rabbit VX 2 liver tumours. NANOSCALE 2017; 9:3429-3439. [PMID: 28233003 DOI: 10.1039/c6nr09862b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of nanomaterials as drug delivery systems shows good effects in treating tumors. However, the effective dose of drugs targeted to tumor tissues is very low because of the effect of the reticuloendothelial system (RES) in removing such foreign substances. In order to eliminate the RES effect, we developed mPEG-PLGA@ZrO2@(DOX + ILS) (mPEG-PLGA@ZrO2@[DOX + ILS]) drug-loaded microspheres. These microwave (MW)-sensitized microspheres directly embolized the blood-supply vessels of tumors to induce tumor ischemia and hypoxia, as well as to aggregate drugs within tumor tissues in a long-lasting manner. Additionally, combination with MW ablation can triple the effects for the inhibition of tumor growth. The MW sensitive ionic liquid (ILS) in microspheres can rapidly produce a high temperature in a MW field on the basis of MW sensitization, thus accelerating the degradation of microspheres to release DOX-loaded ZrO2 into the lesions to kill tumors. Microspheres can also prolong the pharmacological time and effect of drugs through the enhanced permeability and retention (EPR) effect of nanocarriers, as well as the sustained release of nanomaterials. Studies performed in vivo revealed that mPEG-PLGA@ZrO2@(DOX + ILS) showed good biosafety. We undertook sensitized microsphere embolism therapy using novel mPEG-PLGA@ZrO2@(DOX + ILS) microspheres in a rabbit VX2 liver tumor model. Three, 6 and 9 d after treatment, computed tomography indicated no significant change in tumor size, and diffusion weighted imaging showed a marked decrease of residual tumor tissues. With the multiple functions of inducing embolisms, sensitization, and the sustained release of chemotherapeutics, novel mPEG-PLGA@ZrO2@(DOX + ILS) microspheres can achieve good therapeutic efficacy, in combination with MW ablation and chemotherapy, while embolizing the blood vessels of arterial tumors.
Collapse
Affiliation(s)
- Jingsong Mao
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Shunsong Tang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Duo Hong
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Fan Zhao
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Meng Niu
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Xiangjun Han
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Ji Qi
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Han Bao
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Yutian Jiang
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Dan Long
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hongying Su
- Department of Radiology First Hospital of China Medical University, No. 155 Nanjing North Road, Shenyang, 110001, P. R. China.
| |
Collapse
|