1
|
Yang Y, Cao Y, Li S, Wang Y, Zhang X, Li Y, Yang Z. Ultrastiff Bioinspired Protein-Carbon Nanotube Hybrid Sponge with Shape Memory Effects. ACS NANO 2025; 19:18874-18885. [PMID: 40329561 DOI: 10.1021/acsnano.5c06297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Natural protein-based biomaterials with complex hierarchical structures often have incredible and even counterintuitive mechanical properties. Understanding and utilizing the conformational transition mechanisms of natural proteins will further guide the design of natural-inspired biomaterials. In this study, a small static-force-induced spatiotemporal "freezing" phenomenon of silk fibroins confined in porous carbon nanotube sponges has been investigated. The "freezing" silk fibroins not only bring the shape memory effect to elastic carbon nanotube sponges but also enable them to prop up heavy objects with loads exceeding 10,000 times their own weight. Also, the protein/CNTS hybrid achieves an ultrastiffness (over 10 MPa) and superelastic shape recovery (recovery strain >90%). Both experimental and numerical results indicate that the secondary conformational transition of silk fibroin plays a key role, where more α-helices/random coils transform into β-sheets under both confinement and low pressure. Our work reports a conformational transition mechanism of silk fibroin in a confined space, which provides guidance for constructing protein-based biological smart materials with potential applications in textiles, medicine, architecture, and other research fields.
Collapse
Affiliation(s)
- Yang Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yingjie Cao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Shengjie Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yana Wang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
- Intelligent Chemical Engineering Center, Hong Kong Research Institute of Shandong University, Hong Kong SAR 999077, P. R. China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
2
|
Padilla C, Pępczyńska M, Vizueta C, Quero F, Díaz-Calderón P, Macnaughtan W, Foster T, Enrione J. The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels 2024; 10:766. [PMID: 39727524 DOI: 10.3390/gels10120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base). The results showed that the presence of CNCs (with type I and type II crystals) interfered with the formation of the gelatin triple helix, with a decrease from 21.7% crystallinity to 12% in samples with 10% CNC but increasing the overall crystallinity (from 21.7% to 22.6% in samples with 10% CNC), which produced a decrease in the water monolayer in the composites. These changes in crystallinity also impacted significantly their mechanical properties, with higher E' values (from 1 × 104 to 1.3 × 104 Pa at 20 °C) and improved thermal stability at higher CNC content. Additionally, the evaluation of their shape memory properties indicated that while molecular interactions between the two components occur, CNCs negatively impacted the magnitude and kinetics of the shape recovery of the composites (more particularly at 10 weight% CNC, reducing shape recovery from 90% to 70%) by reducing the netting point associated with the lower crystallinity of the gelatin. We believe that our results contribute in elucidating the interactions of gelatin-CNC composites at various structural levels and highlights that even though CNC acts as a reinforcement material on gelatin matrices, their interaction are complex and do not imply synergism in their properties. Further investigation is, however, needed to understand CNC-gelatin interfacial interactions with the aim of modulating their interactions depending on their desired application.
Collapse
Affiliation(s)
- Cristina Padilla
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| | - Marzena Pępczyńska
- R&D Physical Properties, Laboratorios Liconsa-CHEMO, S.A. Polígono Industrial Miralcampo, Avda. Miralcampo 7, 19200 Azuqueca de Henares, Guadalajara, Spain
| | - Cristian Vizueta
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago 7550000, Chile
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| | - William Macnaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Tim Foster
- Division of Food, Nutrition and Dietetics, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Javier Enrione
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
| |
Collapse
|
3
|
Ni R, Zhang L, Ma J, Zhang J, Xu X, Shi H, Deng Q, Hu W, Hu J, Ke Q, Zhao Y. Versatile Keratin Fibrous Adsorbents with Rapid-Response Shape-Memory Features for Sustainable Water Remediation. NANO LETTERS 2024. [PMID: 39365030 DOI: 10.1021/acs.nanolett.4c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Biodegradable shape-memory polymers derived from protein substrates are attractive alternatives with strong potential for valorization, although their reconstruction remains a challenge due to the poor processability and inherent instability. Herein, based on Maillard reaction and immobilization, a feather keratin fibrous adsorbent featuring dual-response shape-memory is fabricated by co-spinning with pullulan, heating, and air-assisted spraying ZIF-8-NH2. Maillard reaction between the amino group of keratin and the carbonyl group of pullulan improves the mechanics and thermal performance of the adsorbent. ZIF-8-NH2 immobilization endows the adsorbent with outstanding multipollutant removal efficiency (over 90%), water stability, and photocatalytic degradation and sterilization performance. Furthermore, the adsorbent can be folded to 1/12 of its original size to save space for transportation and allow for rapid on-demand unfolding (12 s) upon exposure to water and ultraviolet irradiation to facilitate the adsorption and photocatalytic activity with a larger water contact area. This research provides new insight for further applications of keratin-based materials with rapid shape-memory features.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Le Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Huan Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan 410208, China
| | - Qiong Deng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Textiles and Fashion Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R, 999077, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Lou H, Wang Y, Sheng Y, Zhu H, Zhu S, Yu J, Zhang Q. Water-Induced Shape-Locking Magnetic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405021. [PMID: 39073727 PMCID: PMC11423202 DOI: 10.1002/advs.202405021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.
Collapse
Affiliation(s)
- He Lou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yifeng Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
5
|
Xu X, Wang Z, Li M, Su Y, Zhang Q, Zhang S, Hu J. Reconstructed Hierarchically Structured Keratin Fibers with Shape-Memory Features Based on Reversible Secondary-Structure Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304725. [PMID: 37417728 DOI: 10.1002/adma.202304725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Biocompatible and biodegradable shape-memory polymers have gained popularity as smart materials, offering a wide range of applications and environmental benefits. Herein, the possibility of fabricating regenerated water-triggered shape-memory keratin fibers from wool and cellulose in a more effective and environmentally friendly manner is investigated. The regenerated keratin fibers exhibit comparable shape-memory performance to other hydration-responsive materials, with a shape-fixity ratio of 94.8 ± 2.15% and a shape-recovery rate of 81.4 ± 3.84%. Owing to their well-preserved secondary structure and cross-linking network, keratin fibers exhibit outstanding water-stability and wet stretchability, with a maximum tensile strain of 362 ± 15.9%. In this system, the reconfiguration of the protein secondary structure between α-helix and β-sheet is investigated as the fundamental actuation mechanism in response to hydration. This responsiveness is studied under force loading and unloading along the fiber axis. Hydrogen bonds act as the "switches" clicked by water molecules to trigger the shape-memory effect, while disulfide bonds and cellulose nanocrystals play the role of "net-points" to maintain the permanent shape of the material. Water-triggered shape-memory keratin fibers are manipulable and exhibit potential in the fabrication of textile actuators, which may be applied in smart apparel and programmable biomedical devices.
Collapse
Affiliation(s)
- Xiaoyun Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuang Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Min Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yupei Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
R JA, Narayan S. A Systematic Review of Different Classes of Biopolymers and Their Use as Antimicrobial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Green Composites Based on Animal Fiber and Their Applications for a Sustainable Future. Polymers (Basel) 2023; 15:polym15030601. [PMID: 36771900 PMCID: PMC9919996 DOI: 10.3390/polym15030601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Global climate change is already affecting the environment, as glaciers are receding, ice on rivers and lakes is melting, plant and animal range`s have altering, and trees are blooming early. Therefore, focus has shifted towards sustainable materials. There is a growing desire for materials that have a unique combination of qualities that metals, polymers, and other materials cannot provide, therefore scientists are turning their focus to green composites. Green composites offer a wide range of uses in automotive, aerospace, and marine applications. Composites are multiphase resources with separate interfaces that contain chemically different materials. Composites are made up of a variety of materials that are distinct in nature, and they give a set of desirable features that are superior to those of their predecessors or parents. Natural fibers are less expensive, more readily available, rust-resistant, plentiful, nontoxic, and safe for human skin, eyes, and respiratory systems. Green composites are created by combining renewable fibers with polymers (matrix) to create a new class of composites known as "green composites." This review includes studies on various animal-based fibers and their applications. In this article, recent advancements in the field of these fibers and their composites of fibers are also discussed. The physical, chemical, and mechanical properties are also discussed in this paper. Moreover, the benefits and drawbacks of using these fibers are also discussed in detail. Finally, the paper gives an outline of the topic. The results from composites constructed from each fiber are provided, along with appropriate references for more in-depth analysis studies. This review is specially performed to strengthen the knowledge bank of the young researchers working in the field of natural composites.
Collapse
|
8
|
Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydr Polym 2022; 295:119836. [DOI: 10.1016/j.carbpol.2022.119836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
|
9
|
Zhu Y, Chen F, Wu M, Xiang J, Yan F, Xie Y, Tong Z, Chen Y, Cai L. Biocompatible and antibacterial Flammulina velutipes-based natural hybrid cryogel to treat noncompressible hemorrhages and skin defects. Front Bioeng Biotechnol 2022; 10:960407. [PMID: 36304898 PMCID: PMC9593062 DOI: 10.3389/fbioe.2022.960407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Hemorrhage, infection, and frequent replacement of dressings bring great clinical challenges to wound healing. In this work, Flammulina velutipes extract (FV) and hydroxyethyl cellulose (HEC) were chemically cross-linked and freeze-dried to obtain novel HFV cryogels (named HFVn, with n = 10, 40, or 70 corresponding to the weight percentage of the FV content), which were constructed for wound hemostasis and full-thickness skin defect repair. Systematic characterization experiments were performed to assess the morphology, mechanical properties, hydrophilic properties, and degradation rate of the cryogels. The results indicated that HFV70 showed a loose interconnected-porous structure and exhibited the highest porosity (95%) and water uptake ratio (over 2,500%) with a desirable degradation rate and shape memory properties. In vitro cell culture and hemocompatibility experiments indicated that HFV70 showed improved cytocompatibility and hemocompatibility. It can effectively mimic the extracellular matrix microenvironment and support the adhesion and proliferation of L929 cells, and its hemolysis rate in vitro was less than 5%. Moreover, HFV70 effectively induced tube formation in HUVEC cells in vitro. The results of the bacteriostatic annulus confirmed that HFV70 significantly inhibited the growth of Gram-negative E. coli and Gram-positive S. aureus. In addition, HFV70 showed ideal antioxidant properties, with the DPPH scavenging rate in vitro reaching 74.55%. In vivo rat liver hemostasis experiments confirmed that HFV70 showed rapid and effective hemostasis, with effects comparable to those of commercial gelatin sponges. Furthermore, when applied to the repair of full-thickness skin defects in a rat model, HFV70 significantly promoted tissue regeneration. Histological analysis further confirmed the improved pro-angiogenic and anti-inflammatory activity of HFV70 in vivo. Collectively, our results demonstrated the potential of HFV70 in the treatment of full-thickness skin defects and rapid hemostasis.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieyu Xiang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yun Chen, ; Lin Cai,
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yun Chen, ; Lin Cai,
| |
Collapse
|
10
|
Wei W, Liu J, Huang J, Cao F, Qian K, Yao Y, Li W. Recent advances and perspectives of shape memory polymer fibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Srivastava H, Waigaonkar S, Chauhan R. Surface modification of human hair by grafting poly(methyl methacrylate). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03990-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004655. [PMID: 34028885 PMCID: PMC10167751 DOI: 10.1002/adma.202004655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Indexed: 05/11/2023]
Abstract
A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism-inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis R LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina-Greensboro, Greensboro, NC, 27401, USA
| | - Ramon Collazo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
13
|
Leng X, Zhou X, Liu J, Xiao Y, Sun J, Li Y, Liu Z. Tuning the reversibility of hair artificial muscles by disulfide cross-linking for sensors, switches, and soft robotics. MATERIALS HORIZONS 2021; 8:1538-1546. [PMID: 34846462 DOI: 10.1039/d1mh00234a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tensile and torsional artificial muscles from biocompatible and biodegradable materials are highly desired for soft robotics, sensors, and controllers in bio-related applications. Twisted fibers can be used to prepare tensile and torsional artificial muscles, while torsional tethering is always required to avoid release of the inserted twist, which adds complexity to the device design. Moreover, the tuning of the reversibility of twisted fiber artificial muscles has not been realized. Here disulfide cross-linking was used to prepare novel tether-free hygroresponsive tensile and torsional fiber artificial muscles in twisted hair fibers. Increasing the cross-linking level converted the fiber artificial muscle from irreversible to reversible actuation. Different types of actuations including rotation, contraction, and elongation were realized for the twisted, the homochirally coiled, and the heterochirally coiled hair fibers, respectively. A reversible torsional fiber artificial muscle showed 122.4° mm-1 rotation, homochiral and heterochiral fiber artificial muscles showed 94% contraction and 3000% elongation, respectively, and a maximum work capacity and energy density of 6.35 J kg-1 and 69.8 kJ m-3, respectively, were realized, on exposure to water fog. This work provides a new strategy for preserving the inserted twist in bio-fiber artificial muscles and for tuning of muscle reversibility, which show application perspectives in biocompatible smart materials, sensors, and robotics.
Collapse
Affiliation(s)
- Xueqi Leng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry and College of Pharmacy, Nankai University, Tianjin 300350, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Iqbal MI, Sun F, Fei B, Xia Q, Wang X, Hu J. Knit Architecture for Water-Actuating Woolen Knitwear and Its Personalized Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6298-6308. [PMID: 33502157 DOI: 10.1021/acsami.0c20868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Personalized thermal management using water-actuated woolen knitwear has great potential for smart textile production. However, woolen knitwear exists in a wide range of forms with different derivatives. Manufacturing of smart woolen structures with excellent cooling properties is linked to certain parameters such as changes in loop formation, loop shape, and yarn arrangement upon stimulation of body fluids. To address this issue, textile knit structures with different physical and mechanical properties have been prepared using water-responsive descaled wool fibers and their smart heat and moisture regulation behavior have been investigated and compared to detect the fabric architectural effect on water actuation and cooling performance of woolen garments. The evidence suggests that the technical structure of the fabrics plays a crucial role in pore actuation and fabric cooling performance. The water actuation and thermal management abilities of single jersey were greatly enhanced because of unbalanced structures with lower mechanical stress among the loops and yarns. The experimental data is also in line with the theoretical analysis. Hence, the unbalanced structures control fast heat and mass transfer from the human body, which may offer a promising year-round clothing material to the wearer. This material can have a similar response upon contact with body sweat and humid environments and hence can act as a skinlike fabric. Their possible applications can lie in different fields, such as thermoregulation, functional clothing, sportswear, and medical care.
Collapse
Affiliation(s)
- Mohammad Irfan Iqbal
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Fengxin Sun
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
15
|
Cera L, Gonzalez GM, Liu Q, Choi S, Chantre CO, Lee J, Gabardi R, Choi MC, Shin K, Parker KK. A bioinspired and hierarchically structured shape-memory material. NATURE MATERIALS 2021; 20:242-249. [PMID: 32868876 DOI: 10.1038/s41563-020-0789-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.
Collapse
Affiliation(s)
- Luca Cera
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Grant M Gonzalez
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Qihan Liu
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christophe O Chantre
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Juncheol Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rudy Gabardi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
16
|
Zhu S, Hu J. Multi-Modal Contractive Forces of Wools as Actuator. Polymers (Basel) 2020; 12:polym12071464. [PMID: 32629857 PMCID: PMC7408587 DOI: 10.3390/polym12071464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Wool has a long history of use in textiles throughout human civilization. Many smart functions such as reversible shape changes to various stimuli have been demonstrated in the last few years. However, the force-related characteristics are still imperfectly recognized, although they are expected to be used as actuators due to their biological origins and broad applications. Herein, we investigated the feasibility of wools in performing actuating ability through its intrinsic structures and fabrication methods. The diverse modes of contractive forces were obtained in wool materials including platform-like, double-peak, and slope-like shapes, where a molecular model was also presented to trace the origins of stress evolution. After that, a polymeric blend was created to modify the wool materials and a dissimilar performance of stress production was achieved, a square stress mode with stable manner and maintenance, for broad applications in a more efficient way. It is believed that these actuating properties extracted from natural hairs have a large potential in current smart applications and lay down new inspiration in designing actuators.
Collapse
Affiliation(s)
- Shanshan Zhu
- Institute of Advanced Integration Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-3442-9549
| |
Collapse
|
17
|
Kudo S, Nakashima S. Changes in IR band areas and band shifts during water adsorption to lecithin and ceramide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117779. [PMID: 31732473 DOI: 10.1016/j.saa.2019.117779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Adsorption of water to a phospholipid (lecithin) and a ceramide were studied by IR microspectroscopy equipped with a humidity control system and quartz crystal microbalance (QCM). The water weight ratios increase up to 12.2 wt% for lecithin and 1.2 wt% for ceramide at RH ~80%, with linear correlations with infrared OH (+NH) band areas. For lecithin, the 1230 cm-1 band (PO2-) and the 1735 cm-1 band (CO) shift to lower wavenumbers, while the 1060 cm-1 band (PO2-, POC) shift to higher wavenumber with RH. Band areas of phosphates (1230 and 1060 cm-1) increase with RH showing positive relations with the band area of bound water. Bound water molecules with shorter H bonds might be bound to these phosphate groups. Band areas of aliphatic CHs are negatively correlated with the increasing adsorption of free water. Free water molecules with longer H bonds might interact loosely with aliphatic chains of lecithin. For ceramide, only the 1045 cm-1 band (CO) shows a small red shift at higher RHs than 60%, indicating adsorption of bound water to CO bonds. Amounts of water molecules adsorbed to ceramide are very limited due to few adsorption of free water.
Collapse
Affiliation(s)
- Sachie Kudo
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Taki Chemical Co., Ltd., 346 Miyanishi, Harima-cho, Kako-gun, Hyogo 675-0145, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
18
|
Song YX, Rong MZ, Zhang MQ. Improvement of multiple-responsive shape memory effects of wool through increasing the content of disulfide bonds. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Jose S, George JJ, Siengchin S, Parameswaranpillai J. Introduction to Shape-Memory Polymers, Polymer Blends and Composites: State of the Art, Opportunities, New Challenges and Future Outlook. ADVANCED STRUCTURED MATERIALS 2020. [DOI: 10.1007/978-981-13-8574-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Huang W, Restrepo D, Jung JY, Su FY, Liu Z, Ritchie RO, McKittrick J, Zavattieri P, Kisailus D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901561. [PMID: 31268207 DOI: 10.1002/adma.201901561] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Biological materials found in Nature such as nacre and bone are well recognized as light-weight, strong, and tough structural materials. The remarkable toughness and damage tolerance of such biological materials are conferred through hierarchical assembly of their multiscale (i.e., atomic- to macroscale) architectures and components. Herein, the toughening mechanisms of different organisms at multilength scales are identified and summarized: macromolecular deformation, chemical bond breakage, and biomineral crystal imperfections at the atomic scale; biopolymer fibril reconfiguration/deformation and biomineral nanoparticle/nanoplatelet/nanorod translation, and crack reorientation at the nanoscale; crack deflection and twisting by characteristic features such as tubules and lamellae at the microscale; and structure and morphology optimization at the macroscale. In addition, the actual loading conditions of the natural organisms are different, leading to energy dissipation occurring at different time scales. These toughening mechanisms are further illustrated by comparing the experimental results with computational modeling. Modeling methods at different length and time scales are reviewed. Examples of biomimetic designs that realize the multiscale toughening mechanisms in engineering materials are introduced. Indeed, there is still plenty of room mimicking the strong and tough biological designs at the multilength and time scale in Nature.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - David Restrepo
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jae-Young Jung
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Frances Y Su
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
| | - Zengqian Liu
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Pablo Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - David Kisailus
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Lendlein A, Balk M, Tarazona NA, Gould OEC. Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials. Biomacromolecules 2019; 20:3627-3640. [PMID: 31529957 DOI: 10.1021/acs.biomac.9b01074] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape-memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape-memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.
Collapse
Affiliation(s)
- Andreas Lendlein
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany.,Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Straße 24-25 , Potsdam , Germany
| | - Maria Balk
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| | - Natalia A Tarazona
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| | - Oliver E C Gould
- Institute of Biomaterial Science , Helmholtz-Zentrum Geesthacht , Kantstrasse 55 , Teltow , Germany
| |
Collapse
|
22
|
Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions. Molecules 2019; 24:molecules24183348. [PMID: 31540041 PMCID: PMC6767292 DOI: 10.3390/molecules24183348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 11/28/2022] Open
Abstract
The electrorheological (ER) effect was experimentally observed in dielectric suspensions containing tungsten oxide (WO3) modified with surfactant molecules (sodium dodecyl sulfate (SDS) and dodecylamine (DDA)) in electric fields up to several kilovolts per millimeter. The dielectric properties of WO3 suspensions in silicone oil were analyzed, depending on the frequency of the electric field, in the range from 25 to 106 Hz. Unmodified WO3 suspensions, as well as suspensions modified with sodium dodecyl sulfate, were shown to exhibit a positive electrorheological effect, whereas suspensions modified with dodecylamine demonstrated a negative electrorheological effect. The quantitative characteristics of the negative electrorheological effect in the strain–compression and shear regimes were obtained for the first time. Visualization experiments were performed to see the chain structures formed by WO3 particles modified with sodium dodecyl sulfate, as well as for dynamic electroconvection in electrorheological fluids containing WO3 modified with dodecylamine. The negative electrorheological effect was shown to be associated with the processes of phase separation in the electric field, which led to a multiplicative effect and a strong electroconvection of the suspension at field strengths above 1 kV/mm.
Collapse
|
23
|
Xie Y, Lei D, Wang S, Liu Z, Sun L, Zhang J, Qing FL, He C, You Z. A Biocompatible, Biodegradable, and Functionalizable Copolyester and Its Application in Water-Responsive Shape Memory Scaffold. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Xiao X, Gu Y, Wu G, Zhang D, Ke H. Controllable Crimpness of Animal Hairs via Water-Stimulated Shape Fixation for Regulation of Thermal Insulation. Polymers (Basel) 2019; 11:E172. [PMID: 30960156 PMCID: PMC6401684 DOI: 10.3390/polym11010172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
Animals living in extremely cold plateau areas have shown amazing ability to maintain their bodies warmth, a benefit of their hair's unique structures and crimps. Investigation of hair crimps using a water-stimulated shape fixation effect would control the hair's crimpness with a specific wetting-drying process thereafter, in order to achieve the regulation of hair thermal insulation. The mechanism of hair's temporary shape fixation was revealed through FTIR and XRD characterizations for switching on and off the hydrogen bonds between macromolecules via penetration into and removal of aqueous molecules. The thermal insulation of hairs was regulated by managing the hair temporary crimps, that is, through managing the multiple reflectance of infrared light by hair hierarchical crimps from hair root to head.
Collapse
Affiliation(s)
- Xueliang Xiao
- Key laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yanjia Gu
- Key laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Guanzheng Wu
- Key laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Diantang Zhang
- Key laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
25
|
Guo Y, Lv Z, Huo Y, Sun L, Chen S, Liu Z, He C, Bi X, Fan X, You Z. A biodegradable functional water-responsive shape memory polymer for biomedical applications. J Mater Chem B 2019; 7:123-132. [DOI: 10.1039/c8tb02462f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A biodegradable water-responsive shape memory polymer, which can be readily functionalized.
Collapse
|
26
|
Xiao X, Wu G, Liu L, Dong K, Gu Y. Thermal insulation management of biopolymer hairs through water-stimulated shape memory effect of crispness. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.05.311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Yang J, Zheng Y, Sheng L, Chen H, Zhao L, Yu W, Zhao KQ, Hu P. Water Induced Shape Memory and Healing Effects by Introducing Carboxymethyl Cellulose Sodium into Poly(vinyl alcohol). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiyu Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Yanan Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Linjuan Sheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Hongmei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| |
Collapse
|
28
|
Kudo S, Nakashima S. Water adsorption with relative humidity changes for keratin and collagen as studied by infrared (
IR
) micro‐spectroscopy. Skin Res Technol 2018; 25:258-269. [PMID: 30345567 DOI: 10.1111/srt.12641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Sachie Kudo
- Department of Earth and Space ScienceOsaka University Toyonaka Osaka Japan
- Taki Chemical Co., Ltd. Kako‐gun, Hyogo Japan
| | - Satoru Nakashima
- Department of Earth and Space ScienceOsaka University Toyonaka Osaka Japan
| |
Collapse
|
29
|
Yang X, Wang W, Miao M. Moisture-Responsive Natural Fiber Coil-Structured Artificial Muscles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32256-32264. [PMID: 30160104 DOI: 10.1021/acsami.8b12144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Miniature linear actuators, also known as artificial muscles, mimic the contractile action of skeletal muscles and have potentials in applications, such as soft robotics, prosthetics, exoskeletons, and smart textiles. Natural fibers commonly used in textiles, such as wool, cotton, and flax, are highly anisotropic materials in response to moisture stimulus. Here, we report that this anisotropic property of the natural fibers can be utilized to provide musclelike contractile motions when they are constructed into springlike cylindrical coils by twist insertion. The treatment and conversion of these natural fibers into high-performance musclelike actuators are described. The musclelike actuators made from natural fibers can provide output strain, stress, and work capacity that are orders of magnitude higher than those of animal skeletal muscles and many artificial muscles made from synthetic materials. The natural fiber artificial muscles are demonstrated for potential applications in smart textiles to alleviate body discomfort caused by sweating during sports and other physical activities.
Collapse
Affiliation(s)
- Xiaohui Yang
- College of Materials Science and Engineering , Guizhou Minzu University , Guiyang 550025 , China
- CSIRO Manufacturing , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
- Key Lab of Bio-based Material Science & Technology of Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Weihong Wang
- Key Lab of Bio-based Material Science & Technology of Ministry of Education , Northeast Forestry University , Harbin 150040 , China
| | - Menghe Miao
- CSIRO Manufacturing , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
| |
Collapse
|
30
|
Xiao X, Hu J, Gui X, Qian K. Shape Memory Investigation of α-Keratin Fibers as Multi-Coupled Stimuli of Responsive Smart Materials. Polymers (Basel) 2017; 9:E87. [PMID: 30970768 PMCID: PMC6432327 DOI: 10.3390/polym9030087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Like the water responsive shape memory (SM) effect of β-keratin bird feathers, α-keratin hairs either existing broadly in nature are found responsive to many types of coupled stimuli in SM behaviors. In this article, α-keratin hairs were investigated for the combined stimuli of thermo-solvent, solvent-solvent, and UV (radiation)-reductant sensitive SM abilities. The related netpoints and switches from the hair molecular networks were identified. The experimental results showed that α-keratin hairs manifested a higher ability of shape fixation under thermal stimulus followed with the stimuli of solvent and UV-radiation. Shape recovery from the hair with a temporarily fixed shape showed a higher recovery ability using solvent than the stimuli of heat and UV-radiation. The effects of coupled stimuli on hair's shape fixation and recovery and on variations of the crystal, disulfide, and hydrogen bonds were studied systematically. A structural network model was thereafter proposed to interpret the multi-coupled stimuli sensitive SM of α-keratin hair. This original study is expected to provide inspiration for exploring other natural fibers to reveal related smart functions and for making more types of remarkable adapted synthetic materials.
Collapse
Affiliation(s)
- Xueliang Xiao
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jinlian Hu
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiaoting Gui
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
| | - Kun Qian
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Fang Z, Kuang Y, Zhou P, Ming S, Zhu P, Liu Y, Ning H, Chen G. Programmable Shape Recovery Process of Water-Responsive Shape-Memory Poly(vinyl alcohol) by Wettability Contrast Strategy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5495-5502. [PMID: 28106368 DOI: 10.1021/acsami.6b14868] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water-responsive shape-memory polymers (SMPs) are desirable for biomedical applications, but their limited shape recovery process is problematic. Herein, we demonstrate a shape-memory poly(vinyl alcohol) (SM-PVA) with programmable multistep shape recovery processes in water via a wettability contrast strategy. A hexamethyldisilazane (HMDS)-treated SiO2 nanoparticle layer with varying loading weights was rationally deposited onto the surface of SM-PVA, aiming to create surface-wettability contrast. The varying wettability led to different water adsorption behaviors of SM-PVA that could be well-described by the pseudo-first-order kinetic model. The results calculated from the kinetic model showed that both the pseudo-first order-adsorption rate constant and the saturated water absorption of SM-PVA demonstrated a declining trend as the loading weight of SiO2 increased, which laid the foundation for the local regulation of the water-responsive rate of SM-PVA. Finally, two proof-of-concept drug-delivery devices with diverse three-dimensional structures and actuations are presented based on the water-responsive SM-PVA with preprogrammed multistep shape recovery processes. We believe the programmable shape-memory behavior of water-responsive SM-PVA could highly extend its use in drug delivery, tissue engineering scaffolds, and smart implantable devices, etc.
Collapse
Affiliation(s)
- Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Yudi Kuang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| | - Panpan Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| | - Siyi Ming
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| | - Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
32
|
Zhang B, DeBartolo JE, Song J. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4450-4456. [PMID: 28125208 DOI: 10.1021/acsami.6b14167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied by concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD), and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g., as self-fitting intervertebral discs). This study also provides a new material design strategy to strengthen polymers in aqueous environment in general.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School , 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Janae E DeBartolo
- Chemical and Materials Science Group, Advanced Photon Source, Argonne National Laboratory , 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School , 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
33
|
Qiu X, Xiao X, Kong D, Zhang W, Ma Z. Facile control of high temperature shape memory polymers. J Appl Polym Sci 2017. [DOI: 10.1002/app.44902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xueying Qiu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology; No. 92 West Dazhi Street Harbin 150001 People's Republic of China
| | - Xinli Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology; No. 92 West Dazhi Street Harbin 150001 People's Republic of China
| | - Deyan Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology; No. 92 West Dazhi Street Harbin 150001 People's Republic of China
| | - Wenbo Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology; No. 92 West Dazhi Street Harbin 150001 People's Republic of China
| | - Zhuo Ma
- School of Life Science and Technology; Harbin Institute of Technology; No. 92 West Dazhi Street Harbin 150001 People's Republic of China
| |
Collapse
|
34
|
Abstract
A twin-netpoint-switch structure model for animal hair has been proposed for interpreting different shape memory abilities when exposure on different external stimuli, where a twin-netpoint/single-switch structure is for the stimulus of water, heat and UV-light, and a single-netpoint/twin-switch structure is for the stimulus of redox agent.
Collapse
Affiliation(s)
- Xueliang Xiao
- Institute of Textiles and Clothing
- the Hong Kong Polytechnic University
- China
- Key Laboratory of Eco-Textiles
- Ministry of Education
| | - Jinlian Hu
- Institute of Textiles and Clothing
- the Hong Kong Polytechnic University
- China
| | - Xiaoting Gui
- Institute of Textiles and Clothing
- the Hong Kong Polytechnic University
- China
| | - Jing Lu
- Institute of Textiles and Clothing
- the Hong Kong Polytechnic University
- China
| | - Hongsheng Luo
- Faculty of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| |
Collapse
|