1
|
Abu Elasal M, Mousa S, Salameh M, Blumenfeld A, Khateb S, Banin E, Sharon D. Genetic Analysis of 252 Index Cases with Inherited Retinal Diseases Using a Panel of 351 Retinal Genes. Genes (Basel) 2024; 15:926. [PMID: 39062705 PMCID: PMC11276581 DOI: 10.3390/genes15070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are extremely heterogeneous with at least 350 causative genes, complicating the process of genetic diagnosis. We analyzed samples of 252 index cases with IRDs using the Blueprint Genetics panel for "Retinal Dystrophy" that includes 351 genes. The cause of disease could be identified in 55% of cases. A clear difference was obtained between newly recruited cases (74% solved) and cases that were previously analyzed by panels or whole exome sequencing (26% solved). As for the mode of inheritance, 75% of solved cases were autosomal recessive (AR), 10% were X-linked, 8% were autosomal dominant, and 7% were mitochondrial. Interestingly, in 12% of solved cases, structural variants (SVs) were identified as the cause of disease. The most commonly identified genes were ABCA4, EYS and USH2A, and the most common mutations were MAK-c.1297_1298ins353 and FAM161A-c.1355_1356del. In line with our previous IRD carrier analysis, we identified heterozygous AR mutations that were not the cause of disease in 36% of cases. The studied IRD panel was found to be efficient in gene identification. Some variants were misinterpreted by the pipeline, and therefore, multiple analysis tools are recommended to obtain a more accurate annotation of potential disease-causing variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dror Sharon
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (M.A.E.); (S.M.); (M.S.); (A.B.); (S.K.)
| |
Collapse
|
2
|
Ricci A, Carradori S, Cataldi A, Zara S. Eg5 and Diseases: From the Well-Known Role in Cancer to the Less-Known Activity in Noncancerous Pathological Conditions. Biochem Res Int 2024; 2024:3649912. [PMID: 38939361 PMCID: PMC11211015 DOI: 10.1155/2024/3649912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Eg5 is a protein encoded by KIF11 gene and is primarily involved in correct mitotic cell division. It is also involved in nonmitotic processes such as polypeptide synthesis, protein transport, and angiogenesis. The scientific literature sheds light on the ubiquitous functions of KIF11 and its involvement in the onset and progression of different pathologies. This review focuses attention on two main points: (1) the correlation between Eg5 and cancer and (2) the involvement of Eg5 in noncancerous conditions. Regarding the first point, several tumors revealed an overexpression of this kinesin, thus pushing to look for new Eg5 inhibitors for clinical practice. In addition, the evaluation of Eg5 expression represents a crucial step, as its overexpression could predict a poor prognosis for cancer patients. Referring to the second point, in specific pathological conditions, the reduced activity of Eg5 can be one of the causes of pathological onset. This is the case of Alzheimer's disease (AD), in which Aβ and Tau work as Eg5 inhibitors, or in acquired immune deficiency syndrome (AIDS), in which Tat-mediated Eg5 determines the loss of CD4+ T-lymphocytes. Reduced Eg5 activity, due to mutations of KIF11 gene, is also responsible for pathological conditions such as microcephaly with or without chorioretinopathy, lymphedema, or intellectual disability (MCLRI) and familial exudative vitreous retinopathy (FEVR). In conclusion, this review highlights the double impact that overexpression or loss of function of Eg5 could have in the onset and progression of different pathological situations. This emphasizes, on one hand, a possible role of Eg5 as a potential biomarker and new target in cancer and, on the other hand, the promotion of Eg5 expression/activity as a new therapeutic strategy in different noncancerous diseases.
Collapse
Affiliation(s)
- Alessia Ricci
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Simone Carradori
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d'Annunzio” Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
3
|
Lee D, Hwang S, Kim SJ. KIF11-related Retinopathy with Microcephaly: Two Case Reports. KOREAN JOURNAL OF OPHTHALMOLOGY 2024; 38:263-265. [PMID: 38584445 PMCID: PMC11175977 DOI: 10.3341/kjo.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Dongyoung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
4
|
Le V, Abdelmessih G, Dailey WA, Pinnock C, Jobczyk V, Rashingkar R, Drenser KA, Mitton KP. Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome. Cells 2023; 12:2579. [PMID: 37947657 PMCID: PMC10647367 DOI: 10.3390/cells12212579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.
Collapse
Affiliation(s)
- Vincent Le
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | | | - Wendy A. Dailey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Cecille Pinnock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Victoria Jobczyk
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | - Revati Rashingkar
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Kimberly A. Drenser
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Associated Retinal Consultants P.C., Royal Oak, MI 48073, USA
| | - Kenneth P. Mitton
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Maitra P. Pediatric retinal vascular disorders: From translational sciences to clinical practice. Saudi J Ophthalmol 2023; 37:269-275. [PMID: 38155677 PMCID: PMC10752273 DOI: 10.4103/sjopt.sjopt_63_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 12/30/2023] Open
Abstract
Pediatric retinal vascular diseases are a spectrum with overlapping phenotypes and related genes. Retinal vascular development is biphasic. Vasculogenesis is responsible for the formation of primordial vessels leading to the four major arcades in the posterior retina. Angiogenesis, which is vascular endothelial growth factor dependent, is responsible for the formation of new vessels through budding from existing vessels, forming the peripheral vessels, increasing the capillary density of the central retina, and forming the superficial and deep capillary plexus. This process is controlled by WNT signaling, which is important for cell proliferation, division, and migration. Disorders of WNT signaling, such as familial exudative vitreoretinopathy (FEVR), have overlapping clinical findings. Conversely, pathogenic variants in some of the FEVR-related genes are reported in conditions such as retinopathy of prematurity (ROP), persistent fetal vasculature, and Coats disease. The various overlapping features and underlying genetic basis in the pathogenesis of pediatric retinal vascular developmental diseases suggest that genetic variants may provide a framework or a background for these conditions, upon which further insults can affect the development at any phase (such as prematurity and oxygenation in ROP), influencing and determining the final phenotype.
Collapse
Affiliation(s)
- Puja Maitra
- Department of Vitreoretina Services, Aravind Eye Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Alahmadi G, Alshamrani AA, Albakri A. Novel variant of KIF11 associated with MCLMR syndrome. Ophthalmic Genet 2023; 44:205-207. [PMID: 36004687 DOI: 10.1080/13816810.2022.2113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ghaida Alahmadi
- Pediatric Ophthalmology and Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Amani Albakri
- Pediatric Ophthalmology and Strabismus Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Huang L, Lu J, Wang Y, Sun L, Ding X. Familial Exudative Vitreoretinopathy and Systemic Abnormalities in Patients With CTNNB1 Mutations. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36790797 PMCID: PMC9940768 DOI: 10.1167/iovs.64.2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited vitreoretinopathy. This study aimed to analyze the ocular phenotypes and systemic features of patients with CTNNB1 mutations. Methods Whole exome sequencing was performed in the probands, and Sanger sequencing was used to verify the mutations and perform segregation analysis in the available family members. A luciferase assay was used to assess the effect of the mutant β-catenin on transcription. Comprehensive ocular examinations were performed on the probands and family members. Systemic features were evaluated and followed up. Results A total of 763 FEVR families were enrolled. Seven different CTNNB1 mutations, including 5 novels and 2 known mutations, were detected in 8 families, accounting for 1.05% of all FEVR families. Compared to wild-type CTNNB1, the CTNNB1 mutants failed to induce luciferase reporter activity in SuperTopFlash (STF) cells. Among the 16 eyes of the 8 probands, 2 (12.5%) eyes were classified as stage 2 FEVR, 8 (50.0%) as stage 4, and 6 (37.5%) as stage 5. All the patients had varying degrees of systemic abnormalities and presented with motor, speech, and developmental delays over time. Among the eight families with CTNNB1 mutations, seven were de novo mutations, and one proband inherited the mutation from his asymptomatic mother. Conclusions This study provides detailed descriptions of the ocular phenotypes of patients with CTNNB1 mutations that presented as severe FEVR, and accompanied with other systemic abnormalities. Five novel mutations identified in this study, expanded the mutation spectrum of CTNNB1-associated FEVR.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - You Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
8
|
Chang H, Zhang X, Xu K, Li N, Xie Y, Yan W, Li Y. Phenotype-Based Genetic Analysis Reveals Missing Heritability of KIF11-Related Retinopathy: Clinical and Genetic Findings. Genes (Basel) 2023; 14:212. [PMID: 36672954 PMCID: PMC9858922 DOI: 10.3390/genes14010212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to detect the missing heritability of patients with KIF11-related retinopathy and to describe their clinical and genetic characteristics. We enrolled 10 individuals from 7 unrelated families harboring a pathogenic monoallelic variant in KIF11. All subjects underwent ophthalmic assessment and extraocular phenotype evaluations, as well as comprehensive molecular genetic analyses using next-generation sequencing. Minigene assays were performed to observe the effects of one novel deep intron variant (DIV) and one novel synonymous variant on pre-mRNA splicing. We detected 6 novel different disease-causing variants of KIF11 in the seven pedigrees. Co-segregation analysis and ultra-deep sequencing results indicated that 5 variants arose de novo in 5 families (71%). Functional validation revealed that the synonymous variant leads to an exon skip, while the DIV causes a pseudoexon (PE) inclusion. The patients presented with high variations in their phenotype, and two families exhibited incomplete penetrance. Ocular manifestations and characteristic facial features were observed in all patients, as well as microcephaly in seven patients, intellectual disability in five patients, and lymphedema in one patient. The key retinal features for KIF11-related retinopathy were retinal folds, tractional retinal detachment, and chorioretinal dysplasia. All seven probands had more severe visual detects than other affected family members. Our findings widen the genetic spectrum of KIF11 variants. DIV explained rare unresolved cases with KIF11-related retinopathy. The patients displayed a variable phenotype expressivity and incomplete penetrance, indicating the importance of genetic analysis for patients with KIF11-related retinopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Li
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| |
Collapse
|
9
|
Yu WX, Li YK, Xu MF, Xu CJ, Chen J, Wei YL, She ZY. Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell Death Dis 2022; 8:490. [PMID: 36513626 DOI: 10.1038/s41420-022-01281-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Chromosome stability relies on bipolar spindle assembly and faithful chromosome segregation during cell division. Kinesin-5 Eg5 is a plus-end-directed kinesin motor protein, which is essential for spindle pole separation and chromosome alignment in mitosis. Heterozygous Eg5 mutations cause autosomal-dominant microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome in humans. However, the developmental roles and cellular mechanisms of Eg5 in organogenesis remain largely unknown. In this study, we have shown that Eg5 inhibition leads to the formation of the monopolar spindle, chromosome misalignment, polyploidy, and subsequent apoptosis. Strikingly, long-term inhibition of Eg5 stimulates the immune responses and the accumulation of lymphocytes in the mouse spleen through the innate and specific immunity pathways. Eg5 inhibition results in metaphase arrest and cell growth inhibition, and suppresses the formation of somite and retinal development in zebrafish embryos. Our data have revealed the essential roles of kinesin-5 Eg5 involved in cell proliferation, chromosome stability, and organogenesis during development. Our findings shed a light on the cellular basis and pathogenesis in microcephaly, primary lymphedema, and chorioretinal dysplasia syndrome of Eg5-mutation-positive patients.
Collapse
Affiliation(s)
- Wen-Xin Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Yu-Kun Li
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Chen-Jie Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China.,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, 350001, Fuzhou, Fujian, China.,College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 350122, Fuzhou, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, 350122, Fuzhou, Fujian, China. .,Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, 350122, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Mao J, Chen Y, Fang Y, Shao Y, Xiang Z, Li H, Zhao S, Chen Y, Shen L. Clinical characteristics and mutation spectrum in 33 Chinese families with familial exudative vitreoretinopathy. Ann Med 2022; 54:3286-3298. [PMID: 36411543 PMCID: PMC9704097 DOI: 10.1080/07853890.2022.2146744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To explore the clinical manifestations and search for the variants of six related genes (LRP5, FZD4, TSPAN12, NDP, KIF11 and ZNF408) in Chinese patients with familial exudative vitreoretinopathy (FEVR), and investigate the correlation between the genetic variants and the clinical characteristics. PATIENTS AND METHODS Clinical data, including the retinal artery angle, acquired from wide-field fundus imaging, structural and microvascular features of the retina obtained from optical coherence tomography (OCT) and OCT angiography (OCTA) were collected from 33 pedigrees. Furthermore, mutation screening was performed. Variants filtering, bioinformatics analysis and Sanger sequencing were conducted to verify the variants. RESULTS Twenty-one variants were successfully detected in 16 of 33 families, of which 10 variants were newly identified. The proportion of variants in LRP5, FZD4, TSPAN12, NDP and KIF11 was 38.1% (8/21), 33.3% (7/21), 19.1% (4/21), 4.8% (1/21) and 4.8% (1/21), respectively. Three new variants were considered to be pathogenic or likely pathogenic. The FEVR group tended to exhibit a smaller retinal artery angle, higher incidence of foveal hypoplasia and lower vascular density compared to the control group. Patients who harboured variants of FZD4 exhibited greater severity of FEVR than those with LRP5 variants. However, those who harboured LRP5 variants tended to possess lower foveal vascular density. CONCLUSIONS Six known pathogenic genes were screened in 33 pedigrees with FEVR in our study, which revealed 10 novel variants. These findings enrich the clinical features and mutation spectrum in Chinese patients with FEVR, revealing the genotype-phenotype relationship, and contributing to the diagnosis and treatment of the disease.Key messagesWe identified 21 variants in 5 genes (LRP5, FZD4, TSPAN12, NDP and KIF11) associated with FEVR, 10 of which are novel (three were pathogenic or likely pathogenic).The proportion of variants was the highest for the LRP5 gene.FZD4 variants may be responsible for greater FEVR severity than LRP5 variants.
Collapse
Affiliation(s)
- Jianbo Mao
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yijing Chen
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yuyan Fang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yirun Shao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ziyi Xiang
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Hanxiao Li
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Shixin Zhao
- Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Yiqi Chen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| | - Lijun Shen
- Department of Ophthalmology, Center for Rehabilitation Medicine, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, PR China.,Department of Retina Center, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, PR China
| |
Collapse
|
11
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
12
|
Update on the Phenotypic and Genotypic Spectrum of KIF11-Related Retinopathy. Genes (Basel) 2022; 13:genes13040713. [PMID: 35456519 PMCID: PMC9031442 DOI: 10.3390/genes13040713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background: This study aimed to report the frequency of KIF11-mutations in a large familial exudative vitreoretinopathy (FEVR) population, extend the clinical spectrum of KIF11-associated retinopathy and compare KIF11-associated retinopathy to FEVR with mutations in other genes. Methods: Genetic data collected from 696 FEVR families were reviewed. The ocular phenotypes in patients with KIF11 mutations were analyzed and compared with those of FEVR patients with mutations in other genes (FZD4, TSPAN12, LRP5, NDP and JAG1). Results: In a cohort of 696 FEVR families, disease-causing KIF11 mutations were identified in 3.6% of families (25/696). Among 25 KIF11 mutations, 80% (20/25) carried variants of loss of function and 48% (12/25) of variants were de novo. The phenotypes were variable. Compared with FEVR with disease-causing mutations in other genes, chorioretinal dysplasia was observed in 44.2% (31/70) of eyes with KIF11-associated retinopathy and in only 1.3% (1/70) of eyes with FEVR with mutations in other genes (p < 0.01). Increase and straightening of peripheral vessels (ISPV) was observed in 17.1% (12/70) of eyes with KIF11-associated retinopathy, and in 50% (39/78) of eyes with FEVR with mutations in other genes (p < 0.01). Conclusions: The frequency of the KIF11 mutation in FEVR was 3.6% in our database. The manifestation of KIF11-associated retinopathy was variable and different from the phenotype in FEVR caused by other genes. Chorioretinal dysplasia, instead of retinal folds, was the dominant phenotype in KIF11-associated retinopathy. ISPV was rare in KIF11-associated retinopathy. Moreover, our study revealed that most pathogenic KIF11 mutations were de novo.
Collapse
|
13
|
Lu J, Huang L, Sun L, Li S, Zhang Z, Jiang Z, Li J, Ding X. FZD4 in a Large Chinese Population With Familial Exudative Vitreoretinopathy: Molecular Characteristics and Clinical Manifestations. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35394490 PMCID: PMC8994167 DOI: 10.1167/iovs.63.4.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The purpose of this study was to establish a genotype-phenotype correlation of familial exudative vitreoretinopathy (FEVR) caused by FZD4 gene mutations. Methods Six hundred fifty-one probands and their family members were recruited based on a clinical diagnosis of FEVR between 2015 and 2021 at Zhongshan Ophthalmic Center. Ocular examinations were performed in all participants. Targeted gene panel sequencing and whole-exome sequencing were performed in the probands, and Sanger sequencing was used to verify the mutations and segregation analysis was performed in the family members. Results Fifty-one FZD4 mutations (24 novels and 27 known) were detected in 84 families. Of these 168 eyes with FEVR, the eyes at stages 1, 2, 3, 4, and 5 were 29 (17.3%), 15 (8.9%), 19 (11.3%), 55 (32.7%), and 12 (7.1%), respectively. Exact stage of 38 (22.6%) eyes could not be determined. The FEVR phenotypes were more severe in the probands than the phenotypes in the family members (P < 0.001). The families were divided into two groups, probands that inherited the variant from the mother, and probands that inherited the variant from the father. In addition, the FEVR stage differences between these two groups were different (P < 0.05). Despite the mutations being located in different domains of FZD4, no significant differences were identified among the domains in terms of FEVR staging, retinal folds, retinal detachment, temporal midperipheral vitreoretinal interface abnormality, and foveal hypoplasia. Conclusions The FZD4 probands had severer phenotype than the family members, and the FEVR stage difference was greater between the probands and mothers than that between the probands and fathers.
Collapse
Affiliation(s)
- Jinglin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Yang J, Xiao X, Li S, Mai G, Jia X, Wang P, Sun W, Zhang Q. Severe Exudative Vitreoretinopathy as a Common Feature for CTNNB1, KIF11 and NDP Variants Plus Sector Degeneration for KIF11. Am J Ophthalmol 2022; 235:178-187. [PMID: 34582765 DOI: 10.1016/j.ajo.2021.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To characterize ocular phenotypes in patients with CTNNB1, KIF11, or NDP variants. DESIGN Retrospective case series. METHODS Seventy-four patients from 59 unrelated families with CTNNB1, KIF11, and NDP variants were enrolled based on exome sequencing. The clinical data of ophthalmoscope, fundus photography, fluorescein angiography, and ocular ultrasound scan were evaluated. RESULTS A total of 55 potential pathogenic variants were identified, including 26 in KIF11 (28 families), 23 in NDP (25 families), and 6 in CTNNB1 (6 families). In total, 74 patients from the 59 families carried the variants, in whom clinical data were available from 70 patients for the current analysis. Severe familial exudative vitreoretinopathy (FEVR), stages 4 and 5, was present in 72.9% (51/70) of patients. In addition, panretinal or sector chorioretinal degeneration along with FEVR is a specific feature associated with KIF11 variants, present in 93.8% (30/32) of patients. FEVR-like change was observed in almost all patients with rare hemizygous variants in NDP, patients with heterozygous truncation variants in CTNNB1, as well as patients with heterozygous truncation or damaging missense variants in KIF11. CONCLUSIONS Severe FEVR-like change with or without significant chorioretinopathy is a common feature in addition to neurodevelopmental disorders for variants in CTNNB1, KIF11, and NDP. In our cohort, the frequency of families with variants in KIF11 was comparable to that in TSPAN12, so as for NDP. Recognizing the characteristics of variants in the 3 genes and associated ocular phenotypes may enrich our understanding and potential management of this disease.
Collapse
Affiliation(s)
- Junxing Yang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guiying Mai
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
15
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
16
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
17
|
Wang K, Zhang X, Tian T, Zhao P. Identification of a novel mutation in KIF11 with functional analysis in a cohort of 516 familial patients with exudative vitreoretinopathy. Mol Vis 2021; 27:528-541. [PMID: 34526760 PMCID: PMC8410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/30/2021] [Indexed: 11/03/2022] Open
Abstract
Purpose To identify a novel mutation in KIF11 with clinical and functional analysis among 516 familial patients with exudative vitreoretinopathy (FEVR). Methods Next-generation sequencing was performed on 516 patients with FEVR between January 2015 and October 2017. Clinical data were collected from patient charts, including sex, age at presentation, visual acuity if available, axial length, stage, and systemic clinical findings. Protein and mRNA levels were detected with western blotting and real-time quantitative PCR, respectively. Mass spectrometry was used to analyze the interacting protein of KIF11. Results In total, 304 of 516 patients were identified with at least one mutation in FEVR causative genes. Mutations in KIF11 were identified in 14.47% of all carriers. The novel mutation p. H718L accounted for the greatest proportion (12/44; 27.30%) among all mutations in KIF11. Fundus presentations in these 12 individuals varied from the avascular zone of the peripheral retina to total retinal detachment. The p. H718L mutation can reduce the proliferation of human retinal endothelial cells (HRECs) compared to the wild type. The mRNA level of vascular endothelial growth factor-α, transforming growth factor-α, metalloproteinase-1, and angiopoietin-like 4 were depressed in the KIF11 (p. H718L) groups under hypoxia stimuli. Mass spectrometry results demonstrated that eukaryotic elongation factor 2 (EEF2) was an interacting protein of KIF11 and that the p. H718L mutation can attenuate the binding activity. Conclusions Patients with the most frequent KIF11 mutation p. H718L showed typical FEVR presentations in this cohort. The mutation in KIF11 likely plays a role in the proliferation of HRECs, and the p. H718L mutation can reduce the proliferation.
Collapse
Affiliation(s)
- Kezhou Wang
- Department of Pathology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Tian Tian
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, China
| |
Collapse
|
18
|
Lyu J, Zhang Q, Xu Y, Zhang X, Fei P, Zhao P. INTRAVITREAL RANIBIZUMAB TREATMENT FOR ADVANCED FAMILIAL EXUDATIVE VITREORETINOPATHY WITH HIGH VASCULAR ACTIVITY. Retina 2021; 41:1976-1985. [PMID: 34432746 PMCID: PMC8384247 DOI: 10.1097/iae.0000000000003122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the efficacy of intravitreal ranibizumab (IVR) treatment for advanced familial exudative vitreoretinopathy with high vascular activity. METHODS The retrospective interventional case series included 28 eyes (20 patients) that had IVR in combination or not with other treatment, for Stage 3 to 5 familial exudative vitreoretinopathy with active fibrovascular proliferation and prominent subretinal exudation. Outcome measures were fundus features after treatment, associated clinical variables, and genetic mutations. RESULTS The age of patients at the first IVR ranged from 0.2 to 36 months. An average of 1.3 IVR injections per eye were given. Familial exudative vitreoretinopathy regressed in 16 (57%) eyes and progressed in 12 eyes (43%) after IVR. Laser and/or vitrectomy was performed on 13 eyes. The retina was reattached in 22 eyes (78%) after 24 to 58 months follow-up. Clinical variables associated with progression after IVR were preexisting fibrovascular proliferation over one quadrant and persistent vascular activity after the initial injection (P < 0.05). Familial exudative vitreoretinopathy-causative genetic mutations in 11 patients were related to variable response to IVR treatment. CONCLUSION Intravitreal ranibizumab treatment may effectively regress advanced familial exudative vitreoretinopathy with high vascular activity in selected cases. Different treatment outcomes may be relevant to variable presentation and genetic heterogeneity of familial exudative vitreoretinopathy.
Collapse
Affiliation(s)
- Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Wang Y, Smallwood PM, Williams J, Nathans J. A mouse model for kinesin family member 11 (Kif11)-associated familial exudative vitreoretinopathy. Hum Mol Genet 2021; 29:1121-1131. [PMID: 31993640 DOI: 10.1093/hmg/ddaa018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
During mitosis, Kif11, a kinesin motor protein, promotes bipolar spindle formation and chromosome movement, and during interphase, Kif11 mediates diverse trafficking processes in the cytoplasm. In humans, inactivating mutations in KIF11 are associated with (1) retinal hypovascularization with or without microcephaly and (2) multi-organ syndromes characterized by variable combinations of lymphedema, chorioretinal dysplasia, microcephaly and/or mental retardation. To explore the pathogenic basis of KIF11-associated retinal vascular disease, we generated a Kif11 conditional knockout (CKO) mouse and investigated the consequences of early postnatal inactivation of Kif11 in vascular endothelial cells (ECs). The principal finding is that postnatal EC-specific loss of Kif11 leads to severely stunted growth of the retinal vasculature, mildly stunted growth of the cerebellar vasculature and little or no effect on the vasculature elsewhere in the central nervous system (CNS). Thus, in mice, Kif11 function in early postnatal CNS ECs is most significant in the two CNS regions-the retina and cerebellum-that exhibit the most rapid rate of postnatal growth, which may sensitize ECs to impaired mitotic spindle function. Several lines of evidence indicate that these phenotypes are not caused by reduced beta-catenin signaling in ECs, despite the close resemblance of the Kif11 CKO phenotype to that caused by EC-specific reductions in beta-catenin signaling. Based on prior work, defective beta-catenin signaling had been the only known mechanism responsible for monogenic human disorders of retinal hypovascularization. The present study implies that retinal hypovascularization can arise from a second and mechanistically distinct cause.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Whole-Gene Deletions of FZD4 Cause Familial Exudative Vitreoretinopathy. Genes (Basel) 2021; 12:genes12070980. [PMID: 34199009 PMCID: PMC8306649 DOI: 10.3390/genes12070980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited disorder characterized by abnormalities in the retinal vasculature. The FZD4 gene is associated with FEVR, but the prevalence and impact of FZD4 copy number variation (CNV) on FEVR patients are unknown. The aim of this study was to better understand the genetic features and clinical manifestations of patients with FZD4 CNVs. A total of 651 FEVR families were recruited. Families negative for mutations in FEVR-associated genes were selected for CNV analysis using SeqCNV. Semiquantitative multiplex polymerase chain reaction and multiplex ligation-dependent probe amplification were conducted to verify the CNVs. Four probands were found to carry whole-gene deletions of FZD4, accounting for 5% (4/80) of probands with FZD4 mutations and 0.6% (4/651) of all FEVR probands. The four probands exhibited similar phenotypes of unilateral retinal folds. FEVR in probands with CNVs was not more severe than in probands with FZD4 missense mutations (p = 1.000). Although this is the first report of FZD4 CNVs and the associated phenotypes, the interpretation of FZD4 CNVs should be emphasized when analyzing the next-generation sequencing data of FEVR patients because of their high prevalence.
Collapse
|
21
|
Kondo H, Matsushita I, Nagata T, Fujihara E, Hosono K, Uchio E, Hotta Y, Kusaka S. Retinal Features of Family Members With Familial Exudative Vitreoretinopathy Caused By Mutations in KIF11 Gene. Transl Vis Sci Technol 2021; 10:18. [PMID: 34128965 PMCID: PMC8212440 DOI: 10.1167/tvst.10.7.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To determine the clinical characteristics of patients and family members with familial exudative vitreoretinopathy (FEVR) caused by mutations in the KIF11 gene. Methods Twenty-one patients from 10 FEVR families with mutations in the KIF11 gene were studied. The retinal and systemic features were examined. The genetic analyses performed included Sanger sequencing of the KIF11 gene, whole exome sequencing, as well as array comparative genomic hybridization (CGH) analysis and multiple ligation probe assay (MLPA). Results Sequence analysis revealed seven different KIF11 mutations. Array CGH with MLPA revealed two different exon deletions. All probands had advanced FEVR with retinal detachments (RDs) and microcephaly with or without developmental disabilities. Patients with bilateral RDs were more frequently associated with developmental disabilities (P = 0.023). Multimodal imaging of the family members revealed that six of nine patients without RDs (66%) had varying degrees of chorioretinopathy. The retinal folds in FEVR patients were associated with severe retinal avascularization. However, funduscopic changes in the peripheral retina were unremarkable in family members without RDs. A score representing the peripheral vascular anomalies determined from the fluorescein angiograms was lower than that of control eyes of patients with mutations of the Wnt signaling genes (P = 0.0029). Conclusions The probands with KIF11 mutations were associated with severe ocular and systemic pathologies, whereas affected family members showed highly variable clinical manifestations. Peripheral vascular anomalies can often be unremarkable in eyes without RDs. Translational Relevance These findings highlight more diverse mechanisms that underlie the pathological changes in patients with FEVR.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Etsuko Fujihara
- Division of Ophthalmology, Matsue Red Cross Hospital, Matsue, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
22
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Zalenski AA, Majumder S, De K, Venere M. An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics. Sci Rep 2020; 10:13946. [PMID: 32811879 PMCID: PMC7434902 DOI: 10.1038/s41598-020-70787-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
KIF11 is a homotetrameric kinesin that peaks in protein expression during mitosis. It is a known mitotic regulator, and it is well-described that KIF11 is necessary for the formation and maintenance of the bipolar spindle. However, there has been a growing appreciation for non-mitotic roles for KIF11. KIF11 has been shown to function in such processes as axon growth and microtubule polymerization. We previously demonstrated that there is an interphase pool of KIF11 present in glioblastoma cancer stem cells that drives tumor cell invasion. Here, we identified a previously unknown association between KIF11 and primary cilia. We confirmed that KIF11 localized to the basal bodies of primary cilia in multiple cell types, including neoplastic and non-neoplastic cells. Further, we determined that KIF11 has a role in regulating cilia dynamics. Upon the reduction of KIF11 expression, the number of ciliated cells in asynchronously growing populations was significantly increased. We rescued this effect by the addition of exogenous KIF11. Lastly, we found that depleting KIF11 resulted in an increase in cilium length and an attenuation in the kinetics of cilia disassembly. These findings establish a previously unknown link between KIF11 and the dynamics of primary cilia and further support non-mitotic functions for this kinesin.
Collapse
Affiliation(s)
- Abigail A Zalenski
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Shubhra Majumder
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Life Sciences and the School of Biotechnology, Presidency University, Kolkata, 700073, India
| | - Kuntal De
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Familial Exudative Vitreoretinopathy: An Update on Genetics and Imaging. Clin Ophthalmol 2020; 60:169-177. [DOI: 10.1097/iio.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nat Commun 2019; 10:5243. [PMID: 31748531 PMCID: PMC6868140 DOI: 10.1038/s41467-019-13220-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR. Integrin-linked kinase (ILK) is an important mediator of integrin signaling. Here Park et al. show that mice with endothelial-specific deletion of Ilk develop vascular defects that resemble familial exudative vitreoretinopathy, and identify mutations in ILK in patients with exudative vitreoretinopathy suggesting a potential role in human pathogenesis.
Collapse
|
26
|
Caceres L, Prykhozhij SV, Cairns E, Gjerde H, Duff NM, Collett K, Ngo M, Nasrallah GK, McMaster CR, Litvak M, Robitaille JM, Berman JN. Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 2019; 248:1243-1256. [PMID: 31566834 DOI: 10.1002/dvdy.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a rare congenital disorder characterized by a lack of blood vessel growth to the periphery of the retina with secondary fibrovascular proliferation at the vascular-avascular junction. These structurally abnormal vessels cause leakage and hemorrhage, while the fibroproliferative scarring results in retinal dragging, detachment and blindness. Mutations in the FZD4 gene represent one of the most common causes of FEVR. METHODS A loss of function mutation resulting from a 10-nucleotide insertion into exon 1 of the zebrafish fzd4 gene was generated using transcription activator-like effector nucleases (TALENs). Structural and functional integrity of the retinal vasculature was examined by fluorescent microscopy and optokinetic responses. RESULTS Zebrafish retinal vasculature is asymmetrically distributed along the dorsoventral axis, with active vascular remodeling on the ventral surface of the retina throughout development. fzd4 mutants exhibit disorganized ventral retinal vasculature with discernable tubular fusion by week 8 of development. Furthermore, fzd4 mutants have impaired optokinetic responses requiring increased illumination. CONCLUSION We have generated a visually impaired zebrafish FEVR model exhibiting abnormal retinal vasculature. These fish provide a tractable system for studying vascular biology in retinovascular disorders, and demonstrate the feasibility of using zebrafish for evaluating future FEVR genes identified in humans.
Collapse
Affiliation(s)
- Lucia Caceres
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sergey V Prykhozhij
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elizabeth Cairns
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Harald Gjerde
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicole M Duff
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Keon Collett
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mike Ngo
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Matthew Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Johane M Robitaille
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
28
|
Li JK, Li Y, Zhang X, Chen CL, Rao YQ, Fei P, Zhang Q, Zhao P, Li J. Spectrum of Variants in 389 Chinese Probands With Familial Exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2019; 59:5368-5381. [PMID: 30452590 DOI: 10.1167/iovs.17-23541] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify potentially pathogenic variants (PPVs) in Chinese familial exudative vitreoretinopathy (FEVR) patients in FZD4, LRP5, NDP, TSPAN12, ZNF408, and KIF11 genes. Methods Blood samples were collected from probands and their parent(s). Genomic DNA was analyzed by next-generation sequencing, and the sequence of selected variants were validated by Sanger sequencing. The potential pathogenicity of a variant was evaluated by in silico analysis and by cosegregation of the variant with disease. Each proband was subjected to comprehensive retinal examinations, and the severity of FEVR was individually graded for each eye. Whenever possible, fundus fluorescein angiography was obtained and analyzed for parent(s) of each proband. Variation in mutation expressivity was analyzed. Results Three hundred eighty-nine consecutive FEVR patients from 389 families participated in this study. About 74% of the probands were children younger than 7 years old. One hundred one PPVs, 49 variants with unknown significance (VUS), were identified, including 73 novel PPVs and 38 novel VUS. One hundred ten probands carried PPV (28.3%), and 51 probands carried VUS (13.1%). PPVs in FZD4, LRP5, TSPAN12, NDP, ZNF408, and KIF11 were found in 8.48%, 9.00%, 5.91%, 4.63%, 0.77%, and 0.77% of the cohort, respectively. Probands carrying PPVs in NDP and KIF11 had more severe FEVR in general than those carrying PPVs in other genes. Overall, variants in LRP5 and FZD4 showed more significant variation in phenotype than variants in TSPAN12 and NDP genes. Conclusions Our study expanded the spectrum of PPVs associated with FEVR.
Collapse
Affiliation(s)
- Jia-Kai Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yian Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Li Chen
- Department of Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yu-Qing Rao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Nian FS, Li LL, Cheng CY, Wu PC, Lin YT, Tang CY, Ren BS, Tai CY, Fann MJ, Kao LS, Hong CJ, Tsai JW. Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B. Mol Neurobiol 2019; 56:6095-6105. [PMID: 30721447 DOI: 10.1007/s12035-019-1471-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18-/- mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18-/- neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18-/- mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ya Cheng
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Chun Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - You-Tai Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Yung Tang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Bo-Shiun Ren
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Yin Tai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Jee Hong
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Biopotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
30
|
Liu J, Zhu J, Yang J, Zhang X, Zhang Q, Zhao P. Prenatal diagnosis of familial exudative vitreoretinopathy and Norrie disease. Mol Genet Genomic Med 2018; 7:e00503. [PMID: 30474316 PMCID: PMC6382493 DOI: 10.1002/mgg3.503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/10/2018] [Accepted: 10/10/2018] [Indexed: 11/27/2022] Open
Abstract
Background Both familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) are hereditary retinal disorders which can cause severe visual impairment and blindness at a young age. The present study aimed to report the use of antenatal genetic testing and ultrasound in the diagnosis and counseling of FEVR and ND. Methods Amniocentesis and ultrasonography were performed in high‐risk mothers, with children having FEVR or ND, to predict severe ocular abnormalities. Results Case 1: A homozygous NDP mutation (c.376T>C, NM_000266) was detected in the proband and his mother. Molecular prenatal analysis of the fetal DNA revealed no mutations. No ocular abnormalities were detected on ultrasonography. The pregnancy progressed uneventfully to a normal outcome. Case 2: A novel heterozygous FZD4 mutation (c.1010dupA, NM_012193) was detected in the proband and his mother. The same mutation was detected in the fetus, but ultrasonography showed no ocular abnormalities. A healthy baby boy with stage 1 FEVR was born after an uneventful pregnancy. Case 3: Deletions of exons 2 and 3 in the NDP were found in the proband and his mother. The same deletion mutation was detected in the female fetus, but the ultrasound scan was normal. The pregnancy progressed uneventfully to a normal outcome. Conclusions To our knowledge, antenatal genetic analyses were used in conjunction with ultrasound for the first time, to diagnose FEVR and ND, and predict the postnatal prognoses in at‐risk babies.
Collapse
Affiliation(s)
- Jingjing Liu
- Shanghai Jiao Tong University School of Medicine Affiliated Xinhua Hospital, Shanghai, China
| | - Jing Zhu
- Shanghai Jiao Tong University School of Medicine Affiliated Xinhua Hospital, Shanghai, China
| | - Jiyun Yang
- Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiang Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Xinhua Hospital, Shanghai, China
| | - Qi Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Xinhua Hospital, Shanghai, China
| | - Peiquan Zhao
- Shanghai Jiao Tong University School of Medicine Affiliated Xinhua Hospital, Shanghai, China
| |
Collapse
|
31
|
Detection and quantification of a KIF11 mosaicism in a subject presenting familial exudative vitreoretinopathy with microcephaly. Eur J Hum Genet 2018; 26:1819-1823. [PMID: 30181612 DOI: 10.1038/s41431-018-0243-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disorder, which is primarily characterized by abnormal development of retinal vasculature. In this study, we reported a subject presenting the clinical features of FEVR as well as microcephaly. Screening of the KIF11 gene in this patient revealed a novel heterozygous protein-truncating variant (c.2717del, p.(L906*), NM_004523.3). Segregation analysis in the unaffected parents using Sanger sequencing suggested the variant to be present in a mosaic state in the unaffected mother. KIF11 exon 19 which harbors the variant was amplified from the proband and her father, as well as three different tissues of the mother, followed by amplicon-based deep sequencing. This analysis revealed that the variant is present in different tissues of the mother at various rates, i.e. in blood (16.9%), saliva (20.7%), or skin biopsy-derived fibroblast cells (6.6%). These data demonstrate the importance of deep sequencing in unaffected parents upon detection of a genetic defect in isolated cases to detect possible mosaicisms, enabling a more reliable recurrence risk assessment and thereby improve genetic counseling.
Collapse
|
32
|
Tauqeer Z, Yonekawa Y. Familial Exudative Vitreoretinopathy: Pathophysiology, Diagnosis, and Management. Asia Pac J Ophthalmol (Phila) 2018; 7:176-182. [PMID: 29633588 DOI: 10.22608/apo.201855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a heritable vitreoretinopathy characterized by anomalous retinal vascular development. The principal feature of the disease is an avascular peripheral retina. This in turn can cause further pathological changes including neovascularization, exudation, hemorrhage, and retinal detachment. The biological basis of the disease is thought to be from defects in the Wnt signaling pathway. Many gene mutations have been implicated, and these can be inherited in an autosomal dominant (most common), autosomal recessive, and X-linked recessive fashion. Examination with wide-field fluorescein angiography is essential and can identify the disease in its earlier stages, enabling timely treatment, in addition to helping identify asymptomatic family members. The current treatment paradigm involves laser photocoagulation of the avascular peripheral retina for neovascular sequelae and vitreoretinal surgery for progressive retinal detachment. Further studies are underway to better characterize this complex vitreoretinopathy.
Collapse
Affiliation(s)
- Zujaja Tauqeer
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Yonekawa
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Pediatric Retina Surgery, Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Hinds AM, Rosser E, Reddy MA. A case of exudative vitreoretinopathy and chorioretinal coloboma associated with microcephaly in a female with contiguous Xp11.3-11.4 deletion. Ophthalmic Genet 2018; 39:396-398. [PMID: 29617172 DOI: 10.1080/13816810.2018.1443342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The constellation of signs including microcephaly, retinal colobomas, and exudative vitreo-retinopathy suggests a mutation of the KIF-11 gene on chromosome 10q. We report a female infant with these features but due, instead, to a contiguous gene deletion on chromosome Xp including the OMIM morbid genes CASK, KDM6A, NDP, MAOA, NYX, and DDX3X. The NDP deletion could account for the exudative retinopathy and the CASK deletion for the microcephaly, while CASK and KDM6A have both been associated with coloboma. This case highlights genetic heterogeneity for the clustering of these signs.
Collapse
Affiliation(s)
- Anne-Marie Hinds
- a Ophthalmology Department , The Royal London Hospital, Barts Health NHS Trust , London , UK
| | - Elisabeth Rosser
- b Clinical Genetics Department , Great Ormond Street Hospital for Children , London , UK
| | - M Ashwin Reddy
- a Ophthalmology Department , The Royal London Hospital, Barts Health NHS Trust , London , UK
| |
Collapse
|
34
|
Lin Y, Gao H, Chen C, Zhu Y, Li T, Liu B, Ma C, Jiang H, Li Y, Huang Y, Wu Q, Li H, Liang X, Jin C, Ye J, Huang X, Lu L. Clinical and next-generation sequencing findings in a Chinese family exhibiting severe familial exudative vitreoretinopathy. Int J Mol Med 2018; 41:773-782. [PMID: 29207047 PMCID: PMC5752179 DOI: 10.3892/ijmm.2017.3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a rare hereditary retinal disorder characterized by the premature arrest of vascularization in the peripheral retina. The aim of the present study was to characterize the clinical presentations of a Chinese family affected by bilateral severe FEVR, and to identify the underlying genetic variations. One family that presented with bilateral FEVR was recruited for this study. Comprehensive ophthalmic examinations, including best‑corrected visual acuity, slit‑lamp examination, fundus photography, fundus fluorescein angiography imaging and electroretinogram were performed. Genomic DNA was extracted from leukocytes of the peripheral blood collected from the affected and unaffected family members, as well as 200 unrelated control subjects from the same population. Next‑generation sequencing of the candidate genes associated with ocular diseases was performed, and the identified mutations were validated by conventional polymerase chain reaction‑based sequencing. The functional effects of the mutations were analyzed by polymorphism phenotyping (PolyPhen) and sorting intolerant from tolerant (SIFT). One heterozygous ATP binding cassette subfamily A member 4 (ABCA4) c.5693G>A (p.R1898H) mutation in exon 40 and one heterozygous LDL receptor related protein 5 (LRP5) c.260T>G (p.I87S) mutation in exon 2 were identified in this family. To the best of our knowledge, the ABCA4 c.5693G>A (p.R1898H) mutation has not been reported in FEVR, and the LRP5 c.260T>G (p.I87S) mutation is a novel mutation. PolyPhen and SIFT predicted that the amino acid substitution R1898H in protein ABCA4 is benign, whereas the amino acid substitution I87S in protein LRP5 is damaging. A single nucleotide polymorphism c.266A>G (p.Q89R, rs41494349) was identified in exon 2 of LRP5. These findings expand the mutation spectrums of ABCA4 and LRP5, and will be valuable for genetic counseling and development of therapeutic interventions for patients with FEVR.
Collapse
Affiliation(s)
- Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Hongbin Gao
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Guangdong Laboratory Animals Monitoring Institute, Key Laboratory of Guangdong Laboratory Animals, Guangzhou, Guangdong 510663, P.R. China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Chenghong Ma
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Qingxiu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
| | - Jianhua Ye
- Department of Endocrine, College of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Xinhua Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Correspondence to: Dr Lin Lu or Dr Xinhua Huang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, P.R. China, E-mail: , E-mail:
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060
- Correspondence to: Dr Lin Lu or Dr Xinhua Huang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, P.R. China, E-mail: , E-mail:
| |
Collapse
|
35
|
Huang XY, Zhuang H, Wu JH, Li JK, Hu FY, Zheng Y, Tellier LCAM, Zhang SH, Gao FJ, Zhang JG, Xu GZ. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy. Mol Vis 2017; 23:605-613. [PMID: 28867931 PMCID: PMC5568910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. METHODS To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). RESULTS Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. CONCLUSIONS We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China,BGI-Shenzhen, Shenzhen, China,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Hong Zhuang
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Ji-Hong Wu
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, China,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Fang-Yuan Hu
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Zheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China,BGI-Shenzhen, Shenzhen, China,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Laurent Christian Asker M. Tellier
- BGI-Shenzhen, Shenzhen, China,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China,Department of Biology, Bioinformatics, University of Copenhagen, Denmark
| | - Sheng-Hai Zhang
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Feng-Juan Gao
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jian-Guo Zhang
- BGI-Shenzhen, Shenzhen, China,China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Ge-Zhi Xu
- Eye and ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
36
|
Blei F. Update September 2016. Lymphat Res Biol 2016. [DOI: 10.1089/lrb.2016.29012.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|