1
|
Kim JE, Wang SH, Lee DS, Kim TH, Kang TC. Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway. Brain Res 2025; 1849:149345. [PMID: 39581524 DOI: 10.1016/j.brainres.2024.149345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
2
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
3
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated NF2 S10 dephosphorylation distinctly regulates kainate-induced seizure susceptibility and neuronal death through PAK1-NF-κB-COX-2-PTGES2 signaling pathway. J Neuroinflammation 2023; 20:99. [PMID: 37118736 PMCID: PMC10141957 DOI: 10.1186/s12974-023-02788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea.
| |
Collapse
|
4
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
5
|
Zhang X, Yang Y, Guo L, Zhou J, Niu J, Wang P, Qiang Y, Liu K, Wen Y, Zhang L, Wang F. GPER1 Modulates Synaptic Plasticity During the Development of Temporal Lobe Epilepsy in Rats. Neurochem Res 2021; 46:2019-2032. [PMID: 34076791 DOI: 10.1007/s11064-021-03336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
G-protein coupled estrogen receptor 1 (GPER1) is a novel type of estrogen receptor. Several studies have shown that it has an anti-inflammatory action,which plays an important role in remyelination and cognitive ability adjustment. However, whether it is involved in the development of temporal lobe epilepsy (TLE) is still unknown. The present study established a TLE model by intraperitoneal injection of lithium chloride (3 mmol/kg) and pilocarpine (50 mg/kg) in rats to study the effect of GPER1 in the synaptic plasticity during the development of temporal lobe epilepsy. A microinjection cannula was implanted into the lateral ventricle region of rats via a stereotaxic instrument. G-1 is the specific GPER1 agonist and G15 is the specific GPER1 antagonist. The G1 or G15 and Dimethyl sulfoxide were injected into the rat brains in the intervention groups and control group, respectively. After G1 intervention, the learning and memory abilities and hippocampal neuron damage in epileptic rats were significantly improved, while G15 weakened the neuroprotective effect of GPER1. Meanwhile, G1 controlled the abnormal formation of hippocampal mossy fiber sprouting caused by seizures, and participated in the regulation of synaptic plasticity by reducing the expression of Synapsin I and increasing the expression of gephyrin. Inhibitory synapse gephyrin may play a significant role in synaptic plasticity.
Collapse
Affiliation(s)
- Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yang Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Jinyu Zhou
- School of Public Health and Management, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750001, Ningxia, China.
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
6
|
Lippman-Bell JJ, Handy M, Nieder CG, Getzfread M, Jensen FE. Altered hippocampal dendritic spine maturation after hypoxia-induced seizures in neonatal rats. Mol Cell Neurosci 2021; 113:103629. [PMID: 34015497 DOI: 10.1016/j.mcn.2021.103629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/01/2022] Open
Abstract
Cognitive comorbidities often follow early-life seizures (ELS), especially in the setting of autism and other neurodevelopmental syndromes. However, there is an incomplete understanding of whether neuronal and synaptic development are concomitantly dysregulated. We have previously shown that hypoxia-induced seizures (HS) in postnatal day (P)10 rats increase acute and later-life hippocampal glutamatergic neurotransmission and spontaneous recurrent seizures, and impair cognition and behavior. As dendritic spines critically regulate synaptic function, we hypothesized that ELS can induce developmentally specific changes in dendritic spine maturation. At intervals during one month following HS in P10 rats, we assessed dendritic spine development on pyramidal neurons in the stratum radiatum of hippocampal area CA1. Compared to control rats in which spine density significantly decreased from P10 to early adulthood (P38), post-seizure rats failed to show a developmental decrease in spine density, and spines from P38 post-seizure rats appeared more immature-shaped (long, thin). In addition, compared to P38 control rats, post-seizure P38 rats expressed significantly more synaptic PSD-95, a marker of mature synapses. These changes were preceded by a transient increase in hippocampal expression of cofilin phosphorylated at Ser3, representing a decrease in cofilin activity. These results suggest that early-life seizures may impair normal dendritic spine maturation and pruning in CA1 during development, resulting in an excess of less efficient synapses, via activity-dependent modification of actin-regulating proteins such as cofilin. Given that multiple neurodevelopmental disorders show similar failures in developmental spine pruning, the current findings may represent a deficit in structural plasticity that could be a component of a mechanism leading to later-life cognitive consequences associated with early-life seizures.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Marcus Handy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cassidy G Nieder
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Mollie Getzfread
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
7
|
PLPP/CIN-mediated NF2-serine 10 dephosphorylation regulates F-actin stability and Mdm2 degradation in an activity-dependent manner. Cell Death Dis 2021; 12:37. [PMID: 33414453 PMCID: PMC7791067 DOI: 10.1038/s41419-020-03325-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Neurofibromin 2 (NF2, also known as merlin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. NF2 is also an actin-binding protein that functions in an intrinsic signaling network critical for actin dynamics. Although protein kinase A (PKA)-mediated NF2-serin (S) 10 phosphorylation stabilizes filamentous actin (F-actin), the underlying mechanisms of NF2-S10 dephosphorylation and the role of NF2 in seizures have been elusive. Here, we demonstrate that pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) dephosphorylated NF2-S10 site as well as cofilin-S3 site. In addition, NF2-S10 dephosphorylation reversely regulated murine double minute-2 (Mdm2) and postsynaptic density 95 (PSD95) degradations in an activity-dependent manner, which increased seizure intensity and its progression in response to kainic acid (KA). In addition, NF2 knockdown facilitated seizure intensity and its progress through F-actin instability independent of cofilin-mediated actin dynamics. Therefore, we suggest that PLPP/CIN may be a potential therapeutic target for epileptogenesis and NF2-associated diseases.
Collapse
|
8
|
Ben Zablah Y, Merovitch N, Jia Z. The Role of ADF/Cofilin in Synaptic Physiology and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:594998. [PMID: 33282872 PMCID: PMC7688896 DOI: 10.3389/fcell.2020.594998] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Actin-depolymerization factor (ADF)/cofilin, a family of actin-binding proteins, are critical for the regulation of actin reorganization in response to various signals. Accumulating evidence indicates that ADF/cofilin also play important roles in neuronal structure and function, including long-term potentiation and depression. These are the most extensively studied forms of long-lasting synaptic plasticity and are widely regarded as cellular mechanisms underlying learning and memory. ADF/cofilin regulate synaptic function through their effects on dendritic spines and the trafficking of glutamate receptors, the principal mediator of excitatory synaptic transmission in vertebrates. Regulation of ADF/cofilin involves various signaling pathways converging on LIM domain kinases and slingshot phosphatases, which phosphorylate/inactivate and dephosphorylate/activate ADF/cofilin, respectively. Actin-depolymerization factor/cofilin activity is also regulated by other actin-binding proteins, activity-dependent subcellular distribution and protein translation. Abnormalities in ADF/cofilin have been associated with several neurodegenerative disorders such as Alzheimer’s disease. Therefore, investigating the roles of ADF/cofilin in the brain is not only important for understanding the fundamental processes governing neuronal structure and function, but also may provide potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil Merovitch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lee DS, Kim JE. PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A-PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation. Int J Mol Sci 2020; 21:ijms21062094. [PMID: 32197489 PMCID: PMC7139850 DOI: 10.3390/ijms21062094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Postsynaptic density-95 (PSD95), a major scaffolding protein, is critical in coupling N-methyl-D-aspartate receptor (NMDAR) to cellular signaling networks in the central nervous system. A couple of cysteine residues in the N-terminus of PSD95 are potential sites for disulfide bonding, S-nitrosylation and/or palmitoylation. Protein disulfide isomerase (PDI) reduces disulfide bonds (S-S) to free thiol (-SH) on various proteins. However, the involvement of PDI in disulfide bond formation/S-nitrosylation of PSD95 and its role in epilepsy are still unknown. In the present study, acute seizure activity significantly increased the bindings of PDI to NR2A, but not to PSD95, while it decreased the NR2A–PSD95 binding. In addition, pilocarpine-induced seizures increased the amount of nitrosylated (SNO-) thiols, not total (free and SNO-) thiols, on PSD95. Unlike acute seizure, spontaneous seizing rats showed the increases in PDI–PSD95 binding, total- and SNO-thiol levels on PSD95, and NR2A–PSD95 interaction. PDI siRNA effectively reduced spontaneous seizure activity with decreases in total thiol level on PSD95 and NR2A–PSD95 association. These findings indicate that PDI-mediated reduction of disulfide-bond formations may facilitate the NR2A–PSD95 binding and contribute to spontaneous seizure generation in epileptic animals.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- Correspondence: ; Tel.: +82-33-248-2522; Fax: +82-33-248-2525
| |
Collapse
|
10
|
PLPP/CIN-mediated NEDD4-2 S448 dephosphorylation regulates neuronal excitability via GluA1 ubiquitination. Cell Death Dis 2019; 10:545. [PMID: 31320629 PMCID: PMC6639327 DOI: 10.1038/s41419-019-1781-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Neuronal precursor cell expressed developmentally downregulated 4-2 (NEDD4-2) is an E3 ubiquitin ligase to regulate ion transport by controlling cellular trafficking/endocytosis and lysosomal degradation of ion channels and transporters. Thus, NEDD4-2 is relevant to neuronal excitability and epileptic encephalopathies in human patients. However, the regulatory molecules for NEDD4-2 dephosphorylation have been still elusive. Here, we demonstrate that pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) specifically dephosphorylated NEDD4-2 serine (S) 448 site. PLPP/CIN deletion inhibited NEDD4-2 ubiquitination, and diminished the responsiveness of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) by facilitating NEDD4-2-mediated ubiquitination of GluA1 subunit under physiological condition. PLPP/CIN overexpression reversed these effects. These PLPP/CIN-mediated processes were required for the increased seizure severity and its progression in response to kainic acid (KA). Therefore, we suggest the novel function of PLPP/CIN as a NEDD4-2 phosphatase, which may be a potential therapeutic target for NEDD4-2-associated diseases as well as various neurological and psychiatric disorders, including epilepsy.
Collapse
|
11
|
Kim JE, Choi HC, Song HK, Kang TC. Perampanel Affects Up-Stream Regulatory Signaling Pathways of GluA1 Phosphorylation in Normal and Epileptic Rats. Front Cell Neurosci 2019; 13:80. [PMID: 30881292 PMCID: PMC6405474 DOI: 10.3389/fncel.2019.00080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/18/2019] [Indexed: 01/30/2023] Open
Abstract
To elucidate the pharmacological properties of perampanel [2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile, a novel non-competitive antagonist of AMPA receptor], we investigated its effects on the up-stream regulatory pathways of GluA1 phosphorylation including protein kinase C (PKC), Ca2+-calmodulin-dependent protein kinase II (CAMKII), protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), protein phosphatase (PP) 1, PP2A, and PP2B in normal and pilocarpine-induced epileptic rat model using Western blot analysis. In normal animals, perampanel affected GluA1 expression/phosphorylation, PKC, CAMKII, PKA, ERK1/2, JNK, and PPs activities. In epileptic rats, perampanel effectively inhibited spontaneous seizure activities. Perampanel enhanced phospho (p)-GluA1-S831 and -S845 ratios (phosphoprotein/total protein), while it reduced GluA1 expression. Perampanel also increased pCAMKII and pPKA ratios, which phosphorylate GluA1-S831 and -S845 site, respectively. Perampanel elevated pJNK and pPP2B ratios, which phosphorylates and dephosphorylates both GluA1-S831 and -S845 sits. Perampanel also increased pERK1/2 ratio in epileptic animals, while U0126 (an ERK1/2 inhibitor) did not affect pGluA1 ratios. Perampanel did not influence PKC, PP1, and PP2A expression levels and their phosphorylation ratios. In addition, perampanel did not have a detrimental impact on cognitive abilities of epileptic and normal rats in Morris water maze test. These findings suggest that perampanel may regulate AMPA receptor functionality via not only blockade of AMPA receptor but also the regulations of multiple molecules (CAMKII, PKA, JNK, and pPP2B)-mediated GluA1 phosphorylations without negative effects on cognition, although the effects of perampanel on PKC, PP1, and PP2A activities were different between normal and epileptic rats.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea
| | - Hui-Chul Choi
- College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong-Ki Song
- College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,College of Medicine, Institute of Epilepsy Research, Hallym University, Chuncheon, South Korea
| |
Collapse
|
12
|
Improved cognition, mild anxiety-like behavior and decreased motor performance in pyridoxal phosphatase-deficient mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:193-205. [DOI: 10.1016/j.bbadis.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023]
|
13
|
Jeon AR, Kim JE. PDI Knockdown Inhibits Seizure Activity in Acute Seizure and Chronic Epilepsy Rat Models via S-Nitrosylation-Independent Thiolation on NMDA Receptor. Front Cell Neurosci 2018; 12:438. [PMID: 30524244 PMCID: PMC6261974 DOI: 10.3389/fncel.2018.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Redox modulation and S-nitrosylation of cysteine residues are the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR) to regulate its functionality. Recently, we have reported that protein disulfide isomerase (PDI) reduces disulfide bond (S-S) to free thiol (-SH) on NMDAR. Since PDI is a modulator of S-nitrosylation on various proteins, it is noteworthy whether PDI affects S-nitrosylation of NMDAR in acute seizure and chronic epilepsy models. In the present study, we found that acute seizures in response to pilocarpine and spontaneous seizures in chronic epilepsy rats led to the reduction in S-nitrosylated thiol (SNO-thiol)-to-total thiol ratio on NMDAR, while they elevated nitric oxide (NO) level and S-nitrosylation on NMDAR. N-nitro-L-arginine methyl ester (L-NAME, a non-selective NOS inhibitor) did not affect seizure activities in both models, although it decreased SNO-thiol levels on NMDAR. However, PDI knockdown effectively inhibited pilocarpine-induced acute seizures and spontaneous seizures in chronic epilepsy rats, accompanied by increasing the SNO-thiol-to-total thiol ratio on NMDAR due to diminishing the amounts of total thiols on GluN1 and GluN2A. Therefore, these findings indicate that PDI may not be a NO donor or a denitrosylase for NMDAR, and that PDI knockdown may inhibit seizure activity by the S-nitrosylation-independent thiolation on NMDAR.
Collapse
Affiliation(s)
- A Ran Jeon
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
14
|
Kim JE, Park JY, Kang TC. TRPC6-mediated ERK1/2 Activation Regulates Neuronal Excitability via Subcellular Kv4.3 Localization in the Rat Hippocampus. Front Cell Neurosci 2017; 11:413. [PMID: 29326557 PMCID: PMC5742353 DOI: 10.3389/fncel.2017.00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023] Open
Abstract
Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of Kv4.3 and its relevance to neuronal excitability in the rat hippocampus. TRPC6 knockdown increased excitability and inhibitory transmission in the DGC and the CA1 neurons in response to a paired-pulse stimulus. However, TRPC6 knockdown impaired γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus during and after high-frequency stimulation (HFS). TRPC6 knockdown reduced the Kv4.3 clusters in membrane fractions and its dendritic localization on DGC and GABAergic interneurons. TRPC6 knockdown also decreased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and the efficacy of 4-aminopyridine (4-AP) in neuronal excitability. An ERK1/2 inhibitor generated multiple population spikes in response to a paired-pulse stimulus, concomitant with reduced membrane Kv4.3 translocation. A TRPC6 activator (hyperforin) reversed the effects of TRPC knockdown, except paired-pulse inhibition. These findings provide valuable clues indicating that TRPC6-mediated ERK1/2 activation may regulate subcellular Kv4.3 localization in DGC and interneurons, which is cause-effect relationship between neuronal excitability and seizure susceptibility.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
15
|
Kim JE, Hyun HW, Min SJ, Lee DS, Jeon AR, Kim MJ, Kang TC. PLPP/CIN Regulates Seizure Activity by the Differential Modulation of Calsenilin Binding to GluN1 and Kv4.2 in Mice. Front Mol Neurosci 2017; 10:303. [PMID: 28993724 PMCID: PMC5622162 DOI: 10.3389/fnmol.2017.00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Calsenilin (CSEN) binds to Kv4.2 (an A-type K+ channel) as well as N-methyl-D-aspartate receptor (NMDAR), and modulates their activities. However, the regulatory mechanisms for CSEN-binding to Kv4.2 or NMDAR remain elusive. Here, we demonstrate the novel role of pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN), one of the cofilin-mediated F-actin regulators, in the CSEN binding to Kv4.2 or GluN1 (an NMDAR subunit). PLPP/CIN dephosphorylated CSEN in competition with casein kinase 1, independent of cofilin dephosphorylation. As compared to wild-type mice, PLPP/CIN transgenic (PLPP/CINTg) mice showed the enhancement of Kv4.2–CSEN binding, but the reduction in CSEN–GluN1 binding. In addition, PLPP/CINTg mice exhibited the higher intensity (severity), duration and progression of seizures, but the longer latency of seizure on-set in response to kainic acid. PLPP/CIN knockout mice reversed these phenomena. Therefore, we suggest that PLPP/CIN-mediated CSEN dephosphorylation may play an important role in the functional coupling of NMDAR and Kv4.2, which regulates the neuronal excitability.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - A Ran Jeon
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Min Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| |
Collapse
|
16
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|