1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
3
|
Xue Y, Xia Y, Cheng D, Shi T, Mei P, Hong S. Association between genetically proxied PPARG activation and psoriasis vulgaris: a Mendelian randomization study. J DERMATOL TREAT 2024; 35:2381763. [PMID: 39034037 DOI: 10.1080/09546634.2024.2381763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Psoriasis is a common autoimmune disease in clinical practice, and previous observational studies have suggested that PPARG agonists such as Pioglitazone may be potential therapeutic agents. However, due to interference from various confounding factors, different observational studies have not reached a unified conclusion. We aim to evaluate the potential use of PPARG agonists for treating psoriasis from a new perspective through drug-targeted Mendelian randomization (MR) analysis. MATERIALS AND METHODS This study includes data on 8,876 individuals for acute myocardial infarction from GWAS, and LDL cholesterol data from 343,621 Europeans. FinnGen contributed psoriasis vulgaris data for 403,972 individuals. The DrugBank10 databases function to identify genes encoding protein products targeted by active constituents of lipid-modifying targets. A two-sample MR analysis and summary-data-based MR (SMR) analysis estimated the associations between expressions of drug target genes and symptoms of psoriasis vulgaris. A multivariable MR study was further conducted to examine if the observed association was direct association. RESULTS SMR analysis revealed that enhanced PPARG gene expression in the blood (equivalent to a one standard deviation increase) was a protective factor for psoriasis vulgaris (beta = -0.2017, se = 0.0723, p = 0.0053). Besides, there exists an MR association between LDL mediated by PPARG and psoriasis vulgaris outcomes (beta = -3.9169, se = 0.5676, p = 5.17E-12). These results indicate that PPARG is a therapeutic target for psoriasis, suggesting that psoriasis may be a potential indication for PPARG agonists. CONCLUSION This study confirms that therapeutic activation of PPARG helps suppress the development of psoriasis. Psoriasis may be a new indication for PPARG agonists, such as Pioglitazone. In the future, new anti-psoriatic drugs could be developed targeting PPARG.
Collapse
Affiliation(s)
- Yan Xue
- Department of Dermatology, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yuning Xia
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Donghao Cheng
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Taiyu Shi
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Ping Mei
- Department of Radiology, Anqing Municipal Hospital, Anqing, China
| | - Sheng Hong
- Department of Dermatology, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Huang HS. TG-interacting factor 1 regulates mitotic clonal expansion during adipocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159492. [PMID: 38575107 DOI: 10.1016/j.bbalip.2024.159492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Obesity is one of the significant health challenges in the world and is highly associated with abnormal adipogenesis. TG-interacting factor 1 (TGIF1) is essential for differentiating murine adipocytes and human adipose tissue-derived stem cells. However, the mode of action needs to be better elucidated. To investigate the roles of TGIF1 in differentiation in-depth, CRISPR/Cas9 knockout technology was performed to generate TGIF1-silenced preadipocytes. The absence of TGIF1 in 3 T3-F442A preadipocytes abolished lipid accumulation throughout the differentiation using Oil Red O staining. Conversely, we established 3 T3-F442A preadipocytes stably expressing TGIF1 and doxycycline-inducible TGIF1 in TGIF1-silenced 3 T3-F442A preadipocytes. Remarkably, the induction of TGIF1 by doxycycline during the initial differentiation phase successfully promoted lipid accumulation in TGIF1-silenced 3 T3-F442A cells. We further explored the mechanisms of TGIF1 in early differentiation. We demonstrated that TGIF1 promoted the mitotic clonal expansion via upregulation of CCAAT/enhancer-binding proteins β expression, interruption with peroxisome proliferators activated receptor γ downstream regulation, and inhibition of p27kip1 expression. In conclusion, we strengthen the pivotal roles of TGIF1 in early differentiation, which might contribute to resolving obesity-associated metabolic syndromes.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Jamil M, Cowart LA. Sphingolipids in mitochondria-from function to disease. Front Cell Dev Biol 2023; 11:1302472. [PMID: 38078003 PMCID: PMC10702779 DOI: 10.3389/fcell.2023.1302472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 02/12/2024] Open
Abstract
Sphingolipids are not only structural components of cellular membranes but also play vital roles in cell signaling and modulation of cellular processes. Within mitochondria, sphingolipids exert diverse effects on mitochondrial dynamics, energy metabolism, oxidative stress, and cell death pathways. In this review, we summarize literature addressing the crucial role of sphingolipids in mitochondria, highlighting their impact on mitochondrial dynamics, cellular bioenergetics, and important cell processes including apoptosis and mitophagy.
Collapse
Affiliation(s)
- Maryam Jamil
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran’s Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
6
|
Ferret-Sena V, Capela C, Macedo A, Salgado AV, Derudas B, Staels B, Sena A. Fingolimod treatment modulates PPARγ and CD36 gene expression in women with multiple sclerosis. Front Mol Neurosci 2022; 15:1077381. [PMID: 36590913 PMCID: PMC9797671 DOI: 10.3389/fnmol.2022.1077381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Fingolimod is an oral immunomodulatory drug used in the treatment of multiple sclerosis (MS) that may change lipid metabolism. Peroxisome proliferator-activated receptors (PPAR) are transcription factors that regulate lipoprotein metabolism and immune functions and have been implicated in the pathophysiology of MS. CD36 is a scavenger receptor whose transcription is PPAR regulated. The objective of this study was to evaluate whether fingolimod treatment modifies PPAR and CD36 gene expression as part of its action mechanisms. Serum lipoprotein profiles and PPAR and CD36 gene expression levels in peripheral leukocytes were analysed in 17 female MS patients before and at 6 and 12 months after fingolimod treatment initiation. Clinical data during the follow-up period of treatment were obtained. We found that fingolimod treatment increased HDL-Cholesterol and Apolipoprotein E levels and leukocyte PPARγ and CD36 gene expression. No correlations were found between lipid levels and variations in PPARγ and CD36 gene expression. PPARγ and CD36 variations were significantly correlated during therapy and in patients free of relapse and stable disease. Our results suggest that PPARγ and CD36-mediated processes may contribute to the mechanisms of action of fingolimod in MS. Further studies are required to explore the relation of the PPARγ/CD36 pathway to the clinical efficacy of the drug and its involvement in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Véronique Ferret-Sena
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal
| | - Carlos Capela
- Departamento de Neurologia, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Ana Macedo
- Keypoint Consultora Científica, Algés, Portugal,Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Faro, Portugal
| | | | - Bruno Derudas
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Armando Sena
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, Portugal,Departamento de Neurologia, Hospital Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal,*Correspondence: Armando Sena,
| |
Collapse
|
7
|
Lai YH, Wu TC, Tsai BY, Hung YP, Lin HJ, Tsai YS, Ko WC, Tsai PJ. Peroxisome proliferator-activated receptor-γ as the gatekeeper of tight junction in Clostridioides difficile infection. Front Microbiol 2022; 13:986457. [PMID: 36439832 PMCID: PMC9691888 DOI: 10.3389/fmicb.2022.986457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
Clostridioides difficile is a major causative pathogen of nosocomial antibiotic-associated diarrhea and severe colitis. Despite the use of vancomycin and fidaxomicin as standard drugs for the treatment of C. difficile infection (CDI), clinical relapse rates remain high. Therefore, new alternative therapeutics to treat CDI are urgently required. The nuclear receptor, peroxisome proliferator-activated receptor-γ (PPAR-γ), is mainly expressed in the adipose tissue and modulates lipid metabolism and insulin sensitization. Previous studies have shown that PPAR-γ is highly expressed in colonic tissues and regulates tight junction function in epithelial cells. However, the role of PPAR-γ in CDI pathogenesis remains unclear. In this study, we used a mouse model of CDI and found that both expression levels of PPAR-γ and the tight junction protein, occludin, were decreased in colonic tissues. Furthermore, to investigate the role of PPAR-γ in CDI, we used PPAR-γ defective mice and found that intestinal permeability and bacterial dissemination in these mice were significantly higher than those in wild-type mice during CDI. Administration of the PPAR-γ agonist, pioglitazone, to activate PPAR-γ activity improved the phenotypes of CDI, including bodyweight loss, inflammation, and intestinal integrity. Taken together, these results demonstrate that PPAR-γ is a potential therapeutic target in CDI, as it modulates colonic inflammation and integrity.
Collapse
Affiliation(s)
- Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tai-Chieh Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Departments of Internal Medicine, Tainan Hospital, Ministry of Health & Welfare, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Ju Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
10
|
Kok VC, Wang CCN, Liao SH, Chen DL. Cross-Platform in-silico Analyses Exploring Tumor Immune Microenvironment with Prognostic Value in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:85-99. [PMID: 35437353 PMCID: PMC9013259 DOI: 10.2147/bctt.s359346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Only a proportion of triple-negative breast cancer (TNBC) is immunotherapy-responsive. We hypothesized that the tumor microenvironment (TME) influences the outcomes of TNBC and investigated the relevant signaling pathways. MATERIALS AND METHODS Immune score (IS) and stromal score (SS) were calculated using the ESTIMATE and correlated with the overall survival (OS) in TNBC. RNA-seq data from 115 TNBC samples and 112 normal adjacent tissues were retrieved. Validations in the methylation levels in 10 TNBC and five non-TNBC cell lines were obtained. Cox model overall survival (OS) validated the derived transcription factor (TF) genes in cBioPortal breast cancer patients. RESULTS SS-low predicts a higher OS compared with SS-high patients (P = 0.0081 IS-high/SS-low patients had better OS (P = 0.045) than IS-low/SS-high patients. More macrophages were polarized to the M2 state in patients with IS-low/SS-high patients (P < 0.001). Moreover, CIBERSORTx showed more CD8+ cytotoxic T-cells in IS-high/SS-low patients (p = 0.0286) and more resting NK cells in the IS-low/SS-high TME (P = 0.0108). KEGG pathway analysis revealed that overexpressed genes were enriched in the IL-17 and cytokine-cytokine receptor interaction pathways. The lncRNA DRAIC, a tumor suppressor, was consistently deactivated in the 10 TNBC cell lines. On the cBioPortal platform, we validated that 13% of ER-negative, HER2-unamplified BC harbored IL17RA deep deletion and 25% harbored TRAF3IP2 amplification. On cBioPortal datasets, the nine altered TF genes derived from the X2K analysis showed significantly worse relapse-free survival in 2377 patients and OS in 4819 invasive BC patients than in the unaltered cohort. CONCLUSION Of note, the results of this integrated in silico study can only be generalized to approximately 17% of patients with TNBC, in which infiltrating stromal cells and immune cells play a determinant prognostic role.
Collapse
Affiliation(s)
- Victor C Kok
- Division of Medical Oncology, Kuang Tien General Hospital Cancer Center, Taichung, 43303, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
- Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, 41354, Taiwan
| | - Szu-Han Liao
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - De-Lun Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
11
|
Kok VC, Wang CCN, Liao SH, Chen DL. Cross-Platform in-silico Analyses Exploring Tumor Immune Microenvironment with Prognostic Value in Triple-Negative Breast Cancer. BREAST CANCER: TARGETS AND THERAPY 2022. [DOI: https://doi.org/10.2147/bctt.s359346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Lin X, Meng X, Song Z, Lin J. Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry. Mol Cell Biochem 2022; 477:1905-1920. [PMID: 35348980 DOI: 10.1007/s11010-022-04417-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of psoriasis is complex and has not been completely elucidated. Better understanding of the pathogenesis may contribute to further improvement of our therapeutic strategies controlling psoriasis. Emerging evidence points to a causative relationship between altered activity of peroxisome proliferator-activated receptor γ (PPARγ) and psoriasis. The present review focuses on deeper understanding of the possible role of PPARγ in the pathogenesis of psoriasis and the potential of PPARγ agonist to improve the treatment of psoriasis. PPARγ is decreased in psoriasis. PPARγ possibly has effects on the multiple aspects of the pathogenesis of psoriasis, including abnormal lipid metabolism, insulin resistance, immune cells, pro-inflammatory cytokines, keratinocytes, angiogenesis, oxidative stress, microRNAs and nuclear factor kappa B. As defective activation of PPARγ is involved in psoriasis development, PPARγ agonists may be promising agents for treatment of psoriasis. Pioglitazone appears an effective and safe option in the treatment of patients with psoriasis, but there are still concerns about its potential side effects. Research effort has recently been undertaken to explore the PPARγ-activating potential of natural products. Among them some have been studied clinically or preclinically for treatment of psoriasis with promising results.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, 450 Cresson BLVD, Oaks, PA, 19456, USA
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| |
Collapse
|
13
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
14
|
Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021; 114:154338. [PMID: 32791172 PMCID: PMC7736084 DOI: 10.1016/j.metabol.2020.154338] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors of nuclear hormone receptor superfamily that regulate energy metabolism. Currently, three PPAR subtypes have been identified: PPARα, PPARγ, and PPARβ/δ. PPARα and PPARδ are highly expressed in oxidative tissues and regulate genes involved in substrate delivery and oxidative phosphorylation (OXPHOS) and regulation of energy homeostasis. In contrast, PPARγ is more important in lipogenesis and lipid synthesis, with highest expression levels in white adipose tissue (WAT). In addition to tissues regulating whole body energy homeostasis, PPARs are expressed in immune cells and have an emerging critical role in immune cell differentiation and fate commitment. In this review, we discuss the actions of PPARs in the function of the innate and the adaptive immune system and their implications in immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Eirini Konstantinidou
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Chinmay Jani
- Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Mt. Auburn Hospital, Cambridge, MA 02138, United States of America
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02215, United States of America; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| |
Collapse
|
15
|
Exploring and characterizing a novel combination of paeoniflorin and talatizidine for the treatment of rheumatoid arthritis. Pharmacol Res 2020; 153:104658. [PMID: 32001347 DOI: 10.1016/j.phrs.2020.104658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Wutou Decoction (WTD) achieves favorable therapeutic response in treating rheumatoid arthritis (RA), especially for wind-cold-dampness stimulating RA. However, its material basis and molecular mechanisms remain unclear. To address this problem, the main bioactive compounds (BACs) of WTD against RA and the candidate targets were identified in the current study via transcriptional regulatory network analysis, computational structure-based methods, as well as in vivo and in vitro experimental validations. As a result, we successfully established a RA rat model named AIA-S, which simulated the clinical manifestations and pathological changes of wind-cold-dampness stimulating RA, and also displayed the distinctive characteristics and biological basis of inflammatory-immune system imbalance and abnormal energy metabolism changes. In addition, ALOX15B-PPAR-γ-PTGS2-FGF2-IL-1β-c-JUN-MMP13-TGF-β1 signal axis, involved into thermogenesis and energy metabolism, as well as maintaining the balance of inflammation-immune system, was identified as a candidate target of WTD against RA, according to the transcriptional regulatory network analysis on "RA-related gene-WTD-effective gene interaction network". Moreover, Paeoniflorin (PAE) and Talatizidine (TLT) were demonstrated to be the main BACs of WTD against RA for the following reasons: firstly, both PAE and TLT were the BACs of WTD according to ADME analysis in silico and the pharmacokinetics analysis in vivo. Secondly, both PAE and TLT were able to bind with PPAR-γ, c-JUN, MMP13 and TGF-β1, which were the candidate targets of WTD against RA, with the strong binding affinity. Thirdly, the PAE and TLT combination exerted significant therapeutic effects on AIA-S rats through reversing the imbalance of inflammatory-immune system, and the disturbance of thermogenesis and energy metabolism, which were similar to WTD. More importantly, the administration of TLT or PAE alone didn't exert as prominently therapeutic effects as that of the two-BAC-combination did. Fourthly, the PAE and TLT combination promoted adipogenesis and lipogenesis by upregulating the PPAR-γ-induced lipogenic proteins. In conclusion, this study identified PAE and TLT as the main BACs of WTD in alleviating the severity of RA, and also developed a novel combination of PAE and TLT as a promising candidate drug for RA therapy.
Collapse
|
16
|
Activation of PPARγ Attenuates the Expression of Physical and Affective Nicotine Withdrawal Symptoms through Mechanisms Involving Amygdala and Hippocampus Neurotransmission. J Neurosci 2019; 39:9864-9875. [PMID: 31685649 DOI: 10.1523/jneurosci.1922-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
An isoform of peroxisome proliferator-activated receptors (PPARs), PPARγ, is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. Neuroanatomical data indicate PPARγ localization in brain areas involved in drug addiction. Preclinical and clinical data have shown that pioglitazone reduces alcohol and opioid self-administration, relapse to drug seeking, and plays a role in emotional responses. Here, we investigated the behavioral effect of PPARγ manipulation on nicotine withdrawal in male Wistar rats and in male mice with neuron-specific PPARγ deletion (PPARγ(-/-)) and their littermate wild-type (PPARγ(+/+)) controls. Real-time quantitative RT-PCR and RNAscope in situ hybridization assays were used for assessing the levels of expression and cell-type localization of PPARγ during nicotine withdrawal. Brain site-specific microinjections of the PPARγ agonist pioglitazone were performed to explore the role of this system on nicotine withdrawal at a neurocircuitry level. Results showed that activation of PPARγ by pioglitazone abolished the expression of somatic and affective nicotine withdrawal signs in rats and in (PPARγ(+/+)) mice. This effect was blocked by the PPARγ antagonist GW9662. During early withdrawal and protracted abstinence, the expression of PPARγ increased in GABAergic and glutamatergic cells of the amygdala and hippocampus, respectively. Hippocampal microinjections of pioglitazone reduced the expression of the physical signs of withdrawal, whereas excessive anxiety associated with protracted abstinence was prevented by pioglitazone microinjection into the amygdala. Our results demonstrate the implication of the neuronal PPARγ in nicotine withdrawal and indicates that activation of PPARγ may offer an interesting strategy for smoking cessation.SIGNIFICANCE STATEMENT Smoking cessation leads the occurrence of physical and affective withdrawal symptoms representing a major burden to quit tobacco use. Here, we show that activation of PPARγ prevents the expression of both somatic and affective signs of nicotine withdrawal. At molecular levels results show that PPARγ expression increases in GABAergic cells in the hippocampus and in GABA- and glutamate-positive cells in the basolateral amygdala. Hippocampal microinjections of pioglitazone reduce the insurgence of the physical withdrawal signs, whereas anxiety linked to protracted abstinence is attenuated by pioglitazone injected into the amygdala. Our results demonstrate the implication of neuronal PPARγ in nicotine withdrawal and suggest that PPARγ agonism may represent a promising treatment to aid smoking cessation.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Upon antigen exposure, immune cells rely on cell-specific metabolic pathways to mount an efficient immune response. In autoimmunity, failure in critical metabolic checkpoints may lead to immune cell hyperactivation and tissue damage. Oxidative stress in autoimmune patients can also contribute to immune dysregulation and injury to the host. Recent insights into the immune cell metabolism signatures, specifically associated with systemic lupus erythematosus (SLE) and the consequences of heightened oxidative stress in patients, are discussed herein. RECENT FINDINGS Glucose metabolism inhibitors, mechanistic target of rapamycin pathway modulators, and peroxisome proliferator-activated receptor gamma-activating compounds demonstrate therapeutic benefit in experimental models of lupus. Mitochondrial-derived reactive oxygen species (ROS) and molecular modifications induced by oxidative stress appear to be detrimental in lupus. Effective therapies tailored toward the reconfiguration of metabolic imbalances in lupus immune cells and the reduction of mitochondrial ROS production/availability are currently being tested. SUMMARY A paucity of knowledge exists regarding the metabolic needs of a number of immune cells involved in the pathogenesis of SLE, including myeloid cells and B cells. Nonetheless, SLE-specific metabolic signatures have been identified and their specific targeting, along with mitochondrial ROS inhibitors/scavengers, could show therapeutic advantage in lupus patients.
Collapse
Affiliation(s)
- Yaima L Lightfoot
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|