1
|
Ghahari S, Nematzadeh GA, Pakdin A, Ardakani MR. Antibacterial and Biopriming Effects of Nostocales Cyanobacteria on Tomato Plants Infected with Bacterial Spot Disease. Curr Microbiol 2025; 82:220. [PMID: 40163209 DOI: 10.1007/s00284-025-04208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
A new generation of farming inputs is being developed, designed to be more environmentally friendly and have fewer negative impacts on consumer health. Bio-based antimicrobial compounds are one such example. These compounds are used against pathogens and stimulate plant immune systems, reducing disease severity. This study evaluated suspensions and hydro-alcoholic extracts of 55 cyanobacteria from the Nostocales order for their antimicrobial effects and growth-promoting activity on tomato plants. Suspensions and extracts of 0.5 and 1 mg mL-1 of two cyanobacteria, Nostoc sp. G-4D and Calothrix sp. G-403 were selected for their disease control capabilities and growth enhancement effects on plants. The GC-MS technique was used to investigate the chemical compounds in the hydroalcoholic extracts of two cyanobacteria species. The analysis shows that the Nostoc sp. G-4D extract contained 28 compounds, accounting for 96.04% of the total composition, while the Calothrix sp. G-403 extract contained 27 compounds, making up 93.62% of the total composition. These findings highlight the rich chemical diversity in the extracts, which might be responsible for the observed bioactivities. The predominant components of the hydroalcoholic extracts of Nostoc sp G-4D and Calothrix sp. G-403 were Hexadecanoic acid, methyl ester (28.29%) and Octadecanoic acid, methyl ester (15.89%) for the former, and Hexadecanoic acid, methyl ester (27.95%) and phytol (10.82%) for the latter.
Collapse
Affiliation(s)
- Sajjad Ghahari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ghorban Ali Nematzadeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ali Pakdin
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
2
|
Teker Yıldız M, Acar O. Comparison of Two Bacillus Strains Isolated from the Coastal Zone in Barley ( Hordeum vulgare L.) Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:723. [PMID: 40094622 PMCID: PMC11902031 DOI: 10.3390/plants14050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Salt stress is one of the most important abiotic stress factors that negatively affects sustainable crop production, agricultural productivity, and microbial life. Increasing salt stress negatively affects the growth and development of barley, posing a threat to global food security. It is now known that inoculation of plant growth-promoting rhizobacteria (PGPR) has significant potential in increasing stress tolerance and yield in agricultural products. This study focused on the effects of Bacillus cereus CUN6 and Bacillus thuringiensis SIRB2, isolated from the coastal zone and tested for their PGPR capacities, on physiological (root length, shoot length, biomass, dry weight) and biochemical (total chlorophyll, total protein, hydrogen peroxide, lipid peroxidation, peroxidase activity (POX), catalase activity (CAT)) analyses in Hordeum vulgare L. seedlings under salt stress. The results showed that the two bacterial inoculations alleviated the negative effects of salt stress by increasing the root-shoot length, biomass, dry weight, chlorophyll content, and total protein content in barley plants. However, B.thuringiensis increased growth and development especially in root length, biomass, and dry weight compared to B.cereus. On the other hand, B.cereus significantly increased root length, biomass, and chlorophyll content under salt stress; these increases were 17%, 5%, and 7%, respectively. B.thuringiensis chlorophyll content increased by 4% in 300 mM NaCl compared to the control. When compared in terms of the antioxidant defense system, B.thuringiensis inoculation was more effective on CAT activity, while B.cereus inoculation was more effective on POX activity. Under salt stress, B.cereus and B.thuringiensis inoculation significantly decreased H2O2 content in barley; these decreases were 16% and 10%, respectively. Additionally, TBARs content was significantly decreased by B.cereus and B.thuringiensis inoculation under salt stress; these decreases were determined as 8% and 9%, respectively, compared to the control. These results indicated that both bacterial inoculations can alleviate the salt tolerance of barley seedlings by regulating antioxidant metabolism. This research focused on the potential of B.cereus and B.thuringiensis as biofertilizers against salt stress in barley based on physiological and biochemical analysis.
Collapse
Affiliation(s)
- Müge Teker Yıldız
- Biology Department, Faculty of Science, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | | |
Collapse
|
3
|
Jankoski PR, Bach E, Bald DRQ, Passaglia LMP, de Carvalho JB, de Oliveira RR, Omori WP, de Souza da Motta A. Prospecting the Functional Potential of Bacillus altitudinis 1.4 Isolated from Sediment in Association with Bradyrhizobium japonicum. Curr Microbiol 2025; 82:132. [PMID: 39928158 DOI: 10.1007/s00284-025-04108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Bacteria of the genus Bacillus are ubiquitous in nature and produce several antimicrobial compounds, being increasingly used in plant biocontrol. The objective of this study was to identify the isolate Bacillus sp. 1.4 at the species level and study its bioactive properties prospecting the potential for agricultural application. The bacterial isolate was identified as belonging to Bacillus altitudinis through genomic metrics. The antimicrobial substance extracted with butanol inhibited Listeria monocytogenes ATCC 7644 and Bradyrhizobium japonicum CT 00345 with inhibition halos of 16 and 13 mm, respectively. In the exopolysaccharide production assay, B. altitudinis 1.4 presented a negative result and in the assessment of motility through the swarming assay, 90 mm halos were observed in both agar concentrations (0.3 and 0.7%) for up to 72 h of incubation. Genomic analysis revealed genes potentially encoding traits that could be beneficial to plants, such as phytohormone and siderophores production, polyamine metabolism, biofilm formation, exopolysaccharide, and motility. These characteristics may be important to improve the competition of B. altitudinis 1.4 in the soil. This bacterium was able to solubilize inorganic phosphate, coexist with B. japonicum CT 00345 and form biofilm. Based on the results found and with new tests to be carried out, it is suggested that the isolate B. altitudinis1.4 could be a candidate for plant growth promoter.
Collapse
Affiliation(s)
- Priscila Ribeiro Jankoski
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 216, Porto Alegre, 90050-170, Brazil
| | - Evelise Bach
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | - Amanda de Souza da Motta
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Sala 216, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
4
|
Cangioli L, Tabacchioni S, Visca A, Fiore A, Aprea G, Ambrosino P, Ercole E, Sørensen S, Mengoni A, Bevivino A. Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato. Microorganisms 2024; 12:2562. [PMID: 39770765 PMCID: PMC11677507 DOI: 10.3390/microorganisms12122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined. Strains belong to well-known plant-growth-promoting bacterial genera such as Bacillus, Burkholderia, Pseudomonas and Rahnella. The genome size of strains ranged from 4.5 to 7.5 Mbp, carrying many genes spanning from 4402 to 6697, and a GC content of 0.04% to 3.3%. The annotation of the genomes revealed the presence of genes that are implicated in functions related to antagonism, pathogenesis and other secondary metabolites possibly involved in plant growth promotion and gene clusters for protection against oxidative damage, confirming the plant-growth-promoting (PGP) activity of selected strains. All the target genomes were found to possess at least 3000 different PGP traits, belonging to the categories of nitrogen acquisition, colonization for plant-derived substrate usage, quorum sensing response for biofilm formation and, to a lesser extent, bacterial fitness and root colonization. No genes putatively involved in pathogenesis were identified. Overall, our study suggests the safe application of selected strains as "plant probiotics" for sustainable agriculture.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Sesto Fiorentino, 50121 Florence, FI, Italy; (L.C.); (A.M.)
| | - Silvia Tabacchioni
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy; (S.T.); (A.V.); (A.F.); (G.A.)
| | - Andrea Visca
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy; (S.T.); (A.V.); (A.F.); (G.A.)
| | - Alessia Fiore
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy; (S.T.); (A.V.); (A.F.); (G.A.)
| | - Giuseppe Aprea
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy; (S.T.); (A.V.); (A.F.); (G.A.)
| | | | - Enrico Ercole
- Centro Colture Sperimentali, CCS-AOSTA srl, 11020 Quart, AO, Italy;
| | - Soren Sørensen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, 50121 Florence, FI, Italy; (L.C.); (A.M.)
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy; (S.T.); (A.V.); (A.F.); (G.A.)
| |
Collapse
|
5
|
Prasad M, Madhavan A, Babu P, Salim A, Subhash S, Nair BG, Pal S. Alleviating arsenic stress affecting the growth of Vigna radiata through the application of Klebsiella strain ASBT-KP1 isolated from wastewater. Front Microbiol 2024; 15:1484069. [PMID: 39386362 PMCID: PMC11461332 DOI: 10.3389/fmicb.2024.1484069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Arsenic contamination of soil and water is a major environmental issue. Bioremediation through plant growth-promoting bacteria is viable, cost-effective, and sustainable. Along with arsenic removal, it also improves plant productivity under stressful conditions. A crucial aspect of such a strategy is the selection of bacterial inoculum. The described study demonstrates that the indigenous wastewater isolate, ASBT-KP1, could be a promising candidate. Identified as Klebsiella pneumoniae, ASBT-KP1 harbors genes associated with heavy metal and oxidative stress resistance, production of antimicrobial compounds and growth-promotion activity. The isolate efficiently accumulated 30 μg/g bacterial dry mass of arsenic. Tolerance toward arsenate and arsenite was 120 mM and 70 mM, respectively. Plant biomass content of Vigna radiata improved by 13% when grown in arsenic-free soil under laboratory conditions in the presence of the isolate. The increase became even more significant under the same conditions in the presence of arsenic, recording a 37% increase. The phylogenetic analysis assigned ASBT-KP1 to the clade of Klebsiella strains that promote plant growth. Similar results were also observed in Oryza sativa, employed to assess the ability of the strain to promote growth, in plants other than V. radiata. This study identifies a prospective candidate in ASBT-KP1 that could be employed as a plant growth-promoting rhizoinoculant in agricultural practices.
Collapse
Affiliation(s)
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | | | | | | | | | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
6
|
Linda TM, Aliska J, Feronika N, Melisa I, Juliantari E. Production of Exopolysaccharides and İndole Acetic Acid (IAA) by Rhizobacteria and Their Potential against Drought Stress in Upland Rice. J Microbiol Biotechnol 2024; 34:1239-1248. [PMID: 38783698 PMCID: PMC11239409 DOI: 10.4014/jmb.2401.01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Peatlands are marginal agricultural lands due to highly acidic soil conditions and poor drainage systems. Drought stress is a big problem in peatlands as it can affect plants through poor root development, so technological innovations are needed to increase the productivity and sustainability of upland rice on peatlands. Rhizobacteria can overcome the effects of drought stress by altering root morphology, regulating stress-responsive genes, and producing exopolysaccharides and indole acetic acid (IAA). This study aimed to determine the ability of rhizobacteria in upland rice to produce exopolysaccharides and IAA, identify potential isolates using molecular markers, and prove the effect of rhizobacteria on viability and vigor index in upland rice. Rhizobacterial isolates were grown on yeast extract mannitol broth (YEMB) medium for exopolysaccharides production testing and Nutrient Broth (NB)+L-tryptophan medium for IAA production testing. The selected isolates identify using sequence 16S rRNA. The variables observed in testing the effect of rhizobacteria were germination ability, vigour index, and growth uniformity. EPS-1 isolate is the best production of exopolysaccharides (41.6 mg/ml) and IAA (60.83 ppm). The isolate EPS-1 was identified as Klebsiella variicola using 16S rRNA sequencing and phylogenetic analysis. The isolate EPS-1 can increase the viability and vigor of upland rice seeds. K. variicola is more adaptive and has several functional properties that can be developed as a potential bioagent or biofertilizer to improve soil nutrition, moisture and enhance plant growth. The use of rhizobacteria can reduce dependence on the use of synthetic materials with sustainable agriculture.
Collapse
Affiliation(s)
- Tetty Marta Linda
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Jusinta Aliska
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Nita Feronika
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Ineiga Melisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| | - Erwina Juliantari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Riau University. Kampus Bina Widya Km. 12, 5 Simpang Baru Pekanbaru, Riau Province 28293, Indonesia
| |
Collapse
|
7
|
Sumranwanich T, Amosu E, Chankhamhaengdecha S, Phetruen T, Loktumraks W, Ounjai P, Harnvoravongchai P. Evaluating lignin degradation under limited oxygen conditions by bacterial isolates from forest soil. Sci Rep 2024; 14:13350. [PMID: 38858437 PMCID: PMC11164938 DOI: 10.1038/s41598-024-64237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Lignin, a heterogeneous aromatic polymer present in plant biomass, is intertwined with cellulose and hemicellulose fibrils, posing challenges to its effective utilization due to its phenolic nature and recalcitrance to degradation. In this study, three lignin utilizing bacteria, Klebsiella sp. LEA1, Pseudomonas sp. LEA2, and Burkholderia sp. LEA3, were isolated from deciduous forest soil samples in Nan province, Thailand. These isolates were capable of growing on alkali lignin and various lignin-associated monomers at 40 °C under microaerobic conditions. The presence of Cu2+ significantly enhanced guaiacol oxidation in Klebsiella sp. LEA1 and Pseudomonas sp. LEA2. Lignin-related monomers and intermediates such as 2,6-dimethoxyphenol, 4-vinyl guaiacol, 4-hydroxybenzoic acid, benzoic acid, catechol, and succinic acid were detected mostly during the late stage of incubation of Klebsiella sp. LEA1 and Pseudomonas sp. LEA2 in lignin minimal salt media via GC-MS analysis. The intermediates identified from Klebsiella sp. LEA1 degradation suggested that conversion and utilization occurred through the β-ketoadipate (ortho-cleavage) pathway under limited oxygen conditions. The ability of these bacteria to thrive on alkaline lignin and produce various lignin-related intermediates under limited oxygen conditions suggests their potential utility in oxygen-limited processes and the production of renewable chemicals from plant biomass.
Collapse
Affiliation(s)
- Thitinun Sumranwanich
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Esther Amosu
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Wethaka Loktumraks
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Phurt Harnvoravongchai
- Department of Biology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Ganesh J, Hewitt K, Devkota AR, Wilson T, Kaundal A. IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. FRONTIERS IN PLANT SCIENCE 2024; 15:1374877. [PMID: 38807777 PMCID: PMC11131947 DOI: 10.3389/fpls.2024.1374877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Climate-induced drought impacts plant growth and development. Recurring droughts increase the demand for water for food production and landscaping. Native plants in the Intermountain West region of the US are of keen interest in low water use landscaping as they are acclimatized to dry and cold environments. These native plants do very well at their native locations but are difficult to propagate in landscape. One of the possible reasons is the lack of associated microbiome in the landscaping. Microbiome in the soil contributes to soil health and impacts plant growth and development. Here, we used the bulk soil from the native plant Ceanothus velutinus (snowbrush ceanothus) as inoculant to enhance its propagation. Snowbrush ceanothus is an ornamental plant for low-water landscaping that is hard to propagate asexually. Using 50% native bulk soil as inoculant in the potting mix significantly improved the survival rate of the cuttings compared to no-treated cuttings. Twenty-four plant growth-promoting rhizobacteria (PGPR) producing indole acetic acid (IAA) were isolated from the rhizosphere and roots of the survived snowbrush. Seventeen isolates had more than 10µg/mL of IAA were shortlisted and tested for seven different plant growth-promoting (PGP) traits; 76% showed nitrogen-fixing ability on Norris Glucose Nitrogen free media,70% showed phosphate solubilization activity, 76% showed siderophore production, 36% showed protease activity, 94% showed ACC deaminase activity on DF-ACC media, 76% produced catalase and all of isolates produced ammonia. Eight of seventeen isolates, CK-6, CK-22, CK-41, CK-44, CK-47, CK-50, CK-53, and CK-55, showed an increase in shoot biomass in Arabidopsis thaliana. Seven out of eight isolates were identified as Pseudomonas, except CK-55, identified as Sphingobium based on 16S rRNA gene sequencing. The shortlisted isolates are being tested on different grain and vegetable crops to mitigate drought stress and promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Amita Kaundal
- Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
9
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
10
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
11
|
Chakraborty S, Mondal S. Halotolerant Citrobacter sp. remediates salinity stress and promotes the growth of Vigna radiata (L) by secreting extracellular polymeric substances (EPS) and biofilm formation: a novel active cell for microbial desalination cell (MDC). Int Microbiol 2024; 27:291-301. [PMID: 37329438 DOI: 10.1007/s10123-023-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
To address soil salinization and its impact on crop production, microbial desalination cells (MDCs) offer a promising solution. These bioelectrochemical systems integrate desalination and wastewater treatment through microbial activity. A halotolerant beneficial bacterial strain called Citrobacter sp. strain KUT (CKUT) was isolated from India's salt desert Run of Kutch, Gujrat, highlighting its potential application in combating soil salinization. CKUT exhibits high salt tolerance and has the ability to produce extracellular polymeric substances (EPS) at a concentration of 0.04 mg/ml. It forms biofilm that enable it to withstand up to 10% NaCl concentration. Additionally, CKUT shows promise in remediating salinity levels, reducing it from 4.5 to 2.7 gL-1. These characteristics are driven by biofilm formation and EPS production. In an experiment where V. radiata L. seedlings were inoculated with CKUT, the treated plants exhibited enhanced chlorophyll content, growth, and overall plant characteristics compared to seedlings treated with sodium chloride (NaCl). These improvements included increased shoot length (150 mm), root length (40 mm), and biomass. This indicates that CKUT treatment has the potential to enhance the suitability of V. radiata and other crops for cultivation in saline lands, effectively addressing the issue of soil salinization. Furthermore, integrating CKUT into microbial desalination cells (MDCs) offers an opportunity for freshwater production from seawater, contributing to sustainable agriculture by promoting improved crop growth and increased yield in areas prone to salinity. HIGHLIGHTS : • Soil salinization reduces crop yield, including Vigna radiata L. • Citrobacter sp. strain KUT (CKUT) is a halotolerant bacterium isolated from the salt desert Run of Kutch, Gujarat, which can tolerate high salt concentrations. • CKUT mitigates salinity by producing extracellular polymeric substances (EPS) and forming biofilms. • CKUT treatment demonstrated increased plant growth, biomass, and chlorophyll content under salinity stress, showcasing its potential in microbial desalination cell (MDC) for enhancing crop yield in salinized soils.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Microbiology, Techno India University, EM 4, Salt Lake, Sector V, Kolkata, 700091, India
| | - Sandhimita Mondal
- Department of Biotechnology, Brainware University, 398 Ramkrishnapur Road, Barasat, North 24 Pgs, Kolkata, 700125, West Bengal, India.
| |
Collapse
|
12
|
Yue H, Sun S, Wang R, Ma X, Shen S, Luo Y, Ma X, Wu T, Li S, Yang Z, Gong Y. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton. BMC PLANT BIOLOGY 2023; 23:656. [PMID: 38114925 PMCID: PMC10729352 DOI: 10.1186/s12870-023-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
AIMS In-depth studies on plant ion uptake and plant growth-promoting rhizobacteria (PGPR) at the molecular level will help to further reveal the effects of PGPR on plants and their interaction mechanisms under salt stress. METHODS Cotton was inoculated with a PGPR-Enterobacter cloacae Rs-35, and the ion uptake capacity, membrane transporter protein activity, and expression of key genes were determined under salt stress. Changes in the endogenous hormone content of cotton were also determined. Further, the genome-wide metabolic pathway annotation of E. cloacae Rs-35 and its differential enrichment pathway analysis of multi-omics under salinity environments were performed. RESULTS In a pot experiment of saline-alkali soil, E. cloacae Rs-35-treated cotton significantly increased its uptake of K+ and Ca2+ and decreased uptake of Na+, elevated the activity of the H+-ATPase, and increased the sensitivity of the Na+/H+ reverse transporter protein on the vesicle membrane. Meanwhile, inoculation with E. cloacae Rs-35 could promote cotton to maintain the indole-3-acetic acid (IAA) content under salt stress. Genome-wide annotation showed that E. cloacae Rs-35 was respectively annotated to 31, 38, and 130 related genes in osmotic stress, phytohormone and organic acid metabolism, and ion uptake metabolic pathway. Multi-omics differences analysis showed that E. cloacae Rs-35 were enriched to tryptophan metabolism, multiple amino acid biosynthesis, carbon and glucose synthesis, and oxidative phosphorylation metabolic pathways at the transcriptome, proteome, and metabolome. CONCLUSION E. cloacae Rs-35 can promote cotton balance cell ion concentration, stabilize intracellular IAA changes, stimulate induction of systemic tolerance, and promote the growth of cotton plants under salt stress.
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China.
| | - Shuwen Sun
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ruiqi Wang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shiwei Shen
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoli Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ting Wu
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shuang Li
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Zhengyang Yang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yuxi Gong
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| |
Collapse
|
13
|
Nguyen NL, Van Dung V, Van Tung N, Nguyen TKL, Quan ND, Giang TTH, Ngan NTT, Hien NT, Nguyen HH. Draft genome sequencing of halotolerant bacterium Salinicola sp. DM10 unravels plant growth-promoting potentials. 3 Biotech 2023; 13:416. [PMID: 38009164 PMCID: PMC10667196 DOI: 10.1007/s13205-023-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Vu Van Dung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Thi Kim Lien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| |
Collapse
|
14
|
Biswas S, Philip I, Jayaram S, Sarojini S. Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities. J Genet Eng Biotechnol 2023; 21:153. [PMID: 38030944 PMCID: PMC10686955 DOI: 10.1186/s43141-023-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for sustainable and environment-friendly practices to enhance agricultural productivity is a pressing priority. Endophytic bacteria with plant growth-promoting ability and biocontrol activity can strongly enhance plant growth under changing environmental biotic and abiotic conditions. Herein, we isolated halotolerant endophytic bacteria from an aquatic plant, Alternanthera philoxeroides, from the polluted waters of Madiwala Lake in Bangalore and studied their plant growth promotion (PGP) and biocontrol ability for use as bioinoculant. RESULTS The isolated bacterial endophytes were screened for salt tolerance ranging from 5 to 15% NaCl concentration. Klebsiella pneumoniae showed halotolerant up to 10% NaCl and Bacillus amyloliquefaciens and Bacillus subtilis showed up to 15%. All three strains demonstrated good PGP abilities such as aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilization, ammonia production, and nitrogen fixation. In addition, K. pneumoniae also exhibited high indoleacetic acid (IAA) production (195.66 ± 2.51 µg/ml) and potassium solubilization (2.13 ± 0.07 ppm). B. amyloliquefaciens and B. subtilis showed good extracellular enzyme production against cellulase, lipase, protease, and amylase. Both the isolates showed a broad spectrum of antimicrobial activity against the tested organisms. The optimization of IAA production by K. pneumoniae was done by the response surface methodology (RSM) tool. Characterization of IAA produced by the isolate was done by gas chromatography-mass spectrometry (GCMS) analysis. The enhanced plant growth-promoting ability of K. pneumoniae was also demonstrated using various growth parameters in a pot trial experiment using the seeds of Vigna unguiculata. CONCLUSION The isolated bacterial endophytes reported in this study can be utilized as PGP promotion and biocontrol agents in agricultural applications, to enhance crop yield under salinity stress. The isolate K. pneumoniae may be used as a biofertilizer in sustainable agriculture and more work can be done to optimize the best formulations for its application as a microbial inoculant for crops.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India.
| |
Collapse
|
15
|
Yang N, Zhang W, Wang D, Cao D, Cao Y, He W, Lin Z, Chen X, Ye G, Chen Z, Chen J, Wei X. A novel endophytic fungus strain of Cladosporium: its identification, genomic analysis, and effects on plant growth. Front Microbiol 2023; 14:1287582. [PMID: 38075866 PMCID: PMC10706132 DOI: 10.3389/fmicb.2023.1287582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Endophytic microorganisms are bacteria or fungi that inhabit plant internal tissues contributing to various biological processes of plants. Some endophytic microbes can promote plant growth, which are known as plant growth-promoting endophytes (PGPEs). There has been an increasing interest in isolation and identification of PGPEs for sustainable production of crops. This study was undertaken to isolate PGPEs from roots of a halophytic species Sesuvium portulacastrum L. and elucidate potential mechanisms underlying the plant growth promoting effect. METHODS Surface-disinfected seeds of S. portulacastrum were germinated on an in vitro culture medium, and roots of some germinated seedlings were contaminated by bacteria and fungi. From the contamination, an endophytic fungus called BF-F (a fungal strain isolated from bacterial and fungal contamination) was isolated and identified. The genome of BF-F strain was sequenced, its genome structure and function were analyzed using various bioinformatics software. Additionally, the effect of BF-F on plant growth promotion were investigated by gene cluster analyses. RESULTS Based on the sequence homology (99%) and phylogenetic analysis, BF-F is likely a new Cladosporium angulosum strain or possibly a new Cladosporium species that is most homologous to C. angulosum. The BF-F significantly promoted the growth of dicot S. portulacastrum and Arabidopsis as well as monocot rice. Whole genome analysis revealed that the BF-F genome has 29,444,740 bp in size with 6,426 annotated genes, including gene clusters associated with the tryptophan synthesis and metabolism pathway, sterol synthesis pathway, and nitrogen metabolism pathway. BF-F produced indole-3-acetic acid (IAA) and also induced the expression of plant N uptake related genes. DISCUSSION Our results suggest that BF-F is a novel strain of Cladosporium and has potential to be a microbial fertilizer for sustainable production of crop plants. The resulting genomic information will facilitate further investigation of its genetic evolution and its function, particularly mechanisms underlying plant growth promotion.
Collapse
Affiliation(s)
- Nan Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Wenbin Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Dan Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Dingding Cao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Yanyu Cao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Weihong He
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Ziting Lin
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Guiping Ye
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| | - Zhiming Chen
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, Fujian Province, China
| |
Collapse
|
16
|
Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Sarikhan S, Shariati V, Saghafi K, Hosseini-Mazinani M. Comprehensive genome analysis of Pseudomonas sp. SWRIQ11, a new plant growth-promoting bacterium that alleviates salinity stress in olive. 3 Biotech 2023; 13:347. [PMID: 37750167 PMCID: PMC10517913 DOI: 10.1007/s13205-023-03755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/20/2023] [Indexed: 09/27/2023] Open
Abstract
The study presents the genome analysis of a new Pseudomonas sp. (SWRIQ11), which can alleviate salinity stress effects on growth of olive seedlings in greenhouse study. The strain SWRIQ11 can tolerate salinity up to 6%, produce siderophores, indole acetic acid (IAA), aminocyclopropane-1-carboxylate (ACC) deaminase, and has the phosphate-solubilizing capability. The SWRIQ11 genome contained an assembly size of 6,196,390 bp with a GC content of 60.1%. According to derived indices based on whole-genome sequences for species delineation, including tetra nucleotide usage patterns (TETRA), genome-to-genome distance (GGDC), and average nucleotide identity (ANI), Pseudomonas sp. SWRIQ11 can be considered a novel species candidate. The phylogenetic analysis revealed SWRIQ11 clusters with Pseudomonas tehranensis SWRI196 in the same clade. The SWRIQ11 genome was rich in genes related to stress sensing, signaling, and response, chaperones, motility, attachments, colonization, and enzymes for degrading plant-derived carbohydrates. Furthermore, the genes for production of exopolysaccharides, osmoprotectants, phytohormones, and ACC deaminase, ion homeostasis, nutrient acquisition, and antioxidant defenses were identified in the SWRIQ11 genome. The results of genome analysis (identification of more than 825 CDSs related to plant growth-promoting and stress-alleviating traits in the SWRIQ11 genome which is more than 15% of its total CDSs) are in accordance with laboratory and greenhouse experiments assigning the Pseudomonas sp. SWRIQ11 as a halotolerant plant growth-promoting bacterium (PGPB). This research highlights the potential safe application of this new PGPB species in agriculture as a potent biofertilizer.
Collapse
Affiliation(s)
- Seyyedeh Maryam Zamanzadeh-Nasrabadi
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455 Iran
| | - Fatemeh Mohammadiapanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455 Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Vahid Shariati
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Kobra Saghafi
- Soil and Water Research Institute (SWRI), Karaj, Iran
| | - Mehdi Hosseini-Mazinani
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
17
|
Tang H, Chen X, Chen M, Li X, Jiang J, Tuo L, Li F. Phycicoccus sonneraticus sp. nov., a Novel Endophytic Actinobacterium Isolated from the Bark of Sonneratia apetala. Curr Microbiol 2023; 80:393. [PMID: 37897506 DOI: 10.1007/s00284-023-03511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
A novel endophytic actinobacterial strain, designated MQZ13P-5T, was isolated from a piece of bark of Sonneratia apetala, collected from Guangxi Zhuang Autonomous Region, China. This strain was Gram-stain positive, aerobic, non-spore-forming, non-motile and rod-shaped. Comparative 16S rRNA gene sequence analysis showed that strain MQZ13P-5T was related to the genus Phycicoccus with exhibiting the highest similarity (98.0%) to Phycicoccus endophyticus IP6SC6T. The phylogenetic trees based on 16S rRNA gene sequences and core genes indicated that strain MQZ13P-5T belonged to the genus Phycicoccus and could not be assigned to any described species. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MQZ13P-5T and type strains of Phycicoccus species were less than 84% and 27%, respectively, below the thresholds for species delineation. This strain showed chemotaxonomic and phenotypic properties consistent with its classification in the genus Phycicoccus. Based on the taxonomic data, strain MQZ13P-5T should represent a novel species of the genus Phycicoccus, for which the name Phycicoccus sonneraticus sp. nov. is proposed, with the type strain MQZ13P-5T (= CGMCC 1.18744T = JCM 34337T).
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an, 223003, China
| | - Xiaohui Chen
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Mingsheng Chen
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaohong Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Jianjing Jiang
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Li Tuo
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China.
| | - Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children's Hospital, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
18
|
Yang L, Wan X, Zhou R, Yuan Y. The Composition and Function of the Rhizosphere Bacterial Community of Paeonia lactiflora Varies with the Cultivar. BIOLOGY 2023; 12:1363. [PMID: 37997962 PMCID: PMC10669795 DOI: 10.3390/biology12111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The composition and diversity of the rhizosphere microbial community maintain the stability of the root microclimate, and several studies have focused on this aspect of rhizosphere microorganisms. However, how these communities vary with cultivars of a species is not completely understood. Paeonia lactiflora-a perennial herb species of the family Paeoniaceae-includes a wide variety of cultivars, with rich rhizosphere microbial resources. Hence, we studied the differences in rhizosphere bacterial communities associated with eight P. lactiflora cultivars. We noted that Actinobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, Planctomycetes and Chloroflexi were the dominant phyla associated with the cultivars. The composition of rhizosphere bacterial community of different cultivars was highly similar at taxonomic levels, but there were slightly differences in the relative abundance. LEfSe analysis showed that the cultivars "Sheng Tao Hua" and "Zi Lou Xian Jin" exhibited the most biomarkers. Differential ASV analysis revealed the maximum difference in ASV abundance between "Lian Tai" and "Zi Hong Zheng Hui", as well as between "Sheng Tao Hua" and "Tao Hua Fei Xue", and the maximum similarity between "Duo Ye Zi" and "Xue Feng". Co-occurrence network analysis revealed that rhizosphere bacteria in most cultivars maintain homeostasis by cooperation, wherein Actinobacteria and Proteobacteria played a vital role. In addition, microbial resources related to cultivars like bioremediation, organic degradation and resistance to diseases are found. This study revealed the structures of the rhizosphere bacterial communities associated with different cultivars of P. lactiflora and explored their stress resistance potential, which can be used to guide future agricultural practices.
Collapse
Affiliation(s)
- Liping Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.Y.); (R.Z.)
| | - Xin Wan
- Jiangsu Academy of Forestry, Nanjing 211153, China;
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou 225006, China
| | - Runyang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.Y.); (R.Z.)
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (L.Y.); (R.Z.)
| |
Collapse
|
19
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
20
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
21
|
Iqbal S, Qasim M, Rahman H, Khan N, Paracha RZ, Bhatti MF, Javed A, Janjua HA. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant Bacillus paralicheniformis ES-1 isolated from salt mine. Mol Genet Genomics 2023; 298:79-93. [PMID: 36301366 DOI: 10.1007/s00438-022-01964-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023]
Abstract
Salinity severely affects crop yield by hindering nitrogen uptake and reducing plant growth. Plant growth-promoting bacteria (PGPB) are capable of providing cross-protection against biotic/abiotic stresses and facilitating plant growth. Genome-level knowledge of PGPB is necessary to translate the knowledge into a product as efficient biofertilizers and biocontrol agents. The current study aimed to isolate and characterize indigenous plant growth-promoting strains with the potential to promote plant growth under various stress conditions. In this regard, 72 bacterial strains were isolated from various saline-sodic soil/lakes; 19 exhibited multiple in vitro plant growth-promoting traits, including indole 3 acetic acid production, phosphate solubilization, siderophore synthesis, lytic enzymes production, biofilm formation, and antibacterial activities. To get an in-depth insight into genome composition and diversity, whole-genome sequence and genome mining of one promising Bacillus paralicheniformis strain ES-1 were performed. The strain ES-1 genome carries 12 biosynthetic gene clusters, at least six genomic islands, and four prophage regions. Genome mining identified plant growth-promoting conferring genes such as phosphate solubilization, nitrogen fixation, tryptophan production, siderophore, acetoin, butanediol, chitinase, hydrogen sulfate synthesis, chemotaxis, and motility. Comparative genome analysis indicates the region of genome plasticity which shapes the structure and function of B. paralicheniformis and plays a crucial role in habitat adaptation. The strain ES-1 has a relatively large accessory genome of 649 genes (~ 19%) and 180 unique genes. Overall, these results provide valuable insight into the bioactivity and genomic insight into B. paralicheniformis strain ES-1 with its potential use in sustainable agriculture.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Naeem Khan
- Department of Agronomy, University of Florida, Gainesville, FL, 32611, USA
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Science (SINES, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
22
|
Zamanzadeh-Nasrabadi SM, Mohammadiapanah F, Hosseini-Mazinani M, Sarikhan S. Salinity stress endurance of the plants with the aid of bacterial genes. Front Genet 2023; 14:1049608. [PMID: 37139239 PMCID: PMC10149814 DOI: 10.3389/fgene.2023.1049608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
The application of plant growth-promoting bacteria (PGPB) is vital for sustainable agriculture with continuous world population growth and an increase in soil salinity. Salinity is one of the severe abiotic stresses which lessens the productivity of agricultural lands. Plant growth-promoting bacteria are key players in solving this problem and can mitigate salinity stress. The highest of reported halotolerant Plant growth-promoting bacteria belonged to Firmicutes (approximately 50%), Proteobacteria (40%), and Actinobacteria (10%), respectively. The most dominant genera of halotolerant plant growth-promoting bacteria are Bacillus and Pseudomonas. Currently, the identification of new plant growth-promoting bacteria with special beneficial properties is increasingly needed. Moreover, for the effective use of plant growth-promoting bacteria in agriculture, the unknown molecular aspects of their function and interaction with plants must be defined. Omics and meta-omics studies can unreveal these unknown genes and pathways. However, more accurate omics studies need a detailed understanding of so far known molecular mechanisms of plant stress protection by plant growth-promoting bacteria. In this review, the molecular basis of salinity stress mitigation by plant growth-promoting bacteria is presented, the identified genes in the genomes of 20 halotolerant plant growth-promoting bacteria are assessed, and the prevalence of their involved genes is highlighted. The genes related to the synthesis of indole acetic acid (IAA) (70%), siderophores (60%), osmoprotectants (80%), chaperons (40%), 1-aminocyclopropane-1-carboxylate (ACC) deaminase (50%), and antioxidants (50%), phosphate solubilization (60%), and ion homeostasis (80%) were the most common detected genes in the genomes of evaluated halotolerant plant growth-promoting and salinity stress-alleviating bacteria. The most prevalent genes can be applied as candidates for designing molecular markers for screening of new halotolerant plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Seyyedeh Maryam Zamanzadeh-Nasrabadi
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadiapanah
- Pharmaceutial Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Fatemeh Mohammadiapanah,
| | | | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
23
|
Gohil RB, Raval VH, Panchal RR, Rajput KN. Plant growth promoting activities and effect of fermented panchagavya isolate Klebsiella sp. PG-64 on Vigna radiata. World J Microbiol Biotechnol 2022; 39:41. [PMID: 36512151 DOI: 10.1007/s11274-022-03482-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
A natural bacterial isolate from fermented panchagavya named as PG-64, exhibits multiple plant growth-promoting traits. This Gram-negative bacteria was identified as Klebsiella sp. PG-64 by 16S rRNA gene sequencing. The Klebsiella sp. PG-64 has shown production of indole acetic acid (106.0 µg/ml), gibberellic acid (20.0 µg/ml), ammonia (7.12 µmol/ml), exopolysaccharide (2.04% w/v) and phosphate solubilization (106.0 µg/ml). It produced 437 µg/ml IAA with 0.75% (w/v) L-tryptophan supplementation and was increased to 575 µg/ml in a laboratory-scale fermenter. The PG-64 has shown tolerance to abiotic stress conditions like pH (5.0-12.0), temperature (28-46 °C), salt (0.5-10.0% w/v NaCl) and osmotic resistance (1-10% w/v PEG-6000). The PG-64 also produced 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (0.3 ng α-ketobutyrate/mg protein/h) indicating its potential for drought tolerance. Owing to its diverse properties, the effect of Klebsiella sp. PG-64 on Vigna radiata (Mung bean) was examined. The seeds treated with PG-64 culture showed 92% germination with a good seedling vigour index (202). In the pot study, Vigna radiata growth showed 2.23, 1.55, 2.00, 1.65, 1.73, 1.88, 5.00, 5.00, 1.57 times increase in primary root length, dry root weight, root hair numbers, leaf width, leaf numbers, leaf area, fruits number, flower number and chlorophyll content, respectively after 75 days. The application of Klebsiella sp. PG-64 culture resulted in substantial growth enhancement of Vigna radiata. The Klebsiella sp. PG-64 has multiple plant growth-promoting properties along with capabilities to tolerate abiotic stresses, making it a promising liquid biofertilizer contender for various crops.
Collapse
Affiliation(s)
- Rinkal B Gohil
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
24
|
Kumar P, Rani S, Dahiya P, Kumar A, Dang AS, Suneja P. Whole genome analysis for plant growth promotion profiling of Pantoea agglomerans CPHN2, a non-rhizobial nodule endophyte. Front Microbiol 2022; 13:998821. [PMID: 36419432 PMCID: PMC9676466 DOI: 10.3389/fmicb.2022.998821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 09/04/2024] Open
Abstract
Reduced agricultural production as well as issues like nutrient-depleted soils, eutrophication, and groundwater contamination have drawn attention to the use of endophyte-based bioformulations to restore soil fertility. Pantoea agglomerans CPHN2, a non-rhizobial nodule endophyte isolated from Cicer arietinum, exhibited a variety of plant growth-promoting traits. In this study, we used NextSeq500 technology to analyze whole-genome sequence information of this plant growth-promoting endophytic bacteria. The genome of P. agglomerans CPHN2 has a length of 4,839,532 bp and a G + C content of 55.2%. The whole genome comprises three different genomic fractions, comprising one circular chromosome and two circular plasmids. A comparative analysis between P. agglomerans CPHN2 and 10 genetically similar strains was performed using a bacterial pan-genome pipeline. All the predicted and annotated gene sequences for plant growth promotions (PGPs), such as phosphate solubilization, siderophore synthesis, nitrogen metabolism, and indole-3-acetic acid (IAA) of P. agglomerans CPHN2, were identified. The whole-genome analysis of P. agglomerans CPHN2 provides an insight into the mechanisms underlying PGP by endophytes and its potential applications as a biofertilizer.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Simran Rani
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Ajit Kumar
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
25
|
Ou T, Gao H, Jiang K, Yu J, Zhao R, Liu X, Zhou Z, Xiang Z, Xie J. Endophytic Klebsiella aerogenes HGG15 stimulates mulberry growth in hydro-fluctuation belt and the potential mechanisms as revealed by microbiome and metabolomics. Front Microbiol 2022; 13:978550. [PMID: 36033884 PMCID: PMC9417544 DOI: 10.3389/fmicb.2022.978550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Growth promotion and stress tolerance induced by endophytes have been observed in various plants, but their effects on mulberry regularly suffering flood in the hydro-fluctuation belt are less understood. In the present study, endophytic Klebsiella aerogenes HGG15 was screened out from 28 plant growth promotion (PGP) bacteria as having superior PGP traits in vitro and in planta as well as biosafety for silkworms. K. aerogenes HGG15 could actively colonize into roots of mulberry and subsequently transferred to stems and leaves. The 16S ribosomal RNA (V3–V4 variable regions) amplicon sequencing revealed that exogenous application of K. aerogenes HGG15 altered the bacterial community structures of mulberry roots and stems. Moreover, the genus of Klebsiella was particularly enriched in inoculated mulberry roots and was positively correlated with mulberry development and soil potassium content. Untargeted metabolic profiles uncovered 201 differentially abundant metabolites (DEMs) between inoculated and control mulberry, with lipids and organo-heterocyclic compounds being particularly abundant DEMs. In addition, a high abundance of abiotic stress response factors and promotion growth stimulators such as glycerolipid, sphingolipid, indole, pyridine, and coumarin were observed in inoculated mulberry. Collectively, the knowledge gained from this study sheds light on potential strategies to enhance mulberry growth in hydro-fluctuation belt, and microbiome and metabolite analyses provide new insights into the growth promotion mechanisms used by plant-associated bacteria.
Collapse
Affiliation(s)
- Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Haiying Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Kun Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Ruolin Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, China
- *Correspondence: Jie Xie,
| |
Collapse
|
26
|
Li Z, Wang J, Gu C, Guo Y, Wu S. Marine bacteria-mediated abiotic-biotic coupling degradation mechanism of ibuprofen. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128960. [PMID: 35472552 DOI: 10.1016/j.jhazmat.2022.128960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Knowledge on the behavior and fate of pharmaceuticals and personal care products (PPCPs) is poorly explored in marine aphotic environment. In this study, the degradation mechanism of a typical PPCPs-ibuprofen (IBP) by a ubiquitous marine Pseudoalteromonas sp. was investigated based on transcriptome and key enzymes analysis. More importantly, a novel enzymatic-nonenzymatic coupling degradation mechanism was uncovered for the first time, namely, the degradation of IBP was firstly initiated by extracellular reactive oxygen species (ROS), then the intermediate (e.g.4-ethylresorcinol) was further degraded by intracellular enzymes. It was showed that biogenic •OH, O2•-and H2O2 were responsible for extracellular nonenzymatic degradation, in which IBP was degraded to 4-ethylresorcinol through hydrogenation, isobutyl moiety cleavage, oxidation and decarboxylation. 4-Hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, long-chain acyl-CoA synthetase, acetyl-CoA acyltransferase and enoyl-CoA hydratase were identified to be involved in intracellular degradation, leading 4-ethylresorcinol cracked and eventually mineralized. Ultimately, this novel degradation mechanism was demonstrated to be amino acids-driven through KEGG enrichment analysis and experimental data. Overall, our work uncovered a yet undiscovered abiotic-biotic coupling degradation mechanism in PPCPs biotransformation, thereby updating the conventional concept that contaminants transformation is solely accomplished by enzymes or non-enzymes, which can also provide new insights into PPCPs environmental behavior and fate.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Chen Gu
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Yali Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Vaishnav A, Kumar R, Singh HB, Sarma BK. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154170. [PMID: 35227717 DOI: 10.1016/j.scitotenv.2022.154170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, India; Agroecology and Environment, Agroscope (Reckenholz), Zürich 8046, Switzerland
| | - Roshan Kumar
- National Centre for Biological Sciences (TIFR-NCBS), Bengaluru 560065, India
| | | | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221110, India.
| |
Collapse
|
28
|
Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022; 10:1220. [PMID: 35744738 PMCID: PMC9227430 DOI: 10.3390/microorganisms10061220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
There is a direct correlation between population growth and food demand. As the global population continues to rise, there is a need to scale up food production to meet the food demand of the population. In addition, the arable land over time has lost its naturally endowed nutrients. Hence, alternative measures such as fertilizers, pesticides, and herbicides are used to fortify the soil and scale up the production rate. As efforts are being made to meet this food demand and ensure food security, it is equally important to ensure food safety for consumption. Food safety measures need to be put in place throughout the food production chain lines. One of the fundamental measures is the use of biofertilizers or plant growth promoters instead of chemical or synthesized fertilizers, pesticides, and herbicides that poise several dangers to human and animal health. Biofertilizers competitively colonize plant root systems, which, in turn, enhance nutrient uptake, increase productivity and crop yield, improve plants' tolerance to stress and their resistance to pathogens, and improve plant growth through mechanisms such as the mobilization of essential elements, nutrients, and plant growth hormones. Biofertilizers are cost-effective and ecofriendly in nature, and their continuous usage enhances soil fertility. They also increase crop yield by up to about 10-40% by increasing protein contents, essential amino acids, and vitamins, and by nitrogen fixation. This review therefore highlighted different types of biofertilizers and the mechanisms by which they elicit their function to enhance crop yield to meet food demand. In addition, the review also addressed the role of microorganisms in promoting plant growth and the various organisms that are beneficial for enhancing plant growth.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
- Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna 920101, Niger State, Nigeria
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa;
| | - Olalekan Olanrewaju Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Stacey Fisher
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| | - Adam Frank Burt
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Vuyo Mavumengwana
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (A.O.F.); (V.M.)
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town 7505, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.O.B.); (A.F.B.); (M.K.)
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa; (O.A.); (S.F.)
| |
Collapse
|
29
|
Metabacillus dongyingensis sp. nov. Is Represented by the Plant Growth-Promoting Bacterium BY2G20 Isolated from Saline-Alkaline Soil and Enhances the Growth of Zea mays L. under Salt Stress. mSystems 2022; 7:e0142621. [PMID: 35229649 PMCID: PMC9040632 DOI: 10.1128/msystems.01426-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel plant growth-promoting rhizobacterium (PGPR), which was designated strain BY2G20, was isolated from saline-alkaline soil in Dongying, China. Strain BY2G20 can grow at a NaCl range from 0 to 7% and a pH range from 7 to 9 and can prevent the growth of the phytopathogen Ralstonia solanacearum. Based on its phenotypic and genomic characteristics and phylogenetic analysis, strain BY2G20 represents a novel species of the genus Metabacillus, for which the name Metabacillus dongyingensis sp. nov. is proposed. Comparative genomic analysis of strain BY2G20 with its closely related species exhibited a high level of evolutionary plasticity derived by horizontal gene transfer, which facilitated adaptative evolution. Different evolutionary constraints have operated on the diverse functions of BY2G20, with the gene adapted to saline-alkaline ecosystems experiencing functional constraints. We determined the genetic properties of saline-alkaline tolerance and plant growth promotion, such as cation-proton antiporters, cation transporters, osmoprotectant synthesis and transport, H+-transporting F1F0-ATPase, indole-3-acetic acid production, and secondary metabolite synthesis. We also evaluated the effects of strain BY2G20 on the growth of Zea mays L. (maize) under salt stress. The physiological parameters of maize such as plant height, stem diameter, dry biomass, and fresh biomass were significantly higher after inoculating strain BY2G20 under salt stress, indicating that inoculation with BY2G20 enhanced the growth of maize in saline areas. This study demonstrates that M. dongyingensis sp. nov. BY2G20 is a potential candidate for organic agriculture biofertilizers in saline-alkaline areas. IMPORTANCE Plant growth and yield are adversely affected by soil salinity. PGPRs can promote plant growth and enhance plant tolerance to salt stress. In this study, a saline-alkaline tolerant PGPR strain BY2G20 was isolated from the rhizosphere of Ulmus pumila in Dongying, China. Strain BY2G20 represents a novel species within the genus Metabacillus based on phenotypic, genomic, and phylogenetic analysis. Genomic components have undergone different functional constraints, and the disparity in the evolutionary rate may be associated with the adaptation to a specific niche. Genomic analysis revealed numerous adaptive features of strain BY2G20 to a saline-alkaline environment and rhizosphere, especially genes related to salt tolerance, pH adaptability, and plant growth promotion. Our work also exhibited that inoculation of strain BY2G20 enhanced the growth of maize under salt stress. This study demonstrates that PGPRs play an important role in stimulating salt tolerance in plants and can be used as biofertilizers to enhance the growth of crops in saline-alkaline areas.
Collapse
|
30
|
Ou T, Zhang M, Huang Y, Wang L, Wang F, Wang R, Liu X, Zhou Z, Xie J, Xiang Z. Role of Rhizospheric Bacillus megaterium HGS7 in Maintaining Mulberry Growth Under Extremely Abiotic Stress in Hydro-Fluctuation Belt of Three Gorges Reservoir. FRONTIERS IN PLANT SCIENCE 2022; 13:880125. [PMID: 35712602 PMCID: PMC9195505 DOI: 10.3389/fpls.2022.880125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 05/03/2023]
Abstract
Plant growth-promoting rhizobacteria have been shown to play important roles in maintaining host fitness under periods of abiotic stress, and yet their effect on mulberry trees which regularly suffer drought after flooding in the hydro-fluctuation belt of the Three Gorges Reservoir Region in China remains largely uncharacterized. In the present study, 74 bacterial isolates were obtained from the rhizosphere soil of mulberry after drought stress, including 12 phosphate-solubilizing and 10 indole-3-acetic-acid-producing isolates. Bacillus megaterium HGS7 was selected for further study due to the abundance of traits that might benefit plants. Genomic analysis revealed that strain HGS7 possessed multiple genes that contributed to plant growth promotion, stress tolerance enhancement, and antimicrobial compound production. B. megaterium HGS7 consistently exhibited antagonistic activity against phytopathogens and strong tolerance to abiotic stress in vitro. Moreover, this strain stimulated mulberry seed germination and seedling growth. It may also induce the production of proline and antioxidant enzymes in mulberry trees to enhance drought tolerance and accelerate growth recovery after drought stress. The knowledge of the interactions between rhizobacteria HGS7 and its host plant might provide a potential strategy to enhance the drought tolerance of mulberry trees in a hydro-fluctuation belt.
Collapse
Affiliation(s)
- Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yazhou Huang
- Kaizhou District Nature Reserve Management Center, Chongqing, China
| | - Li Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- *Correspondence: Jie Xie,
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Elgorban AM. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118343. [PMID: 34662593 DOI: 10.1016/j.envpol.2021.118343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biodegradation of hazardous petroleum hydrocarbons has recently received a lot of attention because of its many possible applications. Bacillus marsiflavi strain was isolated from oil contaminated soil of Rawalpindi, Pakistan. Initial sequencing was done by 16s rRNA sequencing technique. Bac 144 had shown 78% emulsification index and 72% hydrophobicity content. Further, the strain displayed production of 15.5 mg/L phosphate sloubilization and 30.25 μg/ml indole acetic acid (IAA) in vitro assay. The strain showed 65% biodegradation of crude oil within 5 days by using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Whole Genome analysis of Bac 144 was performed by PacBio sequencing and results indicated that Bacillus marsiflavi Bac144 strain consisted of size of 4,417,505bp with closest neighbor Bacillus cereus ATCC 14579. The number of the coding sequence was 4662 and number of RNAs was 141. The GC content comprised 48.1%. Various genes were detected in genome responsible for hydrocarbon degradation and plant defense mechanism. The toxic effect of petroleum hydrocarbons in soil and its mitigation with Bac 144 was tested by soil experiment with three levels of oil contamination (5%, 10% and 15%). Soil enzymatic activity such as dehydrogenase and fluorescein diacetate (FDA) increased up to 49% and 40% with inoculation of Bac 144, which was considered to be correlated with hydrocarbon degradation recorded as 46%. An increase of 20%, 14% and 9% in shoot length of plant at 5%, 10% and 15% level of oil was recorded treated with Bac 144 as compared to untreated plants. A percent increase of 14.89%, 16.85%, and 13.87% in chlorophyll, carotenoid, and proline content of plant was observed by inoculation with Bac 144 under oil stress. Significant reduction of 14% and 18%, 21% was recorded in the malondialdehyde content of plant due to inoculation of Bac 144. A considerable increase of 21.33%, 19.5%, and 24.5% in super oxide dismutase, catalase, and peroxidase dismutase activity was also observed in plants inoculated with strain Bac 144. These findings suggested that Bac-144 can be considered as efficient candidate for bioremediation of hydrocarbons.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - Fatima Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | | | - Sanku Dattamudi
- Earth and Environment Department, Florida International University, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Fathi F, Saberi Riseh R, Khodaygan P, Hosseini S, Skorik YA. Microencapsulation of a Pseudomonas Strain (VUPF506) in Alginate-Whey Protein-Carbon Nanotubes and Next-Generation Sequencing Identification of This Strain. Polymers (Basel) 2021; 13:4269. [PMID: 34883770 PMCID: PMC8659823 DOI: 10.3390/polym13234269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Alginate is a common agent used for microencapsulation; however, the formed capsule is easily damaged. Therefore, alginate requires blending with other biopolymers to reduce capsule vulnerability. Whey protein is one polymer that can be incorporated with alginate to improve microcapsule structure. In this study, three different encapsulation methods (extrusion, emulsification, and spray drying) were tested for their ability to stabilize microencapsulated Pseudomonas strain VUPF506. Extrusion and emulsification methods enhanced encapsulation efficiency by up to 80% and gave the best release patterns over two months. A greenhouse experiment using potato plants treated with alginate-whey protein microcapsules showed a decrease in Rhizoctonia disease intensity of up to 70%. This is because whey protein is rich in amino acids and can serve as a resistance induction agent for the plant. In this study, the use of CNT in the ALG-WP system increased the rooting and proliferation and reduced physiological complication. The results of this study showed that the technique used in encapsulation could have a significant effect on the efficiency and persistence of probiotic bacteria. Whole genome sequence analysis of strain VUPF506 identified it as Pseudomonas chlororaphis and revealed some genes that control pathogens.
Collapse
Affiliation(s)
- Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (F.F.); (R.S.R.); (P.K.); (S.H.)
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (F.F.); (R.S.R.); (P.K.); (S.H.)
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (F.F.); (R.S.R.); (P.K.); (S.H.)
| | - Samin Hosseini
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; (F.F.); (R.S.R.); (P.K.); (S.H.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
33
|
Plant Growth-Promoting Rhizobacteria Modulate the Concentration of Bioactive Compounds in Tomato Fruits. SEPARATIONS 2021. [DOI: 10.3390/separations8110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The application of microorganisms as bioestimulants in order to increase the yield and/or quality of agricultural products is becoming a widely used practice in many countries. In this work, five plant growth-promoting rhizobacteria (PGPR), isolated from cultivated rice paddy soils, were selected for their plant growth-promoting capacities (e.g., auxin synthesis, chitinase activity, phosphate solubilisation and siderophores production). Two different tomato cultivars were inoculated, Tres Cantos and cherry. Plants were grown under greenhouse conditions and different phenotypic characteristics were analysed at the time of harvesting. Results: Tres Cantos plants inoculated with PGPR produced less biomass but larger fruits. However, the photosynthetic rate was barely affected. Several antioxidant activities were upregulated in these plants, and no oxidative damage in terms of lipid peroxidation was observed. Finally, ripe fruits accumulated less sugar but, interestingly, more lycopene. By contrast, inoculation of cherry plants with PGPR had no effect on biomass, although photosynthesis was slightly affected, and the productivity was similar to the control plants. In addition, antioxidant activities were downregulated and a higher lipid peroxidation was detected. However, neither sugar nor lycopene accumulation was altered. Conclusion: These results support the use of microorganisms isolated from agricultural soils as interesting tools to manipulate the level of important bioactive molecules in plants. However, this effect seems to be very specific, even at the variety level, and deeper analyses are necessary to assess their use for specific applications.
Collapse
|
34
|
Duran-Bedolla J, Garza-Ramos U, Rodríguez-Medina N, Aguilar Vera A, Barrios-Camacho H. Exploring the environmental traits and applications of Klebsiella variicola. Braz J Microbiol 2021; 52:2233-2245. [PMID: 34626346 DOI: 10.1007/s42770-021-00630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Klebsiella variicola has been found in various natural niches, alone or in association with other bacteria, and causes diseases in animals and plants with important economic and environmental impacts. K. variicola has the capacity to fix nitrogen in the rhizosphere and soil; produces indole acetic acid, acetoin, and ammonia; and dissolves phosphorus and potassium, which play an important role in plant growth promotion and nutrition. Some members of K. variicola have properties such as halotolerance and alkalotolerance, conferring an evolutionary advantage. In the environmental protection, K. variicola can be used in the wastewater treatment, biodegradation, and bioremediation of polluted soil, either alone or in association with other organisms. In addition, it has the potential to carry out industrial processes in the food and pharmaceutical industries, like the production of maltose and glucose by the catalysis of debranching unmodified oligosaccharides by the pullulanase enzyme. Finally, this bacterium has the ability to transform chemical energy into electrical energy, such as a biocatalyst, which could be useful in the near future. These properties show that K. variicola should be considered an eco-friendly bacterium with hopeful technological promise. In this review, we explore the most significant aspects of K. variicola and highlight its potential applications in environmental and biotechnological processes.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Aguilar Vera
- Centro de Ciencias Genómicas, Programa de Genómica Funcional de Procariotes, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Sta. Ma. Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
35
|
Chandran H, Meena M, Swapnil P. Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. SUSTAINABILITY 2021; 13:10986. [DOI: 10.3390/su131910986] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Environmental stress is a major challenge for sustainable food production as it reduces yield by generating reactive oxygen species (ROS) which pose a threat to cell organelles and biomolecules such as proteins, DNA, enzymes, and others, leading to apoptosis. Plant growth-promoting rhizobacteria (PGPR) offers an eco-friendly and green alternative to synthetic agrochemicals and conventional agricultural practices in accomplishing sustainable agriculture by boosting growth and stress tolerance in plants. PGPR inhabit the rhizosphere of soil and exhibit positive interaction with plant roots. These organisms render multifaceted benefits to plants by several mechanisms such as the release of phytohormones, nitrogen fixation, solubilization of mineral phosphates, siderophore production for iron sequestration, protection against various pathogens, and stress. PGPR has the potential to curb the adverse effects of various stresses such as salinity, drought, heavy metals, floods, and other stresses on plants by inducing the production of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. Genetically engineered PGPR strains play significant roles to alleviate the abiotic stress to improve crop productivity. Thus, the present review will focus on the impact of PGPR on stress resistance, plant growth promotion, and induction of antioxidant systems in plants.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi 110007, India
| |
Collapse
|
36
|
Kuhl T, Chowdhury SP, Uhl J, Rothballer M. Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant-Microbe Interaction Traits. Front Microbiol 2021; 12:708605. [PMID: 34489897 PMCID: PMC8416521 DOI: 10.3389/fmicb.2021.708605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Stress tolerant, plant-associated bacteria can play an important role in maintaining a functional plant microbiome and protecting plants against various (a)biotic stresses. Members of the stress tolerant genus Rhodococcus are frequently found in the plant microbiome. Rhodococcus qingshengii RL1 was isolated from Eruca sativa and the complete genome was sequenced, annotated and analyzed using different bioinformatic tools. A special focus was laid on functional analyses of stress tolerance and interactions with plants. The genome annotation of RL1 indicated that it contains a repertoire of genes which could enable it to survive under different abiotic stress conditions for e.g., elevated mercury concentrations, to interact with plants via root colonization, to produce phytohormones and siderophores, to fix nitrogen and to interact with bacterial signaling via a LuxR-solo and quorum quenching. Based on the identified genes, functional analyses were performed in vitro with RL1 under different growth conditions. The R. qingshengii type strain djl6 and a closely related Rhodococcus erythropolis BG43 were included in the experiments to find common and distinct traits between the strains. Genome based phylogenetic analysis of 15 available and complete R. erythropolis and R. qingshengii genome sequences revealed a separation of the R. erythropolis clade in two subgroups. First one harbors only R. erythropolis strains including the R. erythropolis type strain. The second group consisted of the R. qingshengii type strain and a mix of R. qingshengii and R. erythropolis strains indicating that some strains of the second group should be considered for taxonomic re-assignment. However, BG43 was clearly identified as R. erythropolis and RL1 clearly as R. qingshengii and the strains had most tested traits in common, indicating a close functional overlap of traits between the two species.
Collapse
Affiliation(s)
- Theresa Kuhl
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jenny Uhl
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
37
|
Guerrieri MC, Fiorini A, Fanfoni E, Tabaglio V, Cocconcelli PS, Trevisan M, Puglisi E. Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:660620. [PMID: 33859664 PMCID: PMC8042378 DOI: 10.3389/fpls.2021.660620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 06/07/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.
Collapse
Affiliation(s)
- Maria Chiara Guerrieri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
38
|
Rajkumari J, Choudhury Y, Bhattacharjee K, Pandey P. Rhizodegradation of Pyrene by a Non-pathogenic Klebsiella pneumoniae Isolate Applied With Tagetes erecta L. and Changes in the Rhizobacterial Community. Front Microbiol 2021; 12:593023. [PMID: 33708179 PMCID: PMC7940843 DOI: 10.3389/fmicb.2021.593023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022] Open
Abstract
The non-clinical Klebsiella pneumoniae variants, isolated from different environments, are now well acknowledged for their role in plant-growth promotion and biodegradation of pollutants. In the present study, a non-clinical environmental isolate K. pneumoniae AWD5 is being described for rhizoremediation of pyrene, applied through the rhizosphere of an ornamental plant, Tagetes erecta L (marigold). The non-pathogenic nature of AWD5 was established using an in vivo mouse model experiment, where AWD5 was unable to cause lung infection in tested mice. Degradation of pyrene, in the presence of succinate as co-substrate, was observed to be 87.5% by AWD5, after 21 days of incubation in minimal (Bushnell–Hass) medium in vitro conditions. Consequently, the bacterial inoculation through the rhizosphere of T. erecta L. plants resulted in 68.61% degradation of pyrene, which was significantly higher than control soil. Inoculation of AWD5 also improved plant growth and exhibited an increase in root length (14.64%), dry root weight (80.56%), shoot length (3.26%), and dry shoot weight (45.35%) after 60 days of incubation. T. erecta L., an ornamental plant, was also found to be suitable for bioremediation of pyrene. The effect of AWD5 application, and rhizoremediation process, on rhizosphere bacterial diversity and community structure has been studied using the metagenomic analysis of the 16S (V3–V4) region of rRNA. 37 bacterial phyla constituted the core microbiome, which was dominated by Proteobacteria followed by Actinobacteria, Actinobacteria, and Planctomycetes for all the treatments. AWD5 inoculation enhanced the relative abundance of Firmicutes and Acidobacteria as compared with other treatments. Genus Kaistobacter and Verrucomicrobia were found to be an abundant indigenous population in pyrene-spiked soils. Bacterial richness and diversity were analyzed using the Shannon–Wiener (H) index. A lower diversity index was observed in pyrene-spiked soils. Canonical correspondence analysis (CCA) showed a possible linkage with plant growth attributes and available nitrogen content that influences diversity and abundance of the bacterial community.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, India
| | | | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
39
|
Endophytic Lifestyle of Global Clones of Extended-Spectrum β-Lactamase-Producing Priority Pathogens in Fresh Vegetables: a Trojan Horse Strategy Favoring Human Colonization? mSystems 2021; 6:6/1/e01125-20. [PMID: 33563779 PMCID: PMC7883542 DOI: 10.1128/msystems.01125-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The global spread of antibiotic-resistant bacteria and their resistance genes is a critical issue that is no longer restricted to hospital settings, but also represents a growing problem involving environmental and food safety. In this study, we have performed a microbiological and genomic investigation of critical priority pathogens resistant to broad-spectrum cephalosporins and showing endophytic lifestyles in fresh vegetables sold in a country with high endemicity of extended-spectrum β-lactamases (ESBLs). We report the isolation of international high-risk clones of CTX-M-15-producing Escherichia coli, belonging to clonal complexes CC38 and CC648, and Klebsiella pneumoniae of complex CC307 from macerated tissue of surface-sterilized leaves of spinach, cabbage, arugula, and lettuce. Regardless of species, all ESBL-positive isolates were able to endophytically colonize common bean (Phaseolus vulgaris) seedlings, showed resistance to acid pH, and had a multidrug-resistant (MDR) profile to clinically relevant antibiotics (i.e., broad-spectrum cephalosporins, aminoglycosides, and fluoroquinolones). Genomic analysis of CTX-M-producing endophytic Enterobacterales revealed a wide resistome (antibiotics, biocides, disinfectants, and pesticides) and virulome, and genes for endophytic fitness and for withstanding acidic conditions. Transferable IncFIB and IncHI2A plasmids carried bla CTX-M-15 genes and, additionally, an IncFIB plasmid (named pKP301cro) also harbored genes encoding resistance to heavy metals. These data support the hypothesis that fresh vegetables marketed for consumption can act as a figurative Trojan horse for the hidden spread of international clones of critical WHO priority pathogens producing ESBLs, and/or their resistance genes, to humans and other animals, which is a critical issue within a food safety and broader public and environmental health perspective.IMPORTANCE Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales are a leading cause of human and animal infections, being classified as critical priority pathogens by the World Health Organization. Epidemiological studies have shown that spread of ESBL-producing bacteria is not a problem restricted to hospitals, but also represents a growing problem involving environmental and food safety. In this regard, CTX-M-type β-lactamases have become the most widely distributed and clinically relevant ESBLs worldwide. Here, we have investigated the occurrence and genomic features of ESBL-producing Enterobacterales in surface-sterilized fresh vegetables. We have uncovered that international high-risk clones of CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae harboring a wide resistome and virulome, carry additional genes for endophytic fitness and resistance to acidic conditions. Furthermore, we have demonstrated that these CTX-M-15-positive isolates are able to endophytically colonize plant tissues. Therefore, we believe that fresh vegetables can act as a figurative Trojan horse for the hidden spread of critical priority pathogens exhibiting endophytic lifestyles.
Collapse
|
40
|
González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host. MICROBIAL ECOLOGY 2021; 81:471-482. [PMID: 32901388 DOI: 10.1007/s00248-020-01593-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.
Collapse
Affiliation(s)
- Lihuén Iraí González-Dominici
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain.
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain.
| |
Collapse
|
41
|
El-Gawad AMA, El-Shazly MM. Sustainable Development of Microbial Community in Some Localities in the Desert Soil of Egypt. SPRINGER WATER 2021:213-235. [DOI: 10.1007/978-3-030-73161-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
42
|
Qin L, Tian P, Cui Q, Hu S, Jian W, Xie C, Yang X, Shen H. Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:644597. [PMID: 33936131 PMCID: PMC8079787 DOI: 10.3389/fpls.2021.644597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.
Collapse
Affiliation(s)
- Lijun Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Peidong Tian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qunyao Cui
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuping Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wei Jian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Xingyong Yang,
| | - Hong Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- College of Resources and Environment Science, Southwest University, Chongqing, China
- Hong Shen,
| |
Collapse
|
43
|
Draft Genome Sequence of the Plant Growth-Promoting Rhizobacterium Klebsiella sp. Strain KBG6.2, Imparting Salt Tolerance to Rice. Microbiol Resour Announc 2020; 9:9/35/e00491-20. [PMID: 32855243 PMCID: PMC7453279 DOI: 10.1128/mra.00491-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella sp. strain KBG6.2 is a potential salt-tolerant, plant growth-promoting rhizobacterium isolated from a rice field in Konark, Odisha, India. Here, we report the whole-genome sequencing of Klebsiella sp. strain KBG6.2, which has a 5.038-Mb genome containing 4,867 predicted protein-coding sequences and 79 RNA genes. Klebsiella sp. strain KBG6.2 is a potential salt-tolerant, plant growth-promoting rhizobacterium isolated from a rice field in Konark, Odisha, India. Here, we report the whole-genome sequencing of Klebsiella sp. strain KBG6.2, which has a 5.038-Mb genome containing 4,867 predicted protein-coding sequences and 79 RNA genes.
Collapse
|
44
|
Comparative genome analysis and characterization of a MDR Klebsiella variicola. Genomics 2020; 112:3179-3190. [PMID: 32504650 DOI: 10.1016/j.ygeno.2020.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/17/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Klebsiella variicola is an emerging pathogen responsible for causing blood-stream infections, urinary and respiratory tract related diseases in humans. In this report, we describe the genome sequence data and phenotypic characterization of K. variicola strain KV093 isolated from India. Comparative genome sequence analysis revealed the presence of genes linked with virulence, iron acquisition and transport, type 1 and type 3 pili, secretion systems including the capsular gene cluster. The plant-associated genes such as nitrogen fixation, growth and defense mechanisms against oxidative stress were also identified. On performing antibiotic susceptibility testing, growth inhibition, and stress challenge assays it was observed that the drug resistant K. variicola KV093 exhibited cross resistance to various antibiotics, antiseptics, including disinfectants. This report highlights the arsenal of virulence and antibiotic resistance determinants in K. variicola KV093, an effort emphasizing the current pressing need for regular surveillance of K. variicola strains especially in India.
Collapse
|
45
|
Mukherjee T, Banik A, Mukhopadhyay SK. Plant Growth-Promoting Traits of a Thermophilic Strain of the Klebsiella Group with its Effect on Rice Plant Growth. Curr Microbiol 2020; 77:2613-2622. [PMID: 32440809 DOI: 10.1007/s00284-020-02032-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
In agriculture, instead of synthetic fertilizers, natural bio-inoculants can be used to increase growth and yield of crops. For this purpose, we report a thermophilic bacteria Klebsiella sp. strain PMnew, isolated from Paniphala hot spring. The strain was characterized and assessed for plant growth-promoting traits. Oryza sativa L. var Swarna (rice) seeds were inoculated with the strain to study the bacterization effect on vegetative and reproductive growth of rice plants. The results indicate that PMnew produces organic acids to solubilize phosphate (550.16 ± 0.04 µg/ml), fixes nitrogen, produces indole compounds, siderophore, and ACC deaminase, and shows heavy metal resistance to chromium, cobalt, arsenic, cadmium, and mercury. It also possesses the ability to utilize several monomeric and polymeric sugars as sole carbon source including starch, agar, xylan, gelatin, and pectin, and can grow under both nutrient-rich and deficient conditions. Inoculated rice plants grew twice the length of control plants and surpassed the total grain mass yield of control plants by almost 18 times. Thus, this study brings forth a broad spectrum and easy to cultivate bio-inoculant, which can be used to increase rice production.
Collapse
Affiliation(s)
- Trinetra Mukherjee
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Avishek Banik
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, West Bengal, 700073, India
| | | |
Collapse
|
46
|
Chu TN, Bui LV, Hoang MTT. Pseudomonas PS01 Isolated from Maize Rhizosphere Alters Root System Architecture and Promotes Plant Growth. Microorganisms 2020; 8:E471. [PMID: 32224990 PMCID: PMC7232511 DOI: 10.3390/microorganisms8040471] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
The objectives of this study were to evaluate the plant growth promoting effects on Arabidopsis by Pseudomonas sp. strains associated with rhizosphere of crop plants grown in Mekong Delta, Vietnam. Out of all the screened isolates, Pseudomonas PS01 isolated from maize rhizosphere showed the most prominent plant growth promoting effects on Arabidopsis and maize (Zea mays). We also found that PS01 altered root system architecture (RSA). The full genome of PS01 was resolved using high-throughput sequencing. Phylogenetic analysis identified PS01 as a member of the Pseudomonas putida subclade, which is closely related to Pseudomonas taiwanensis.. PS01 genome size is 5.3 Mb, assembled in 71 scaffolds comprising of 4820 putative coding sequence. PS01 encodes genes for the indole-3-acetic acid (IAA), acetoin and 2,3-butanediol biosynthesis pathways. PS01 promoted the growth of Arabidopsis and altered the root system architecture by inhibiting primary root elongation and promoting lateral root and root hair formation. By employing gene expression analysis, genetic screening and pharmacological approaches, we suggested that the plant-growth promoting effects of PS01 and the alteration of RSA might be independent of bacterial auxin and could be caused by a combination of different diffusible compounds and volatile organic compounds (VOCs). Taken together, our results suggest that PS01 is a potential candidate to be used as bio-fertilizer agent for enhancing plant growth.
Collapse
Affiliation(s)
- Thanh Nguyen Chu
- Faculty of Biology and Biotechnology, University of Science-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Laboratory of Molecular Biotechnology, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Le Van Bui
- Faculty of Biology and Biotechnology, University of Science-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Laboratory of Molecular Biotechnology, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Minh Thi Thanh Hoang
- Faculty of Biology and Biotechnology, University of Science-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
- Laboratory of Molecular Biotechnology, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
47
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S. Beneficial Endophytic Bacteria- Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Front Microbiol 2019; 10:2888. [PMID: 31921065 PMCID: PMC6930893 DOI: 10.3389/fmicb.2019.02888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
49
|
Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front Microbiol 2019; 10:2791. [PMID: 31921005 PMCID: PMC6930159 DOI: 10.3389/fmicb.2019.02791] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Soil salinity has emerged as a serious issue for global food security. It is estimated that currently about 62 million hectares or 20 percent of the world's irrigated land is affected by salinity. The deposition of an excess amount of soluble salt in cultivable land directly affects crop yields. The uptake of high amount of salt inhibits diverse physiological and metabolic processes of plants even impacting their survival. The conventional methods of reclamation of saline soil which involve scraping, flushing, leaching or adding an amendment (e.g., gypsum, CaCl2, etc.) are of limited success and also adversely affect the agro-ecosystems. In this context, developing sustainable methods which increase the productivity of saline soil without harming the environment are necessary. Since long, breeding of salt-tolerant plants and development of salt-resistant crop varieties have also been tried, but these and aforesaid conventional approaches are not able to solve the problem. Salt tolerance and dependence are the characteristics of some microbes. Salt-tolerant microbes can survive in osmotic and ionic stress. Various genera of salt-tolerant plant growth promoting rhizobacteria (ST-PGPR) have been isolated from extreme alkaline, saline, and sodic soils. Many of them are also known to mitigate various biotic and abiotic stresses in plants. In the last few years, potential PGPR enhancing the productivity of plants facing salt-stress have been researched upon suggesting that ST-PGPR can be exploited for the reclamation of saline agro-ecosystems. In this review, ST-PGPR and their potential in enhancing the productivity of saline agro-ecosystems will be discussed. Apart from this, PGPR mediated mechanisms of salt tolerance in different crop plants and future research trends of using ST-PGPR for reclamation of saline soils will also be highlighted.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Stephan Wirth
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Jitendra Mishra
- DST-CPR, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Naveen K. Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
50
|
Genome Insights into the Novel Species Microvirga brassicacearum, a Rapeseed Endophyte with Biotechnological Potential. Microorganisms 2019; 7:microorganisms7090354. [PMID: 31540065 PMCID: PMC6780248 DOI: 10.3390/microorganisms7090354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Plants harbor a diversity of microorganisms constituting the plant microbiome. Many bioinoculants for agricultural crops have been isolated from plants. Nevertheless, plants are an underexplored niche for the isolation of microorganisms with other biotechnological applications. As a part of a collection of canola endophytes, we isolated strain CDVBN77T. Its genome sequence shows not only plant growth-promoting (PGP) mechanisms, but also genetic machinery to produce secondary metabolites, with potential applications in the pharmaceutical industry, and to synthesize hydrolytic enzymes, with potential applications in biomass degradation industries. Phylogenetic analysis of the 16S rRNA gene of strain CDVBN77T shows that it belongs to the genus Microvirga, its closest related species being M. aerophila DSM 21344T (97.64% similarity) and M. flavescens c27j1T (97.50% similarity). It contains ubiquinone 10 as the predominant quinone, C19:0 cycloω8c and summed feature 8 as the major fatty acids, and phosphatidylcholine and phosphatidylethanolamine as the most abundant polar lipids. Its genomic DNA G+C content is 62.3 (mol %). Based on phylogenetic, chemotaxonomic, and phenotypic analyses, we suggest the classification of strain CDVBN77T within a new species of the genus Microvirga and propose the name Microvirga brassicacearum sp. nov. (type strain CDVBN77T = CECT 9905T = LMG 31419T).
Collapse
|