1
|
Wang X, Liu W, Zhan C, Zhang Y, Li X, Wang Y, Sheng M, Maqsood M, Shen H, Liang A, Shao W. Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway. iScience 2025; 28:111626. [PMID: 39850359 PMCID: PMC11754826 DOI: 10.1016/j.isci.2024.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Increasing evidence suggests that aberrant alternative splicing plays crucial roles in tumorigenesis. However, the function of EZH2 splice variants as well as the mechanism by which EZH2 alternative splicing occurs in hepatocellular carcinoma (HCC) remain elusive. Here, we analyzed both our own and published transcriptomic data, obtaining 19 splice variants of EZH2 in addition to canonical full-length EZH2-A in HCC. We found that expression of EZH2-A/EZH2-B in tumor tissues and cell lines was significantly higher than in normal tissues. Conversely, EZH2-C expression was lower in tumor tissues and cell lines than in normal tissues. Further functional analysis indicated that unlike full-length EZH2-A that promotes H3K27 methylation, EZH2-C reduced H3K27me3 levels. EZH2-C inhibited proliferation, migration, invasion of HCC cells. Moreover, EZH2-A and EZH2-C regulate the BMP2 signaling pathway oppositely. Mechanistically, EZH2's alternative splicing was mediated by splicing factor SNRPB. In summary, this study revealed that alternative splicing of EZH2 regulates HCC.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Madiha Maqsood
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hang Shen
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, Anhui Medical University, Hefei 230000, China
| | - Anmin Liang
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Wei F, Bi S, Li M, Yu J. Lymph node metastasis determined miRNAs in esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:13104-13116. [PMID: 39401765 PMCID: PMC11552642 DOI: 10.18632/aging.206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE There is no golden noninvasive and effective technique to diagnose lymph node metastasis (LNM) for esophageal squamous cell carcinoma (ESCC) patients. Here, a classifier was proposed consisting of miRNAs to screen ESCC patients with LNM from the ones without LNM. METHODS miRNA expression and clinical data files of 93 ESCC samples were downloaded from TCGA as the discovery set and 119 ESCC samples with similar dataset GSE43732 as the validation set. Differentially expressed miRNAs (DE-miRNAs) were analyzed between patients with LNM and without LNM. LASSO regression was performed for selecting the DE-miRNA pair to consist the classifier. To validate the accuracy and reliability of the classifier, the SVM and AdaBoost algorithms were applied. The CCK-8 and wound healing assay were used to evaluate the role of the miRNA in ESCC cells. RESULT There were 43 DE miRNAs between the LNM+ group and LNM- group. Among them, miR-224-5p, miR-99a-5p, miR-100-5p, miR-34c-5p, miR-503-5p, and miR-452-5p were identified by LASSO to establish the classifier. SVM and AdaBoost showed that the model could classify the ESCC patients with LNM from the ones without LNM precisely and reliably in 2 data sets. miR-224-5p in the classifier as the top contributor to discriminate the two groups of patients based on AdaBoost, promoted ESCC cell proliferation and migration in vitro. CONCLUSION The classifier based on these 6 miRNAs could classify the ESCC patients with LNM from the ones without LNM successfully.
Collapse
Affiliation(s)
- Feng Wei
- Department of Critical Care Medicine, Affiliated Hospital of Chifeng University, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Shufeng Bi
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Mengmeng Li
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Jia Yu
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Lee NR, Meng RY, Rah SY, Jin H, Ray N, Kim SH, Park BH, Kim SM. Reactive Oxygen Species-Mediated Autophagy by Ursolic Acid Inhibits Growth and Metastasis of Esophageal Cancer Cells. Int J Mol Sci 2020; 21:E9409. [PMID: 33321911 PMCID: PMC7764507 DOI: 10.3390/ijms21249409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) possesses various pharmacological activities, such as antitumorigenic and anti-inflammatory effects. In the present study, we investigated the mechanisms underlying the effects of UA against esophageal squamous cell carcinoma (ESCC) (TE-8 cells and TE-12 cells). The cell viability assay showed that UA decreased the viability of ESCC in a dose-dependent manner. In the soft agar colony formation assay, the colony numbers and size were reduced in a dose-dependent manner after UA treatment. UA caused the accumulation of vacuoles and LC3 puncta, a marker of autophagosome, in a dose-dependent manner. Autophagy induction was confirmed by measuring the expression levels of LC3 and p62 protein in ESCC cells. UA increased LC3-II protein levels and decreased p62 levels in ESCC cells. When autophagy was hampered using 3-methyladenine (3-MA), the effect of UA on cell viability was reversed. UA also significantly inhibited protein kinase B (Akt) activation and increased p-Akt expression in a dose-dependent manner in ESCC cells. Accumulated LC3 puncta by UA was reversed after wortmannin treatment. LC3-II protein levels were also decreased after treatment with Akt inhibitor and wortmannin. Moreover, UA treatment increased cellular reactive oxygen species (ROS) levels in ESCC in a time- and dose-dependent manner. Diphenyleneiodonium (an ROS production inhibitor) blocked the ROS and UA induced accumulation of LC3-II levels in ESCC cells, suggesting that UA-induced cell death and autophagy are mediated by ROS. Therefore, our data indicate that UA inhibits the growth of ESCC cells by inducing ROS-dependent autophagy.
Collapse
Affiliation(s)
- Na-Ri Lee
- Division of Hematology and Oncology, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Ruo Yu Meng
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| | - So-Young Rah
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.-Y.R.); (B.H.P.)
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Navin Ray
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| | - Seong-Hun Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Byung Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.-Y.R.); (B.H.P.)
| | - Soo Mi Kim
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| |
Collapse
|
6
|
TrkB Inhibits the BMP Signaling-Mediated Growth Inhibition of Cancer Cells. Cancers (Basel) 2020; 12:cancers12082095. [PMID: 32731498 PMCID: PMC7464134 DOI: 10.3390/cancers12082095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
We have previously observed that tropomyosin receptor kinase B (TrkB) induces breast cancer metastasis by activating both the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) and phosphatidylinositol-3-Kinase (PI3K)/AKT signaling pathways and inhibiting runt-related transcription factor 3 (RUNX3) and kelch-like ECH-associated protein 1 (KEAP1). These studies indicated that TrkB expression is crucial to the pathogenesis of breast cancer. However, how TrkB regulates bone morphogenetic protein (BMP) signaling and tumor suppression is largely unknown. Herein, we report that TrkB is a key regulator of BMP-mediated tumor suppression. TrkB enhances the metastatic potential of cancer cells by promoting cell anchorage-independent growth, migration, and suppressing BMP-2-mediated growth inhibition. TrkB inhibits the BMP-mediated activation of SMAD family member 1 (SMAD1) by promoting the formation of the TrkB/BMP type II receptor complex and suppresses RUNX3 by depleting BMP receptor I (BMPRI) expression. In addition, the knockdown of TrkB restored the tumor-inhibitory effect of BMP-2 via the activation of SMAD1. Moreover, the TrkB kinase activity was required for its effect on BMP signaling. Our study identified a unique role of TrkB in the regulation of BMP-mediated growth inhibition and BMP-2-induced RUNX3 expression.
Collapse
|
7
|
Kim SH, Jin H, Meng RY, Kim DY, Liu YC, Chai OH, Park BH, Kim SM. Activating Hippo Pathway via Rassf1 by Ursolic Acid Suppresses the Tumorigenesis of Gastric Cancer. Int J Mol Sci 2019; 20:E4709. [PMID: 31547587 PMCID: PMC6801984 DOI: 10.3390/ijms20194709] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is often dysregulated in many carcinomas, which results in various stages of tumor progression. Ursolic acid (UA), a natural compound that exists in many herbal plants, is known to obstruct cancer progression and exerts anti-carcinogenic effect on a number of human cancers. In this study, we aimed to examine the biological mechanisms of action of UA through the Hippo pathway in gastric cancer cells. MTT assay showed a decreased viability of gastric cancer cells after treatment with UA. Following treatment with UA, colony numbers and the sizes of gastric cancer cells were significantly diminished and apoptosis was observed in SNU484 and SNU638 cells. The invasion and migration rates of gastric cancer cells were suppressed by UA in a dose-dependent manner. To further determine the gene expression patterns that are related to the effects of UA, a microarray analysis was performed. Gene ontology analysis revealed that several genes, such as the Hippo pathway upstream target gene, ras association domain family (RASSF1), and its downstream target genes (MST1, MST2, and LATS1) were significantly upregulated by UA, while the expression of YAP1 gene, together with oncogenes (FOXM1, KRAS, and BATF), were significantly decreased. Similar to the gene expression profiling results, the protein levels of RASSF1, MST1, MST2, LATS1, and p-YAP were increased, whereas those of CTGF were decreased by UA in gastric cancer cells. The p-YAP expression induced in gastric cancer cells by UA was reversed with RASSF1 silencing. In addition, the protein levels in the Hippo pathway were increased in the UA-treated xenograft tumor tissues as compared with that in the control tumor tissues; thus, UA significantly inhibited the tumorigenesis of gastric cancer in vivo in xenograft animals. Collectively, UA diminishes the proliferation and metastasis of gastric cancer via the regulation of Hippo pathway through Rassf1, which suggests that UA can be used as a potential chemopreventive and therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hua Jin
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ruo Yu Meng
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Da-Yeah Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Yu Chuan Liu
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ok Hee Chai
- Department of Anatomy and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Byung Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
8
|
Recombinant human bone morphogenetic protein-2 inhibits gastric cancer cell proliferation by inactivating Wnt signaling pathway via c-Myc with aurora kinases. Oncotarget 2018; 7:73473-73485. [PMID: 27636990 PMCID: PMC5341992 DOI: 10.18632/oncotarget.11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/02/2016] [Indexed: 01/12/2023] Open
Abstract
The detailed molecular mechanisms and safety issues of recombinant human bone morphogenetic protein-2 (rhBMP-2) usage in bone graft substitution remain poorly understood. To investigate the molecular mechanisms underlying the function of rhBMP-2 in gastric cancer cells, we used microarrays to determine the gene expression patterns related to the effects of rhBMP-2. Based on a gene ontology analysis, several genes were upregulated during the regulation of the cell cycle and BMP signaling pathway. MYC was found to be significantly decreased along with its downstream target genes, the aurora kinases (AURKs), by rhBMP-2 in the network analysis. We further confirmed this finding with western blot data that rhBMP-2 inhibited c-Myc, AURKs, and β-catenin in SNU484 and SNU638 cells. An AURK inhibitor significantly decreased c-Myc expression in gastric cancer cells. Combination treatment with rhBMP-2 and AURK inhibitor resulted in significantly decreased c-Myc expression compared with gastric cancer cells treated with an rhBMP-2 or AURK inhibitor, respectively. Similar effects for decreased c-Myc expression were observed when we silenced β-catenin in gastric cancer cells. These results indicate that rhBMP-2 attenuated the growth of gastric cancer cells via the inactivation of β-catenin via c-Myc and AURKs. Therefore, our findings suggest that rhBMP-2 could be safely used with patients who undergo gastric or gastroesophageal cancer surgery.
Collapse
|
9
|
Tong R, Yang B, Xiao H, Peng C, Hu W, Weng X, Cheng S, Du C, Lv Z, Ding C, Zhou L, Xie H, Wu J, Zheng S. KCTD11 inhibits growth and metastasis of hepatocellular carcinoma through activating Hippo signaling. Oncotarget 2017; 8:37717-37729. [PMID: 28465479 PMCID: PMC5514943 DOI: 10.18632/oncotarget.17145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/29/2017] [Indexed: 02/05/2023] Open
Abstract
A lack of effective prognostic biomarkers and molecular targets is a serious problem in hepatocellular carcinoma. KCTD11, reported as a tumor suppressor, are still not well understood. In this study, KCTD11 was found low-expressed in HCC tissues and cell lines. The HCC patients with low expression of KCTD11 suggested shorter overall survival. We found KCTD11 inhibiting cell proliferation in vitro and tumor growth in vivo, by activating p21 and repressing cycle related proteins. KCTD11 also inhibited cell adhesion by decreasing CTGF and CLDN1. We found CTGF binding COL3A1 in HCCLM3, which might lead to reduction of COL3A1 expression. KCTD11 also inhibited cell migration and invasion in HCC, by repressing MMPs and EMT. We found the tumor suppression function of KCTD11 was at least partly through activating Hippo pathway in HCC. Base on the enhanced Hippo pathway, KCTD11 could activate p21 by stabilizing p53 or promoting the MST1/ GSK3β/p21 signaling in HCC. Overall, these results suggest that KCTD11 works as a tumor suppressor and owns prognostic and therapeutic potentials in HCC.
Collapse
Affiliation(s)
- Rongliang Tong
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Beng Yang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310000, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chuanhui Peng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Wendi Hu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Xiaoyu Weng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Shaobing Cheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Chengli Du
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
| | - Zhen Lv
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Chaofeng Ding
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Jian Wu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310000, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
10
|
Hu M, Cui F, Liu F, Wang J, Wei X, Li Y. BMP signaling pathways affect differently migration and invasion of esophageal squamous cancer cells. Int J Oncol 2016; 50:193-202. [DOI: 10.3892/ijo.2016.3802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
|