1
|
Rijal R, Gomer RH. Pharmacological inhibition of host pathways enhances macrophage killing of intracellular bacterial pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.06.647500. [PMID: 40291742 PMCID: PMC12026824 DOI: 10.1101/2025.04.06.647500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
After ingestion into macrophage phagosomes, some bacterial pathogens such as Mycobacterium tuberculosis ( Mtb ) evade killing by preventing phagosome acidification and fusion of the phagosome with a lysosome. Mtb accumulates extracellular polyphosphate (polyP), and polyP inhibits macrophage phagosome acidification and bacterial killing. In Dictyostelium discoideum , polyP also inhibits bacterial killing, and we identified some proteins in D. discoideum that polyP requires to suppress the killing of ingested bacteria. Here, we find that pharmacological inhibition of human orthologues of the D. discoideum proteins, including P2Y1 receptors, mammalian Target of Rapamycin (mTOR), and inositol hexakisphosphate kinase, enhances the killing of Mtb , Legionella pneumophila , and Listeria monocytogenes by human macrophages. Mtb inhibits phagosome acidification, expression of the proinflammatory marker CD54, and autophagy, and increases expression of the anti-inflammatory marker CD206. In Mtb -infected macrophages, the polyP-degrading enzyme polyphosphatase (ScPPX) and inhibitors reversed these effects, with ScPPX increasing CD54 expression more in female macrophages compared to male macrophages. In addition, Mtb inhibits proteasome activity, and some, but not all, inhibitors reversed these effects. While the existence of a dedicated polyP signaling pathway remains uncertain, our findings suggest that pharmacological inhibition of select host proteins can restore macrophage function and enhances the killing of intracellular pathogens. Importance Human macrophages engulf bacteria into phagosomes, which then fuse with lysosomes to kill the bacteria. However, after engulfment, pathogenic bacteria such as Mycobacterium tuberculosis , Legionella pneumophila , and Listeria monocytogenes can block phagosome-lysosome fusion, allowing their survival. Here, we show that pharmacological inhibition of specific macrophage proteins reverses these effects and enhances bacterial killing. These findings suggest that targeting host factors involved in these processes may provide a therapeutic strategy to improve macrophage function against infections such as tuberculosis, Legionnaires' disease, and listeriosis.
Collapse
|
2
|
Priya M, Gupta SK, Koundal A, Kapoor S, Tiwari S, Kidwai S, Sorio de Carvalho LP, Thakur KG, Mahajan D, Sharma D, Kumar Y, Singh R. Itaconate mechanism of action and dissimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2025; 122:e2423114122. [PMID: 39841148 PMCID: PMC11789021 DOI: 10.1073/pnas.2423114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with Mycobacterium tuberculosis increases itaconate levels in lung tissues. We also show that exposure to itaconate inhibits M. tuberculosis growth in vitro, in macrophages, and mice. We report that exposure to sodium itaconate (ITA) interferes with the central carbon metabolism of M. tuberculosis. In addition to the inhibition of isocitrate lyase (ICL), we demonstrate that itaconate inhibits aldolase and inosine monophosphate (IMP) dehydrogenase in a concentration-dependent manner. Previous studies have shown that Rv2498c from M. tuberculosis is the bona fide (S)-citramalyl-CoA lyase, but the remaining components of the pathway remain elusive. Here, we report that Rv2503c and Rv3272 possess itaconate:succinyl-CoA transferase activity, and Rv2499c and Rv3389c possess itaconyl-CoA hydratase activity. Relative to the parental and complemented strains, the ΔRv3389c strain of M. tuberculosis was attenuated for growth in itaconate-containing medium, in macrophages, mice, and guinea pigs. The attenuated phenotype of ΔRv3389c strain of M. tuberculosis is associated with a defect in the itaconate dissimilation and propionyl-CoA detoxification pathway. This study thus reveals that multiple metabolic enzymes are targeted by itaconate in M. tuberculosis. Furthermore, we have assigned the two remaining enzymes responsible for the degradation of itaconic acid into pyruvate and acetyl-CoA. Finally, we also demonstrate the importance of enzymes involved in the itaconate dissimilation pathway for M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Manisha Priya
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Sonu Kumar Gupta
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Anil Koundal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Srajan Kapoor
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Snigdha Tiwari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Luiz Pedro Sorio de Carvalho
- Department of Chemistry, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL33458
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh160036, India
| | - Dinesh Mahajan
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Deepak Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India
| | - Yashwant Kumar
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana121001, India
| |
Collapse
|
3
|
Gosain TP, Chugh S, Rizvi ZA, Chauhan NK, Kidwai S, Thakur KG, Awasthi A, Singh R. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat Commun 2024; 15:5467. [PMID: 38937463 PMCID: PMC11211403 DOI: 10.1038/s41467-024-49246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
The genome of Mycobacterium tuberculosis encodes for a large repertoire of toxin-antitoxin systems. In the present study, MenT3 and MenT4 toxins belonging to MenAT subfamily of TA systems have been functionally characterized. We demonstrate that ectopic expression of these toxins inhibits bacterial growth and this is rescued upon co-expression of their cognate antitoxins. Here, we show that simultaneous deletion of menT3 and menT4 results in enhanced susceptibility of M. tuberculosis upon exposure to oxidative stress and attenuated growth in guinea pigs and mice. We observed reduced expression of transcripts encoding for proteins that are essential or required for intracellular growth in mid-log phase cultures of ΔmenT4ΔT3 compared to parental strain. Further, the transcript levels of proteins involved in efficient bacterial clearance were increased in lung tissues of ΔmenT4ΔT3 infected mice relative to parental strain infected mice. We show that immunization of mice and guinea pigs with ΔmenT4ΔT3 confers significant protection against M. tuberculosis infection. Remarkably, immunization of mice with ΔmenT4ΔT3 results in increased antigen-specific TH1 bias and activated memory T cell response. We conclude that MenT3 and MenT4 are important for M. tuberculosis pathogenicity and strains lacking menT3 and menT4 have the potential to be explored further as vaccine candidates.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saurabh Chugh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Neeraj Kumar Chauhan
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Saqib Kidwai
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
4
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
5
|
Chugh S, Tiwari P, Suri C, Gupta SK, Singh P, Bouzeyen R, Kidwai S, Srivastava M, Rameshwaram NR, Kumar Y, Asthana S, Singh R. Polyphosphate kinase-1 regulates bacterial and host metabolic pathways involved in pathogenesis of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2309664121. [PMID: 38170746 PMCID: PMC10786269 DOI: 10.1073/pnas.2309664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.
Collapse
Affiliation(s)
- Saurabh Chugh
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Prabhakar Tiwari
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Charu Suri
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Padam Singh
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Rania Bouzeyen
- Institut Pasteur de Tunis, Laboratory of Transmission, Control and Immunobiology of Infections, LRII IPT02, Tunis1002, Tunisia
| | - Saqib Kidwai
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Nagender Rao Rameshwaram
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad121001, India
| |
Collapse
|
6
|
Sinha S, RS N, Devarakonda Y, Rathi A, Reddy Regatti P, Batra S, Syal K. Tale of Twin Bifunctional Second Messenger (p)ppGpp Synthetases and Their Function in Mycobacteria. ACS OMEGA 2023; 8:32258-32270. [PMID: 37720788 PMCID: PMC10500699 DOI: 10.1021/acsomega.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
M. tuberculosis, an etiological agent of tuberculosis, requires a long treatment regimen due to its ability to respond to stress and persist inside the host. The second messenger (p)ppGpp-mediated stress response plays a critical role in such long-term survival, persistence, and antibiotic tolerance which may also lead to the emergence of multiple drug resistance. In mycobacteria, (pp)pGpp molecules are synthesized predominantly by two bifunctional enzymes-long RSH-Rel and short SAS-RelZ. The long RSH-Rel is a major (p)ppGpp synthetase and hydrolase. How it switches its activity from synthesis to hydrolysis remains unclear. RelMtb mutant has been reported to be defective in biofilm formation, cell wall function, and persister cell formation. The survival of such mutants has also been observed to be compromised in infection models. In M. smegmatis, short SAS-RelZ has RNase HII activity in addition to (pp)Gpp synthesis activity. The RNase HII function of RelZ has been implicated in resolving replication-transcription conflicts by degrading R-loops. However, the mechanism and regulatory aspects of such a regulation remain elusive. In this article, we have discussed (p)ppGpp metabolism and its role in managing the stress response network of mycobacteria, which is responsible for long-term survival inside the host, making it an important therapeutic target.
Collapse
Affiliation(s)
- Shubham
Kumar Sinha
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Neethu RS
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Yogeshwar Devarakonda
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Ajita Rathi
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Pavan Reddy Regatti
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Sakshi Batra
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| | - Kirtimaan Syal
- Genetics and Molecular Microbiology
Laboratory, Department of Biological Sciences, Institute of Eminence, Birla Institute of Technology and Sciences-Pilani, Hyderabad campus, Hyderabad, Telangana, India, 500078
| |
Collapse
|
7
|
Gao H, Li M, Wang Q, Liu T, Zhang X, Yang T, Xu M, Rao Z. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:122. [PMID: 37537682 PMCID: PMC10401862 DOI: 10.1186/s13068-023-02361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
ATP, an important cofactor, is involved in many biocatalytic reactions that require energy. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We determined the catalytic properties of PPK from different sources and found that PPK from Cytophaga hutchinsonii (ChPPK) had the best catalytic activity for the substrates ADP and polyP6. An extracellular-intracellular dual system was constructed to high-throughput screen for better catalytic activity of ChPPK mutants. Finally, the specific activity of ChPPKD82N-K103E mutant was increased by 4.3 times. Therefore, we focused on the production of L-theanine catalyzed by GMAS as a model of ATP regeneration. Supplying 150 mM ATP, GMAS enzyme could produce 16.8 ± 1.3 g/L L-theanine from 100 mM glutamate. When 5 mM ATP and 5 U/mL ChPPKD82N-K103E were added, the yield of L-theanine was 16.6 ± 0.79 g/L with the conversion rate of 95.6 ± 4.5% at 4 h. Subsequently, this system was scaled up to 200 mM and 400 mM glutamate, resulting in the yields of L-theanine for 32.3 ± 1.6 g/L and 62.7 ± 1.1 g/L, with the conversion rate of 92.8 ± 4.6% and 90.1 ± 1.6%, respectively. In addition, we also constructed an efficient ATP regeneration system from glutamate to glutamine, and 13.8 ± 0.2 g/L glutamine was obtained with the conversion rate of 94.4 ± 1.4% in 4 h after adding 6 U/ mL GS enzyme and 5 U/ mL ChPPKD82N-K103E, which further laid the foundation from glutamine to L-theanine catalyzed by GGT enzyme. This proved that giving the reaction an efficient ATP supply driven by the mutant enzyme enhanced the conversion rate of substrate to product and maximized the substrate value. This is a positively combination of high yield, high conversion rate and high economic value of enzyme catalysis. The mutant enzyme will further power the ATP-consuming biocatalytic reaction platform sustainably.
Collapse
Affiliation(s)
- Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Mengxuan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tingting Liu
- Yantai Shinho Enterprise Foods Co., Ltd., Yantai, 265503, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
8
|
Gosain TP, Singh M, Singh C, Thakur KG, Singh R. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342835 DOI: 10.1099/mic.0.001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin-antitoxin (TA) systems are abundantly present in the genomes of various bacterial pathogens. TA systems have been implicated in either plasmid maintenance or protection against phage infection, stress adaptation or disease pathogenesis. The genome of Mycobacterium tuberculosis encodes for more than 90 TA systems and 4 of these belong to the type IV subfamily (MenAT family). The toxins and antitoxins belonging to type IV TA systems share sequence homology with the AbiEii family of nucleotidyl transferases and the AbiEi family of putative transcriptional regulators, respectively. Here, we have performed experiments to understand the role of MenT2, a toxin from the type IV TA system, in mycobacterial physiology and disease pathogenesis. The ectopic expression of MenT2 using inducible vectors does not inhibit bacterial growth in liquid cultures. Bioinformatic and molecular modelling analysis suggested that the M. tuberculosis genome has an alternative start site upstream of the annotated menT2 gene. The overexpression of the reannotated MenT2 resulted in moderate growth inhibition of Mycobacterium smegmatis. We show that both menT2 and menA2 transcript levels are increased when M. tuberculosis is exposed to nitrosative stress, in vitro. When compared to the survival of the wild-type and the complemented strain, the ΔmenT2 mutant strain of M. tuberculosis was more resistant to being killed by nitrosative stress. However, the survival of both the ΔmenT2 mutant and the wild-type strain was similar in macrophages and when exposed to other stress conditions. Here, we show that MenT2 is required for the establishment of disease in guinea pigs. Gross pathology and histopathology analysis of lung tissues from guinea pigs infected with the ∆menT2 strain revealed significantly reduced tissue damage and inflammation. In summary, these results provide new insights into the role of MenT2 in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Manisha Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Charandeep Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Ramandeep Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| |
Collapse
|
9
|
Progress Report: Antimicrobial Drug Discovery in the Resistance Era. Pharmaceuticals (Basel) 2022; 15:ph15040413. [PMID: 35455410 PMCID: PMC9030565 DOI: 10.3390/ph15040413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance continues to be a most serious threat to public health. This situation demands that the scientific community increase their efforts for the discovery of alternative strategies to circumvent the problems associated with conventional small molecule therapeutics. The Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report (published in June 2021) discloses the rapidly increasing number of bacterial infections that are mainly caused by antimicrobial-resistant bacteria. These concerns have initiated various government agencies and other organizations to educate the public regarding the appropriate use of antibiotics. This review discusses a brief highlight on the timeline of antimicrobial drug discovery with a special emphasis on the historical development of antimicrobial resistance. In addition, new antimicrobial targets and approaches, recent developments in drug screening, design, and delivery were covered. This review also discusses the emergence and roles of various antibiotic adjuvants and combination therapies while shedding light on current challenges and future perspectives. Overall, the emergence of resistant microbial strains has challenged drug discovery but their efforts to develop alternative technologies such as nanomaterials seem to be promising for the future.
Collapse
|
10
|
Neville N, Roberge N, Jia Z. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence. Int J Mol Sci 2022; 23:ijms23020670. [PMID: 35054854 PMCID: PMC8776046 DOI: 10.3390/ijms23020670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Inorganic polyphosphate (polyP) has been implicated in an astonishing array of biological functions, ranging from phosphorus storage to molecular chaperone activity to bacterial virulence. In bacteria, polyP is synthesized by polyphosphate kinase (PPK) enzymes, which are broadly subdivided into two families: PPK1 and PPK2. While both enzyme families are capable of catalyzing polyP synthesis, PPK1s preferentially synthesize polyP from nucleoside triphosphates, and PPK2s preferentially consume polyP to phosphorylate nucleoside mono- or diphosphates. Importantly, many pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii encode at least one of each PPK1 and PPK2, suggesting these enzymes may be attractive targets for antibacterial drugs. Although the majority of bacterial polyP studies to date have focused on PPK1s, PPK2 enzymes have also begun to emerge as important regulators of bacterial physiology and downstream virulence. In this review, we specifically examine the contributions of PPK2s to bacterial polyP homeostasis. Beginning with a survey of the structures and functions of biochemically characterized PPK2s, we summarize the roles of PPK2s in the bacterial cell, with a particular emphasis on virulence phenotypes. Furthermore, we outline recent progress on developing drugs that inhibit PPK2 enzymes and discuss this strategy as a novel means of combatting bacterial infections.
Collapse
|
11
|
Suess PM. Effects of Polyphosphate on Leukocyte Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:131-143. [PMID: 35697939 DOI: 10.1007/978-3-031-01237-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leukocytes are immune cells derived from hematopoietic stem cells of the bone marrow which play essential roles in inflammatory and immune responses. In contrast to anucleate platelets and erythrocytes, leukocytes are differentiated from other blood cells by the presence of a nucleus, and consist of monocytes, neutrophils, lymphocytes, basophils, and eosinophils. Factors released from platelets mediate immune responses in part by recruitment and regulation of leukocyte activity. Platelet dense granules contain the highly anionic polymer polyphosphate (polyP) with monomer chain lengths of approximately 60-100 phosphates long, which are released into the microenvironment upon platelet activation. Recent studies suggest that polyP released from platelets plays roles in leukocyte migration, recruitment, accumulation, differentiation, and activation. Furthermore, bacterial-derived polyphosphate, generally consisting of phosphate monomer lengths in the hundreds to thousands, appear to play a role in pathogenic evasion of the host immune response. This review will discuss the effects of host and pathogenic-derived polyphosphate on leukocyte function.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
13
|
Roberge N, Neville N, Douchant K, Noordhof C, Boev N, Sjaarda C, Sheth PM, Jia Z. Broad-Spectrum Inhibitor of Bacterial Polyphosphate Homeostasis Attenuates Virulence Factors and Helps Reveal Novel Physiology of Klebsiella pneumoniae and Acinetobacter baumannii. Front Microbiol 2021; 12:764733. [PMID: 34764949 PMCID: PMC8576328 DOI: 10.3389/fmicb.2021.764733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae currently rank amongst the most antibiotic-resistant pathogens, responsible for millions of infections each year. In the wake of this crisis, anti-virulence therapeutics targeting bacterial polyphosphate (polyP) homeostasis have been lauded as an attractive alternative to traditional antibiotics. In this work, we show that the small molecule gallein, a known G-protein βγ subunit modulator, also recently proven to have dual-specificity polyphosphate kinase (PPK) inhibition in Pseudomonas aeruginosa, in turn exhibits broad-spectrum PPK inhibition in other priority pathogens. Gallein treatment successfully attenuated virulence factors of K. pneumoniae and A. baumannii including biofilm formation, surface associated motility, and offered protection against A. baumannii challenge in a Caenorhabditis elegans model of infection. This was highlighted most importantly in the critically understudied A. baumannii, where gallein treatment phenocopied a ppk1 knockout strain of a previously uncharacterized PPK1. Subsequent analysis revealed a unique instance of two functionally and phenotypically distinct PPK1 isoforms encoded by a single bacterium. Finally, gallein was administered to a defined microbial community comprising over 30 commensal species of the human gut microbiome, demonstrating the non-disruptive properties characteristic of anti-virulence treatments as microbial biodiversity was not adversely influenced. Together, these results emphasize that gallein is a promising avenue for the development of broad-spectrum anti-virulence therapeutics.
Collapse
Affiliation(s)
- Nathan Roberge
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katya Douchant
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Curtis Noordhof
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Nadejda Boev
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada
| | - Calvin Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada.,Division of Microbiology, Kingston Health Science Center, Kingston, ON, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Hellendahl KF, Fehlau M, Hans S, Neubauer P, Kurreck A. Semi-Automated High-Throughput Substrate Screening Assay for Nucleoside Kinases. Int J Mol Sci 2021; 22:11558. [PMID: 34768989 PMCID: PMC8584170 DOI: 10.3390/ijms222111558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Maryke Fehlau
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Sebastian Hans
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
15
|
Danchik C, Wang S, Karakousis PC. Targeting the Mycobacterium tuberculosis Stringent Response as a Strategy for Shortening Tuberculosis Treatment. Front Microbiol 2021; 12:744167. [PMID: 34690990 PMCID: PMC8529327 DOI: 10.3389/fmicb.2021.744167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stringent response is well conserved across bacterial species and is a key pathway involved both in bacterial survival and virulence and in the induction of antibiotic tolerance in Mycobacteria. It is mediated by the alarmone (p)ppGpp and the regulatory molecule inorganic polyphosphate in response to stress conditions such as nutrient starvation. Efforts to pharmacologically target various components of the stringent response have shown promise in modulating mycobacterial virulence and antibiotic tolerance. In this review, we summarize the current understanding of the stringent response and its role in virulence and tolerance in Mycobacteria, including evidence that targeting this pathway could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
A Dual-Specificity Inhibitor Targets Polyphosphate Kinase 1 and 2 Enzymes To Attenuate Virulence of Pseudomonas aeruginosa. mBio 2021; 12:e0059221. [PMID: 34126765 PMCID: PMC8262977 DOI: 10.1128/mbio.00592-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections, which are becoming increasingly difficult to treat due to antibiotic resistance. Polyphosphate (polyP) plays a key role in P. aeruginosa virulence, stress response, and antibiotic tolerance, suggesting an attractive drug target. Here, we show that the small molecule gallein disrupts polyphosphate homeostasis by inhibiting all members of both polyphosphate kinase (PPK) families (PPK1 and PPK2) encoded by P. aeruginosa, demonstrating dual-specificity PPK inhibition for the first time. Inhibitor treatment phenocopied ppk deletion to reduce cellular polyP accumulation and attenuate biofilm formation, motility, and pyoverdine and pyocyanin production. Most importantly, gallein attenuated P. aeruginosa virulence in a Caenorhabditis elegans infection model and synergized with antibiotics while exhibiting negligible toxicity toward the nematodes or HEK293T cells, suggesting our discovery of dual-specificity PPK inhibitors as a promising starting point for the development of new antivirulence therapeutics.
Collapse
|
17
|
Capochiani de Iudicibus R, Tomek P, Palmer BD, Tijono SM, Flanagan JU, Ching LM. Parallel discovery of selective and dual inhibitors of tryptophan dioxygenases IDO1 and TDO2 with a newly-modified enzymatic assay. Bioorg Med Chem 2021; 39:116160. [PMID: 33901770 DOI: 10.1016/j.bmc.2021.116160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2. To expedite the discovery of novel TDO2-specific and dual inhibitors, an assay that enabled the efficient and accurate measurement of the inhibitory activity of compounds against both IDO1 and TDO2 enzymes, concurrently in the same experiment was established to screen 5,682 compounds that included the National Cancer Institute Diversity set 5, for inhibition of IDO1 and TDO2 activity. This screen identified 82 compounds that inhibited either IDO1, TDO2 or both enzymes > 50% at 20 µM. Thirty Pan Assay Interference compounds were removed from the list and the IC50 of the remaining 52 compounds against IDO1 and TDO2 was subsequently determined using the newly-developed concurrent assay. Ten compounds were confirmed as dual IDO1/TDO2 inhibitors having IC50 values under 50 µM against both enzymes and within 2-fold of each other. Six compounds with IC50 values between 1.39 and 8.41 µM were identified as potential TDO2-selective leads. The use of this concurrent protocol is anticipated to expedite the discovery of novel leads for dual and selective inhibitors against IDO1 and or TDO2 and speed the evaluation of novel analogues that will ensue.
Collapse
Affiliation(s)
- Rossella Capochiani de Iudicibus
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Sofian M Tijono
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Jack U Flanagan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
18
|
Peraman R, Sure SK, Dusthackeer VNA, Chilamakuru NB, Yiragamreddy PR, Pokuri C, Kutagulla VK, Chinni S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:56. [PMID: 33686369 PMCID: PMC7928709 DOI: 10.1186/s43094-021-00196-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite the various strategies undertaken in the clinical practice, the mortality rate due to antibiotic-resistant microbes has been markedly increasing worldwide. In addition to multidrug-resistant (MDR) microbes, the "ESKAPE" bacteria are also emerging. Of course, the infection caused by ESKAPE cannot be treated even with lethal doses of antibiotics. Now, the drug resistance is also more prevalent in antiviral, anticancer, antimalarial and antifungal chemotherapies. MAIN BODY To date, in the literature, the quantum of research reported on the discovery strategies for new antibiotics is remarkable but the milestone is still far away. Considering the need of the updated strategies and drug discovery approaches in the area of drug resistance among researchers, in this communication, we consolidated the insights pertaining to new drug development against drug-resistant microbes. It includes drug discovery void, gene paradox, transposon mutagenesis, vitamin biosynthesis inhibition, use of non-conventional media, host model, target through quorum sensing, genomic-chemical network, synthetic viability to targets, chemical versus biological space, combinational approach, photosensitization, antimicrobial peptides and transcriptome profiling. Furthermore, we optimally briefed about antievolution drugs, nanotheranostics and antimicrobial adjuvants and then followed by twelve selected new feasible drug targets for new drug design against drug resistance. Finally, we have also tabulated the chemical structures of potent molecules against antimicrobial resistance. CONCLUSION It is highly recommended to execute the anti-drug resistance research as integrated approach where both molecular and genetic research needs to be as integrative objective of drug discovery. This is time to accelerate new drug discovery research with advanced genetic approaches instead of conventional blind screening.
Collapse
Affiliation(s)
- Ramalingam Peraman
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Sathish Kumar Sure
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - V. N. Azger Dusthackeer
- grid.417330.20000 0004 1767 6138ICMR-National Institute of Research in Tuberculosis, Chennai, Tamilnadu India
| | - Naresh Babu Chilamakuru
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Padmanabha Reddy Yiragamreddy
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Chiranjeevi Pokuri
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Vinay Kumar Kutagulla
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| | - Santhivardhan Chinni
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous, Anantapur, Andhra Pradesh India
| |
Collapse
|
19
|
Polyphosphate is an extracellular signal that can facilitate bacterial survival in eukaryotic cells. Proc Natl Acad Sci U S A 2020; 117:31923-31934. [PMID: 33268492 DOI: 10.1073/pnas.2012009117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polyphosphate is a linear chain of phosphate residues and is present in organisms ranging from bacteria to humans. Pathogens such as Mycobacterium tuberculosis accumulate polyphosphate, and reduced expression of the polyphosphate kinase that synthesizes polyphosphate decreases their survival. How polyphosphate potentiates pathogenicity is poorly understood. Escherichia coli K-12 do not accumulate detectable levels of extracellular polyphosphate and have poor survival after phagocytosis by Dictyostelium discoideum or human macrophages. In contrast, Mycobacterium smegmatis and Mycobacterium tuberculosis accumulate detectable levels of extracellular polyphosphate, and have relatively better survival after phagocytosis by D. discoideum or macrophages. Adding extracellular polyphosphate increased E. coli survival after phagocytosis by D. discoideum and macrophages. Reducing expression of polyphosphate kinase 1 in M. smegmatis reduced extracellular polyphosphate and reduced survival in D. discoideum and macrophages, and this was reversed by the addition of extracellular polyphosphate. Conversely, treatment of D. discoideum and macrophages with recombinant yeast exopolyphosphatase reduced the survival of phagocytosed M. smegmatis or M. tuberculosis D. discoideum cells lacking the putative polyphosphate receptor GrlD had reduced sensitivity to polyphosphate and, compared to wild-type cells, showed increased killing of phagocytosed E. coli and M. smegmatis Polyphosphate inhibited phagosome acidification and lysosome activity in D. discoideum and macrophages and reduced early endosomal markers in macrophages. Together, these results suggest that bacterial polyphosphate potentiates pathogenicity by acting as an extracellular signal that inhibits phagosome maturation.
Collapse
|
20
|
Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18:3043-3052. [PMID: 32808449 PMCID: PMC7719587 DOI: 10.1111/jth.15066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets secrete many pro-wound healing molecules such as growth factors and cytokines. We found that releasates from activated human platelets induced the differentiation of cultured murine and human fibroblasts into a myofibroblast phenotype. Surprisingly, most of this differentiation-inducing activity was heat-stable, suggesting it was not due to the protein component of the releasates. Inorganic polyphosphate is a major constituent of platelet-dense granules and promotes blood coagulation and inflammation. OBJECTIVES We aim to investigate the contribution of polyphosphate on myofibroblast differentiating activity of platelet releasates. METHODS Using NIH-3T3 cells and primary human fibroblasts, we examined the effect of human platelet releasates and chemically synthesized polyphosphate on fibroblast differentiation and migration. RESULTS We found that the myofibroblast-inducing activity of platelet releasates was severely attenuated after incubation with a polyphosphate-degrading enzyme, and that fibroblasts responded to platelet-sized polyphosphate by increased levels of α-smooth muscle actin, stress fibers, and collagen. Furthermore, fibroblasts were chemotactic toward polyphosphate. CONCLUSIONS These findings indicate that platelet-derived polyphosphate acts as a cell signaling molecule by inducing murine and human fibroblasts to differentiate into myofibroblasts, a cell type known to drive both wound healing and fibrosing diseases. Polyphosphate therefore not only promotes early wound responses through enhancing fibrin clot formation, but also may play roles in the later stages of wound healing, and, potentially, progression of fibrotic diseases, by recruiting fibroblasts and inducing their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Patrick M. Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
21
|
Sanz-Luque E, Saroussi S, Huang W, Akkawi N, Grossman AR. Metabolic control of acclimation to nutrient deprivation dependent on polyphosphate synthesis. SCIENCE ADVANCES 2020; 6:6/40/eabb5351. [PMID: 32998900 PMCID: PMC7556998 DOI: 10.1126/sciadv.abb5351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Polyphosphate, an energy-rich polymer conserved in all kingdoms of life, is integral to many cellular stress responses, including nutrient deprivation, and yet, the mechanisms that underlie its biological roles are not well understood. In this work, we elucidate the physiological function of this polymer in the acclimation of the model alga Chlamydomonas reinhardtii to nutrient deprivation. Our data reveal that polyphosphate synthesis is vital to control cellular adenosine 5'-triphosphate homeostasis and maintain both respiratory and photosynthetic electron transport upon sulfur deprivation. Using both genetic and pharmacological approaches, we show that electron flow in the energy-generating organelles is essential to induce and sustain acclimation to sulfur deprivation at the transcriptional level. These previously unidentified links among polyphosphate synthesis, photosynthetic and respiratory electron flow, and the acclimation of cells to nutrient deprivation could unveil the mechanism by which polyphosphate helps organisms cope with a myriad of stress conditions in a fluctuating environment.
Collapse
Affiliation(s)
- E Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| | - S Saroussi
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - W Huang
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - N Akkawi
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - A R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. J Biol Inorg Chem 2020; 25:685-704. [PMID: 32676771 DOI: 10.1007/s00775-020-01803-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies. In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.
Collapse
|
23
|
Zhang X, Ma C, Zhang W, Li W, Yu J, Xue D, Wu X, Deng G. Shifts in microbial community, pathogenicity-related genes and antibiotic resistance genes during dairy manure piled up. Microb Biotechnol 2020; 13:1039-1053. [PMID: 32202696 PMCID: PMC7264890 DOI: 10.1111/1751-7915.13551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
The uncomposted faeces of dairy cow are usually stacked on cow breeding farms, dried under natural conditions and then used as cow bedding material or they may be continuously piled up. However, no information is available to evaluate variations in the human and animal pathogen genes and antibiotic resistance during the accumulation of fresh faeces of dairy cow to manure. Here, we present the metagenomic analysis of fresh faeces and manure from a dairy farm in Ning Xia, showing a unique enrichment of human and animal pathogen genes and antibiotic resistance genes (ARGs) in manure. We found that manure accumulation could significantly increase the diversity and abundance of the pathogenic constituents. Furthermore, pathogens from manure could spread to the plant environment and enphytotic pathogens could affect the yield and quality of crops during the use of manure as a fertilizer. Levels of virulence genes and ARGs increased with the enrichment of microbes and pathogens when faeces accumulated to manure. Accumulated manure was also the transfer station of ARGs to enrich the ARGs in the environment, indicating the ubiquitous presence of environmental antibiotic resistance genes. Our results demonstrate that manure accumulation and usage without effective manure management is an unreasonable approach that could enrich pathogenic microorganisms and ARGs in the environment. The manure metagenome structure allows us to appreciate the overall influence and interaction of animal waste on water, soil and other areas impacted by faecal accumulation and the factors that influence pathogen occurrence in products from dairy cows.
Collapse
Affiliation(s)
- Xu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Chenjie Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Wen Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Wu Li
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Jialin Yu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Di Xue
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Xiaolin Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| | - Guangcun Deng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western ChinaNingxia UniversityNingxiaChina
- School of Life ScienceNingxia UniversityNingxiaChina
| |
Collapse
|
24
|
Agarwal S, Sharma A, Bouzeyen R, Deep A, Sharma H, Mangalaparthi KK, Datta KK, Kidwai S, Gowda H, Varadarajan R, Sharma RD, Thakur KG, Singh R. VapBC22 toxin-antitoxin system from Mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. SCIENCE ADVANCES 2020; 6:eaba6944. [PMID: 32537511 PMCID: PMC7269643 DOI: 10.1126/sciadv.aba6944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/02/2020] [Indexed: 05/16/2023]
Abstract
Virulence-associated protein B and C toxin-antitoxin (TA) systems are widespread in prokaryotes, but their precise role in physiology is poorly understood. We have functionally characterized the VapBC22 TA system from Mycobacterium tuberculosis. Transcriptome analysis revealed that overexpression of VapC22 toxin in M. tuberculosis results in reduced levels of metabolic enzymes and increased levels of ribosomal proteins. Proteomics studies showed reduced expression of virulence-associated proteins and increased levels of cognate antitoxin, VapB22 in the ΔvapC22 mutant strain. Furthermore, both the ΔvapC22 mutant and VapB22 overexpression strains of M. tuberculosis were susceptible to killing upon exposure to oxidative stress and showed attenuated growth in guinea pigs and mice. Host transcriptome analysis suggests upregulation of the transcripts involved in innate immune responses and tissue remodeling in mice infected with the ΔvapC22 mutant strain. Together, we demonstrate that the VapBC22 TA system belongs to a key regulatory network and is essential for M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Rania Bouzeyen
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia
| | - Amar Deep
- Structural Biology Laboratory, Council of Scientific and Industrial Research–Institute of Microbial Technology, Chandigarh 160036, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurugr am-122413, India
| | | | | | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
| | - Harsha Gowda
- Institute of Bioinformatics, Bangalore 560066, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurugr am-122413, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, Council of Scientific and Industrial Research–Institute of Microbial Technology, Chandigarh 160036, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Harya na-121001, India
- Corresponding author.
| |
Collapse
|
25
|
Tiwari P, Gosain TP, Singh M, Sankhe GD, Arora G, Kidwai S, Agarwal S, Chugh S, Saini DK, Singh R. Inorganic polyphosphate accumulation suppresses the dormancy response and virulence in Mycobacterium tuberculosis. J Biol Chem 2019; 294:10819-10832. [PMID: 31113860 DOI: 10.1074/jbc.ra119.008370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of Mycobacterium tuberculosis encodes two functional PPXs, and simultaneous deletion of ppx1 and ppx2 results in a defect in biofilm formation. We demonstrate here that these PPXs cumulatively contribute to the ability of M. tuberculosis to survive in nutrient-limiting, low-oxygen growth conditions and also in macrophages. Characterization of single (Δppx2) and double knockout (dkppx) strains of M. tuberculosis indicated that PPX-mediated PolyP degradation is essential for establishing bacterial infection in guinea pigs. RNA-Seq-based transcriptional profiling revealed that relative to the parental strain, the expression levels of DosR regulon-regulated dormancy genes were significantly reduced in the dkppx mutant strain. In concordance, we also provide evidence that PolyP inhibits the autophosphorylation activities associated with DosT and DosS sensor kinases. The results in this study uncover that enzymes involved in PolyP homeostasis play a critical role in M. tuberculosis physiology and virulence and are attractive targets for developing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Mamta Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | | | - Garima Arora
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Saurabh Chugh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and
| | - Deepak K Saini
- Centre for BioSystems Science and Engineering and; Department of Molecular Reproduction, Development, and Genetics, Biological Sciences Building, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana 121001, India and.
| |
Collapse
|
26
|
Shahbaaz M, Nkaule A, Christoffels A. Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Sci Rep 2019; 9:4405. [PMID: 30867456 PMCID: PMC6416319 DOI: 10.1038/s41598-019-40621-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
Rv2984 is one of the polyphosphate kinases present in Mycobacterium tuberculosis involved in the catalytic synthesis of inorganic polyphosphate, which plays an essential role in bacterial virulence and drug resistance. Consequently, the structure of Rv2984 was investigated and an 18 membered compound library was designed by altering the scaffolds of computationally identified inhibitors. The virtual screening of these altered inhibitors was performed against Rv2984 and the top three scoring inhibitors were selected, exhibiting the free energy of binding between 8.2–9 kcal mol−1 and inhibition constants in the range of 255–866 nM. These selected molecules showed relatively higher binding affinities against Rv2984 compared to the first line drugs Isoniazid and Rifampicin. Furthermore, the docked complexes were further analyzed in explicit water conditions using 100 ns Molecular Dynamics simulations. Through the assessment of obtained trajectories, the interactions between the protein and selected inhibitors including first line drugs were evaluated using MM/PBSA technique. The results validated the higher efficiency of the designed molecules compared to 1st line drugs with total interaction energies observed between −100 kJ mol−1 and −1000 kJ mol−1. This study will facilitate the process of drug designing against M. tuberculosis and can be used in the development of potential therapeutics against drug-resistant strains of bacteria.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Anati Nkaule
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
27
|
Gautam LK, Sharma P, Capalash N. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential. Curr Drug Targets 2019; 20:292-301. [DOI: 10.2174/1389450119666180801120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| |
Collapse
|
28
|
Burda-Grabowska M, Macegoniuk K, Flick R, Nocek BP, Joachimiak A, Yakunin AF, Mucha A, Berlicki Ł. Bisphosphonic acids and related compounds as inhibitors of nucleotide- and polyphosphate-processing enzymes: A PPK1 and PPK2 case study. Chem Biol Drug Des 2018; 93:1197-1206. [PMID: 30484959 DOI: 10.1111/cbdd.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022]
Abstract
Bisphosphonic acids, which are structural analogs of pyrophosphate, constitute a class of compounds with very high potential for the construction of effective inhibitors of enzymes operating on oligo- and polyphosphates. The bisphosphonate-based methodology was applied for the discovery of inhibitors of two families of polyphosphate kinases (PPK1 and PPK2). Screening of thirty-two structurally diverse bisphosphonic acids and related compounds revealed several micromolar inhibitors of both enzymes. Importantly, selectivity of bisphosphonates could be achieved by application of the appropriate side chain.
Collapse
Affiliation(s)
- Małgorzata Burda-Grabowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Boguslaw P Nocek
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Andrzej Joachimiak
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
29
|
Arora G, Chaudhary D, Kidwai S, Sharma D, Singh R. CitE Enzymes Are Essential for Mycobacterium tuberculosis to Establish Infection in Macrophages and Guinea Pigs. Front Cell Infect Microbiol 2018; 8:385. [PMID: 30460206 PMCID: PMC6232273 DOI: 10.3389/fcimb.2018.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial citrate lyase activity has been demonstrated in various eukaryotes, bacteria and archaea, underscoring their importance in energy metabolism of the cell. While the bacterial citrate lyase comprises of three different subunits, M. tuberculosis genome lacks CitD and CitF subunits of citrate lyase complex but encodes for 2 homologs of CitE subunits, Rv2498c and Rv3075c. Using temperature sensitive mycobacteriophages, we were able to generate both single and double citE mutant strains of M. tuberculosis. The survival experiments revealed increased susceptibility of the double mutant strain to oxidative stress in comparison to the parental strain. Also, simultaneous deletion of both citE1 and citE2 in M. tuberculosis genome resulted in impairment of intracellular replication in macrophages. The double mutant strain displayed reduced growth in lungs and spleens of guinea pigs. This is the first study demonstrating that M. tuberculosis critically requires CitE subunits of citrate lyase for pathogenesis. Taken together, these findings position these enzymes as potential targets for development of anti-tubercular small molecules.
Collapse
Affiliation(s)
- Garima Arora
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India.,Symbiosis School of Biological Sciences, Symbiosis International University, Lavale, India
| | - Deepika Chaudhary
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepak Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
30
|
Nocek BP, Khusnutdinova AN, Ruszkowski M, Flick R, Burda M, Batyrova K, Brown G, Mucha A, Joachimiak A, Berlicki Ł, Yakunin AF. Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boguslaw P. Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, Illinois 60439, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Malgorzata Burda
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Khorcheska Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
31
|
Wang L, Yan J, Wise MJ, Liu Q, Asenso J, Huang Y, Dai S, Liu Z, Du Y, Tang D. Distribution Patterns of Polyphosphate Metabolism Pathway and Its Relationships With Bacterial Durability and Virulence. Front Microbiol 2018; 9:782. [PMID: 29755430 PMCID: PMC5932413 DOI: 10.3389/fmicb.2018.00782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate residues. It is reported to be present in all life forms. Experimental studies showed that polyP plays important roles in bacterial durability and virulence. Here we investigated the relationships of polyP with bacterial durability and virulence theoretically. Bacterial lifestyle, environmental persistence, virulence factors (VFs), and species evolution are all included in the analysis. The presence of seven genes involved in polyP metabolism (ppk1, ppk2, pap, surE, gppA, ppnK, and ppgK) and 2595 core VFs were verified in 944 bacterial reference proteomes for distribution patterns via HMMER. Proteome size and VFs were compared in terms of gain and loss of polyP pathway. Literature mining and phylogenetic analysis were recruited to support the study. Our analyzes revealed that the presence of polyP metabolism is positively correlated with bacterial proteome size and the number of virulence genes. A potential relationship of polyP in bacterial lifestyle and environmental durability is suggested. Evolutionary analysis shows that polyP genes are randomly lost along the phylogenetic tree. In sum, based on our theoretical analysis, we confirmed that bacteria with polyP metabolism are associated with high environmental durability and more VFs.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Yan
- Xuzhou Infectious Diseases Hospital, Xuzhou, China
| | - Michael J Wise
- School of Computer Science and Software Engineering, University of Western Australia, Perth, WA, Australia.,The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - James Asenso
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yue Huang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Shiyun Dai
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | | | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Center for Experimental Animals, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proc Natl Acad Sci U S A 2018. [PMID: 29531036 DOI: 10.1073/pnas.1710741115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.
Collapse
|
33
|
彭 亮, 区 静, 潘 嘉, 邓 聪, 陈 景, 曹 虹. [Expression of Proteus mirabilis polyphosphate kinase and preparation of its polyclonal antibodies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:312-316. [PMID: 28377345 PMCID: PMC6780429 DOI: 10.3969/j.issn.1673-4254.2017.03.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To express and purify polyphosphate kinase (PPK) from Proteus mirabilis and prepare the polyclonal antibody against PPK. METHODS The antigenicity and hydrophobicity of PPK were analyzed using software. The N-terminal conservative sequence containing 309 amino acids was selected as the target peptide, and its corresponding gene sequence with modification based on prokaryotic cells-preferred codon was synthesized and inserted into plasmid pET28b(+). The constructed recombinant plasmid was transformed into Escherichia coli BL21 (DE3) and induced with IPTG. The expressed fusion protein was purified using Ni-affinity chromatography. The purified protein was injected along with adjuvant in rabbits to prepare the polyclonal antibodies against PPK. RESULTS AND CONCLUSION PPK fusion protein expressed by E. coli was purified successfully using Ni-affinity chromatography. ELISA result demonstrated that the harvested rabbit anti-sera against PPK had a high titer of 1:512 000, and Western blotting showed a good specificity of the antibody, which can be used further study of the role of PPK in the pathogenesis of Proteus mirabilis infection.
Collapse
Affiliation(s)
- 亮 彭
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 静怡 区
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 嘉韵 潘
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 聪 邓
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 景红 陈
- 广州医科大学附属第二医院 血液科,广东 广州 510260Department of Hematology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 虹 曹
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research/ School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
彭 亮, 区 静, 潘 嘉, 邓 聪, 陈 景, 曹 虹. [Expression of Proteus mirabilis polyphosphate kinase and preparation of its polyclonal antibodies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:312-316. [PMID: 28377345 PMCID: PMC6780429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To express and purify polyphosphate kinase (PPK) from Proteus mirabilis and prepare the polyclonal antibody against PPK. METHODS The antigenicity and hydrophobicity of PPK were analyzed using software. The N-terminal conservative sequence containing 309 amino acids was selected as the target peptide, and its corresponding gene sequence with modification based on prokaryotic cells-preferred codon was synthesized and inserted into plasmid pET28b(+). The constructed recombinant plasmid was transformed into Escherichia coli BL21 (DE3) and induced with IPTG. The expressed fusion protein was purified using Ni-affinity chromatography. The purified protein was injected along with adjuvant in rabbits to prepare the polyclonal antibodies against PPK. RESULTS AND CONCLUSION PPK fusion protein expressed by E. coli was purified successfully using Ni-affinity chromatography. ELISA result demonstrated that the harvested rabbit anti-sera against PPK had a high titer of 1:512 000, and Western blotting showed a good specificity of the antibody, which can be used further study of the role of PPK in the pathogenesis of Proteus mirabilis infection.
Collapse
Affiliation(s)
- 亮 彭
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 静怡 区
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 嘉韵 潘
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 聪 邓
- 广州医科大学附属第二医院 检验科,广东 广州 510260Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 景红 陈
- 广州医科大学附属第二医院 血液科,广东 广州 510260Department of Hematology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 虹 曹
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research/ School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo. Antimicrob Agents Chemother 2016; 60:6460-6470. [PMID: 27527086 DOI: 10.1128/aac.01139-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium tuberculosis remains a global health threat largely due to the lengthy duration of curative antibiotic treatment, contributing to medical nonadherence and the emergence of drug resistance. This prolonged therapy is likely due to the presence of M. tuberculosis persisters, which exhibit antibiotic tolerance. Inorganic polyphosphate [poly(P)] is a key regulatory molecule in the M. tuberculosis stringent response mediating antibiotic tolerance. The polyphosphate kinase PPK1 is responsible for poly(P) synthesis in M. tuberculosis, while the exopolyphosphatases PPX1 and PPX2 and the GTP synthase PPK2 are responsible for poly(P) hydrolysis. In the present study, we show by liquid chromatography-tandem mass spectrometry that poly(P)-accumulating M. tuberculosis mutant strains deficient in ppx1 or ppk2 had significantly lower intracellular levels of glycerol-3-phosphate (G3P) and 1-deoxy-xylulose-5-phosphate. Real-time PCR revealed decreased expression of genes in the G3P synthesis pathway in each mutant. The ppx1-deficient mutant also showed a significant accumulation of metabolites in the tricarboxylic acid cycle, as well as altered arginine and NADH metabolism. Each poly(P)-accumulating strain showed defective biofilm formation, while deficiency of ppk2 was associated with increased sensitivity to plumbagin and meropenem and deficiency of ppx1 led to enhanced susceptibility to clofazimine. A DNA vaccine expressing ppx1 and ppk2, together with two other members of the M. tuberculosis stringent response, M. tuberculosis rel and sigE, did not show protective activity against aerosol challenge with M. tuberculosis, but vaccine-induced immunity enhanced the killing activity of isoniazid in a murine model of chronic tuberculosis. In summary, poly(P)-regulating factors of the M. tuberculosis stringent response play an important role in M. tuberculosis metabolism, biofilm formation, and antibiotic sensitivity in vivo.
Collapse
|