1
|
Wang X, Liu P, Yu Q, He N, Liu Y, Zhang Y, Yan F. Impaired interhemispheric synchrony in Parkinson's disease patients with progressive cognitive impairment. Brain Imaging Behav 2025:10.1007/s11682-025-01009-6. [PMID: 40325276 DOI: 10.1007/s11682-025-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cognitive decline is a common non-motor symptom of Parkinson's disease (PD), which can occur at any stage of the disease. However, the neural mechanisms of PD cognitive changes remain unclear. It has been reported that hemispheric asymmetry is associated with cognitive impairment. Thus, we aimed to explore the underlying mechanisms of PD subgroups with different degrees of cognitive progression by assessing functional interhemispheric coordination and their relations with cognition. Fifty-four PD patients including 29 stable cognitive performance (sPD) patients, 25 progressive cognitive impairment (pPD) patients, and 18 healthy controls (HC) were recruited in this study. All subjects underwent T1-weighted, resting-state functional magnetic resonance imaging scanning, and neuropsychological evaluations. Voxel-mirrored Homotopic Connectivity (VMHC) and voxel-based morphometry analysis were applied to detect functional interhemispheric coordination. Fisher z transformed VMHC (z-VMHC) value lower in the middle temporal gyrus (MTG), middle occipital gyrus (MOG), and superior temporal gyrus (STG) in the pPD group when compared to the sPD group. However, we did not detect the difference in gray matter volume among the three groups. Furthermore, the z-VMHC value of MTG and MOG was positively correlated with the Montreal Cognitive Assessment (MoCA) score of the follow-up. Therefore, z-VMHC values within the MTG, MOG, and STG appeared to be potential neuroimaging features to distinguish pPD patients from sPD groups. These findings may underlie the neural mechanisms of cognitive performance in PD.
Collapse
Affiliation(s)
- Xinhui Wang
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiurong Yu
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youmin Zhang
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- The Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Shen Q, Tan C, Wang M, Cai S, Liu Q, Li X, Tang Y, Liao H. Pattern of Cortical Thickness in Depression Among Early-stage Parkinson's Disease: A Potential Neuroimaging Indicator for Early Recognition. Behav Brain Res 2025:115622. [PMID: 40319944 DOI: 10.1016/j.bbr.2025.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE This study aims to investigate the early change in cortical thickness and surface area in early-stage depressed PD (dPD) patients, and its associations with severity of depression. METHODS 59 patients with dPD, 27 patients with non-depressed PD (ndPD), and 43 healthy controls (HC) were recruited. The dPD patients were subclassified into mild-depressed PD (mi-dPD, n=24), moderate-depressed PD (mo-dPD, n=21) and severe-depressed PD (se-dPD, n=14) subgroups. Structural MRI and surface-based morphometry analysis were applied to compare differences in cortical thickness and surface area among groups, and their correlations with Beck Depression Inventory (BDI) scores were analyzed. RESULTS Compared with ndPD, dPD exhibited cortical thinning in the dorsolateral prefrontal cortex (dlPFC, mainly invoving the left superior frontal and bilateral middle frontal gyri), the right pars opercularis and bilateral lateral occipital gyri. The mean cortical thickness values within these regions negatively correlated with BDI scores. Subgroup analysis revealed that patients with mi-dPD had cortical thinning only in the right middle frontal gyrus, while se-dPD showed cortical thinning more extensively involving the right fusiform gyrus, posterior cingulate gyrus, and pars opercularis. There was no significant change in cortical surface area in either the dPD or its subgroups. CONCLUSION Our findings indicated that PD-related depression was associated with decrease of cortical thickness, instead of surface area, of which the patterns correlated with the severity of depression. Cortical thinning in dlPFC, mainly involving the left middle frontal gyrus, may serve as a potential neuroimaging indicator for early recognition of depression in PD patients.
Collapse
Affiliation(s)
- Qin Shen
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinru Liu
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xv Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Tang
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Fu C, Hou X, Zheng C, Zhang Y, Gao Z, Yan Z, Ye Y, Liu B. Immediate modulatory effects of transcutaneous vagus nerve stimulation on patients with Parkinson's disease: a crossover self-controlled fMRI study. Front Aging Neurosci 2024; 16:1444703. [PMID: 39507202 PMCID: PMC11537911 DOI: 10.3389/fnagi.2024.1444703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background Previous studies have evaluated the safety and efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) for the treatment of Parkinson's disease (PD). However, the mechanism underlying the effect of taVNS on PD remains to be elucidated. This study aimed to investigate the immediate effects of taVNS in PD patients. Methods This crossover self-controlled study included 50 PD patients. Each patient underwent three sessions of resting-state functional magnetic resonance imaging (rs-fMRI) under three conditions: real taVNS, sham taVNS, and no taVNS intervention. We analyzed whole-brain amplitude of low-frequency fluctuations (ALFF) from preprocessed fMRI data across different intervention conditions. ALFF values in altered brain regions were correlated with clinical symptoms in PD patients. Results Forty-seven participants completed the study and were included in the final analysis. Real taVNS was associated with a widespread decrease in ALFF in the right hemisphere, including the superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus (voxel p < 0.001, GRF corrected). The ALFF value in the right superior parietal lobule during real taVNS was negatively correlated with the Unified Parkinson's Disease Rating Scale Part III (r = -0.417, p = 0.004, Bonferroni corrected). Conclusion TaVNS could immediately modulate the functional activity of brain regions involved in superior parietal lobule, precentral gyrus, postcentral gyrus, middle occipital gyrus, and cuneus. These findings offer preliminary insights into the mechanism of taVNS in treating PD and bolster confidence in its long-term therapeutic potential. TaVNS appears to reduce ALFF values in specific brain regions, suggesting a potential modulation mechanism for treating PD.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Acupuncture, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunye Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijie Gao
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Tian B, Chen Q, Zou M, Xu X, Liang Y, Liu Y, Hou M, Zhao J, Liu Z, Jiang L. Decreased resting-state functional connectivity and brain network abnormalities in the prefrontal cortex of elderly patients with Parkinson's disease accompanied by depressive symptoms. Glob Health Med 2024; 6:132-140. [PMID: 38690130 PMCID: PMC11043130 DOI: 10.35772/ghm.2023.01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 05/02/2024]
Abstract
This study aimed to explore the brain network characteristics in elderly patients with Parkinson's disease (PD) with depressive symptoms. Thirty elderly PD patients with depressive symptoms (PD-D) and 26 matched PD patients without depressive symptoms (PD-NOD) were recruited based on HAMD-24 with a cut-off of 7. The resting-state functional connectivity (RSFC) was conducted by 53-channel functional near-infrared spectroscopy (fNIRS). There were no statistically significant differences in MMSE scores, disease duration, Hoehn-Yahr stage, daily levodopa equivalent dose, and MDS-UPDRS III between the two groups. However, compared to the PD-NOD group, the PD-D group showed significantly higher MDS-UPDRS II, HAMA-14, and HAMD-24. The interhemispheric FC strength and the FC strength between the left dorsolateral prefrontal cortex (DLPFC-L) and the left frontal polar area (FPA-L) was significantly lower in the PD-D group (FDR p < 0.05). As for graph theoretic metrics, the PD-D group had significantly lower degree centrality (aDc) and node efficiency (aNe) in the DLPFC-L and the FPA-L (FDR, p < 0.05), as well as decreased global efficiency (aEg). Pearson correlation analysis indicated moderate negative correlations between HAMD-24 scores and the interhemispheric FC strength, FC between DLPFC-L and FPA-L, aEg, aDc in FPA-L, aNe in DLPFC-L and FPA-L. In conclusion, PD-D patients show decreased integration and efficiency in their brain networks. Furthermore, RSFC between DLPFC-L and FPA-L regions is negatively correlated with depressive symptoms. These findings propose that targeting DLPFC-L and FPA-L regions via non-invasive brain stimulation may be a potential intervention for alleviating depressive symptoms in elderly PD patients.
Collapse
Affiliation(s)
- Bingjie Tian
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Chen
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zou
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Nursing, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyan Liu
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Hou
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Jiang
- Department of Nursing, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, Chen Q, Li XJ, Lu J, Li BW, Chen N. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. AJNR Am J Neuroradiol 2023; 44:611-617. [PMID: 37080724 PMCID: PMC10171374 DOI: 10.3174/ajnr.a7847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective treatment for pediatric patients with complete spinal cord injury. Motor imagery has been proposed as an alternative to physical training for patients who are unable to move voluntarily. Our aim was to reveal the potential mechanism of motor imagery in the rehabilitation of pediatric complete spinal cord injury. MATERIALS AND METHODS Twenty-six pediatric patients with complete spinal cord injury and 26 age- and sex-matched healthy children as healthy controls were recruited. All participants underwent the motor imagery task-related fMRI scans, and additional motor execution scans were performed only on healthy controls. First, we compared the brain-activation patterns between motor imagery and motor execution in healthy controls. Then, we compared the brain activation of motor imagery between the 2 groups and compared the brain activation of motor imagery in pediatric patients with complete spinal cord injury and that of motor execution in healthy controls. RESULTS In healthy controls, compared with motor execution, motor imagery showed increased activation in the left inferior parietal lobule and decreased activation in the left supplementary motor area, paracentral lobule, middle cingulate cortex, and right insula. In addition, our results revealed that the 2 groups both activated the bilateral supplementary motor area, middle cingulate cortex and left inferior parietal lobule, and supramarginal gyrus during motor imagery. Compared with healthy controls, higher activation in the bilateral paracentral lobule, supplementary motor area, putamen, and cerebellar lobules III-V was detected in pediatric complete spinal cord injury during motor imagery, and the activation of these regions was even higher than that of healthy controls during motor execution. CONCLUSIONS Our study demonstrated that part of the motor imagery network was functionally preserved in pediatric complete spinal cord injury and could be activated through motor imagery. In addition, higher-level activation in sensorimotor-related regions was also found in pediatric complete spinal cord injury during motor imagery. Our findings may provide a theoretic basis for the application of motor imagery training in pediatric complete spinal cord injury.
Collapse
Affiliation(s)
- L Wang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - W M Zheng
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - T F Liang
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - Y H Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B N Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - X Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - Q Chen
- Department of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - X J Li
- Department of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
| | - J Lu
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B W Li
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - N Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| |
Collapse
|
6
|
Zhang J, Zhang N, Lei J, Jing B, Li M, Tian H, Xue B, Li X. Fluoxetine shows neuroprotective effects against LPS-induced neuroinflammation via the Notch signaling pathway. Int Immunopharmacol 2022; 113:109417. [DOI: 10.1016/j.intimp.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
7
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
8
|
Zhang J, Xue B, Jing B, Tian H, Zhang N, Li M, Lu L, Chen L, Diao H, Chen Y, Wang M, Li X. LPS activates neuroinflammatory pathways to induce depression in Parkinson’s disease-like condition. Front Pharmacol 2022; 13:961817. [PMID: 36278237 PMCID: PMC9582846 DOI: 10.3389/fphar.2022.961817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: This study aimed to observe the effects of lipopolysaccharide (LPS) intraperitoneal (i.p.) injection on rats and investigate how neuroinflammation contributes to the pathogenesis of depression in Parkinson’s disease (dPD). Methods: Rats were administered LPS (0.5 mg/kg, i.p.) for either 1, 2, or 4 consecutive days to establish a rat model of dPD. The sucrose preference test (SPT), the open field test (OFT), and the rotarod test evaluated depression-like and motor behaviors. Magnetic resonance imaging was used to detect alterations in the intrinsic activity and the integrity of white matter fibers in the brain. The expression of c-Fos, ionized calcium-binding adapter molecule (Iba-1), and tyrosine hydroxylase (TH) was evaluated using immunohistochemistry. The concentration of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and interleukin-10 (IL-10) was measured using Luminex technology. Results: LPS i.p. injections decreased sucrose preference in the SPT, horizontal and center distance in the OFT, and standing time in the rotarod test. The intrinsic activities in the hippocampus (HIP) were significantly reduced in the LPS-4 d group. The integrity of white matter fibers was greatly destroyed within 4 days of LPS treatment. The expression of c-Fos and Iba-1 in the prefrontal cortex, HIP, and substantia nigra increased dramatically, and the number of TH+ neurons in the substantia nigra decreased considerably after LPS injection. The levels of IL-6, TNF-α, and IL-10 were higher in the LPS-4 d group than those in the control group. Conclusion: Injection of LPS (0.5 mg/kg, i.p.) for 4 consecutive days can activate microglia, cause the release of inflammatory cytokines, reduce intrinsic activities in the HIP, destroy the integrity of white matter fibers, induce anhedonia and behavioral despair, and finally lead to dPD. This study proved that LPS injection (0.5 mg/kg, i.p.) for 4 consecutive days could be used to successfully create a rat model of dPD.
Collapse
Affiliation(s)
- Jing Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huiling Tian
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Naiwen Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyuan Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lihua Lu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Chen
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huaqiong Diao
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Chen
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoli Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoli Li,
| |
Collapse
|
9
|
Liu Q, Mao Z, Tan C, Cai S, Shen Q, Wang M, Li J, Zhang L, Zhou F, Song C, Yuan J, Liu Y, Liu J, Liao H. Resting-state brain network in Parkinson’s disease with different degrees of depression. Front Neurosci 2022; 16:931365. [PMID: 36213745 PMCID: PMC9533063 DOI: 10.3389/fnins.2022.931365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe aim of this study is to explore the neural network mechanism of Parkinson’s disease (PD) with different degrees of depression using independent component analysis (ICA) of the functional connectivity changes in the forehead, limbic system, and basal ganglia regions.MethodsA total of 106 patients with PD were divided into three groups: PD with moderate-severe depression (PDMSD, n = 42), PD with mild depression (PDMD, n = 29), and PD without depression (PDND, n = 35). Fifty gender- and age-matched healthy subjects were recruited as a control group (HC). Three-dimensional T1-weighted image and resting-state functional magnetic resonance imaging (RS-fMRI) data were collected.ResultsDifferent functional connectivity was observed in the left precentral gyrus, right precuneus, right inferior frontal gyrus, right medial and paracingulate gyrus, left supplementary motor area, right brain insula, and the inferior frontal gyrus of the left orbit among the four groups (ANOVA, P < 0.05, Voxel size > 5). Both PDMD and PDMSD exhibited increased functional connectivity in the superior-posterior default-mode network (spDMN) and left frontoparietal network (LFPN); they also exhibited a decreased functional connectivity in the interior Salience Network (inSN) when compared with the PDND group. The functional connectivity within the inSN network was decreased in the PDMSD group when compared with the PDMD group (Alphasim correction, P < 0.05, voxel size > 5).ConclusionPD with different degrees of depression has abnormal functional connectivity in multiple networks, which is an important neurobiological basis for the occurrence and development of depression in PD. The degree of decreased functional connectivity in the inSN network is related to the degree of depression in patients with PD-D, which can be an imaging marker for PD to judge the severity of depression.
Collapse
Affiliation(s)
- Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Third Hospital of Changsha, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Haiyan Liao,
| |
Collapse
|
10
|
Ke M, Li H, Liu G. The Local Topological Reconfiguration in the Brain Network After Targeted Hub Dysfunction Attacks in Patients With Juvenile Myoclonic Epilepsy. Front Neurosci 2022; 16:864040. [PMID: 35495041 PMCID: PMC9047017 DOI: 10.3389/fnins.2022.864040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
The central brain regions of brain networks have been extensively studied in terms of their roles in various diseases. This study provides a direct measure of the brain's responses to targeted attacks on central regions, revealing the critical role these regions play in patients with juvenile myoclonic epilepsy (JME). The resting-state data of 37 patients with JME and 37 healthy subjects were collected, and brain functional networks were constructed for the two groups of data according to their Pearson correlation coefficients. The left middle cingulate gyrus was defined as the central brain region by the eigenvector centrality algorithm and was attacked by the CLM sequential failure model. The rich-club connection differences between the patients with JME and healthy controls before and after the attacks were compared according to graph theory indices and the number of rich-club connections. We found that the numbers of rich connections in the brain networks of the healthy control group and the group of patients with JME were significantly reduced [p < 0.05, false discovery rate (FDR) correction] before the CLM sequential failure attacks, and no significant differences were observed between the feeder connections and local connections. In the healthy control group, significant rich connection differences were obtained (p < 0.01, FDR correction), and no statistically significant differences were observed regarding the feeder connections and local connections in the brain network before and after CLM failure attacks on the central brain region. No significant differences were obtained between the rich connections, feeder connections, and local connections in patients with JME before and after CLM successive failure attacks on the central brain area. The rich connections, feeder connections, and local connections were not significantly different in the brain networks of the healthy control group and the group of patients with JME after CLM successive failure attacks on the central brain region. We concluded that the damage to the left middle cingulate gyrus is closely linked to various brain disorders, suggesting that this region is of great importance for understanding the pathophysiological basis of myoclonic seizures in patients with JME.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Huimin Li
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Luo B, Dong W, Chang L, Qiu C, Lu Y, Liu D, Xue C, Zhang L, Liu W, Zhang W, Yan J. Altered Interhemispheric Functional Connectivity Associated With Early Verbal Fluency Decline After Deep Brain Stimulation in Parkinson’s Disease. Front Aging Neurosci 2022; 14:799545. [PMID: 35431904 PMCID: PMC9011328 DOI: 10.3389/fnagi.2022.799545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) experience a decline in verbal fluency (VF) immediately after undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN). This phenomenon is thought to be related to surgical microlesions. Purpose We investigated the alterations in interhemispheric functional connectivity after STN-DBS in PD patients. We also evaluated the correlation between these changes and decreased VF scores. Method Overall, 30 patients with PD were enrolled in the study. Resting-state functional magnetic resonance imaging scans were performed twice, once before and once after DBS, in PD patients. Voxel-mirrored homotopic connectivity (VMHC) was applied in order to evaluate the synchronicity of functional connectivity between the hemispheres. Result After undergoing STN-DBS, PD patients demonstrated reduced VMHC value in the posterior cerebellum lobe, angular gyrus, precuneus/posterior cingulate gyrus (PCC), supramarginal gyrus, superior frontal gyrus (SFG) (medial and dorsolateral) and middle frontal gyrus (MFG). In addition, we observed a significant positive correlation between the altered VMHC value in the SFG and MFG and the change of phonemic VF scores. Conclusion PD patients demonstrated an interhemispheric coordination disorder in the prefrontal cortex, cerebellum, supramarginal gyrus and DMN after undergoing STN-DBS. The positive correlation between reduced VMHC value in the SFG and MFG and the changes of VF scores provides a novel understanding with regard to the decline of VF after DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wenbin Zhang,
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Jun Yan,
| |
Collapse
|
12
|
Xu J, Chen Y, Wang H, Li Y, Li L, Ren J, Sun Y, Liu W. Altered Neural Network Connectivity Predicts Depression in de novo Parkinson’s Disease. Front Neurosci 2022; 16:828651. [PMID: 35310104 PMCID: PMC8931029 DOI: 10.3389/fnins.2022.828651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
Background Depression, one of the most frequent non-motor symptoms in Parkinson’s disease (PD), was proposed to be related to neural network dysfunction in advanced PD patients. However, the underlying mechanisms in the early stage remain unclear. The study was aimed to explore the alterations of large-scale neural networks in de novo PD patients with depression. Methods We performed independent component analysis (ICA) on the data of resting-state functional magnetic resonance imaging from 21 de novo PD patients with depression (dPD), 34 de novo PD patients without depression (ndPD), and 43 healthy controls (HCs) to extract functional networks. Intranetwork and internetwork connectivity was calculated for comparison between groups, correlation analysis, and predicting the occurrence of depression in PD. Results We observed an ordered decrease of connectivity among groups within the ventral attention network (VAN) (dPD < ndPD < HCs), mainly located in the left middle temporal cortex. Besides, dPD patients exhibited hypoconnectivity between the auditory network (AUD) and default mode network (DMN) or VAN compared to ndPD patients or healthy controls. Correlation analysis revealed that depression severity was negatively correlated with connectivity value within VAN and positively correlated with the connectivity value of AUD-VAN in dPD patients, respectively. Further analysis showed that the area under the curve (AUC) for dPD prediction was 0.863 when combining the intranetwork connectivity in VAN and internetwork connectivity in AUD-DMN and AUD-VAN. Conclusion Our results demonstrated that early dPD may be associated with abnormality of attention bias and especially auditory attention processing. Altered neural network connectivity is expected to be a potential neuroimaging biomarker to predict depression in PD.
Collapse
Affiliation(s)
- Jianxia Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yubing Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yuqian Li
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lanting Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory for Children’s Medical Imaging Research, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Weiguo Liu,
| |
Collapse
|
13
|
Aberrant Structure MRI in Parkinson’s Disease and Comorbidity with Depression Based on Multinomial Tensor Regression Analysis. J Pers Med 2022; 12:jpm12010089. [PMID: 35055404 PMCID: PMC8779164 DOI: 10.3390/jpm12010089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background: Depression is a prominent and highly prevalent nonmotor feature in patients with Parkinson’s disease (PD). The neural and pathophysiologic mechanisms of PD with depression (DPD) remain unclear. The current diagnosis of DPD largely depends on clinical evaluation. Methods: We proposed a new family of multinomial tensor regressions that leveraged whole-brain structural magnetic resonance imaging (MRI) data to discriminate among 196 non-depressed PD (NDPD) patients, 84 DPD patients, 200 healthy controls (HC), and to assess the special brain microstructures in NDPD and DPD. The method of maximum likelihood estimation coupled with state-of-art gradient descent algorithms was used to predict the individual diagnosis of PD and the development of DPD in PD patients. Results: The results reveal that the proposed efficient approach not only achieved a high prediction accuracy (0.94) with a multi-class AUC (0.98) for distinguishing between NDPD, DPD, and HC on the testing set but also located the most discriminative regions for NDPD and DPD, including cortical regions, the cerebellum, the brainstem, the bilateral basal ganglia, and the thalamus and limbic regions. Conclusions: The proposed imaging technique based on tensor regression performs well without any prior feature information, facilitates a deeper understanding into the abnormalities in DPD and PD, and plays an essential role in the statistical analysis of high-dimensional complex MRI imaging data to support the radiological diagnosis of comorbidity of depression with PD.
Collapse
|
14
|
Li Y, Liu A, Mi T, Yang R, Chan P, McKeown MJ, Chen X, Wu F. Striatal Subdivisions Estimated via Deep Embedded Clustering With Application to Parkinson's Disease. IEEE J Biomed Health Inform 2021; 25:3564-3575. [PMID: 34038373 DOI: 10.1109/jbhi.2021.3083879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent fMRI connectivity-based parcellation (CBP) methods have been developed to obtain homogeneous and functionally coherent brain parcels. However, most of these studies utilize traditional clustering methods that neglect hidden nonlinear features. To enhance parcellation performance, here we propose a deep embedded connectivity-based parcellation (DECBP) framework and apply it to determine functional subdivisions of the striatum in public resting state fMRI data sets. This framework integrates fMRI connectivity features into deep embedded clustering (DEC), a deep neural network based on a stacked autoencoder. Compared to three prevalent clustering methods and their combinations with principal component analysis (PCA), the DECBP exhibited a significantly higher similarity between scans, individuals, and groups, indicating enhanced reproducibility. The generated reliable parcellations were also largely consistent with other public atlases. We further explored the functional subunits in the striatum in a data set from 23 Parkinson's disease (PD) subjects and 27 age-matched healthy controls (HC). All putaminal subregions of PD demonstrated lower interhemispheric connectivity than those of HC, which might reflect imbalance in the pathological progression of PD. Such hypo-connectivity was also observed between putaminal subregions and other brain regions, reflecting neuroimaging manifestations of the altered cortico-striato-thalamo-cortical circuit. These observed weaker couplings were associated with PD severity and duration. Our results support the utilization of the DECBP framework and suggest that abnormal connectivity in putaminal subregions may be a potential indicator of PD.
Collapse
|
15
|
Zhang X, Cao X, Xue C, Zheng J, Zhang S, Huang Q, Liu W. Aberrant functional connectivity and activity in Parkinson's disease and comorbidity with depression based on radiomic analysis. Brain Behav 2021; 11:e02103. [PMID: 33694328 PMCID: PMC8119873 DOI: 10.1002/brb3.2103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The current diagnosis of Parkinson's disease (PD) comorbidity with depression (DPD) largely depends on clinical evaluation. However, the modality may tend to lack precision in detecting PD with depression. A radiomic approach that combines functional connectivity and activity with clinical scores has the potential to achieve accurate and differential diagnosis between PD and DPD. METHODS In this study, we aimed to employ the radiomic approach to extract large-scale features of functional connectivity and activity for differentiating among DPD, PD with no depression (NDPD), and healthy controls (HC). We extracted 6,557 features of five types from all subjects including clinical characteristics, resting-state functional connectivity (RSFC), amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and voxel-mirrored homotopic connectivity (VMHC). Lasso, random forest, and support vector machine (SVM) were implemented for feature selection and dimension reduction based on the training sets, and the prediction performance for different methods in the testing sets was compared. RESULTS The results showed that nineteen features were selected for the group of DPD versus HC, 34 features were selected for the group of NDPD versus HC, and 17 features were retained for the group of DPD versus NDPD. In the testing sets, Lasso prediction achieved the accuracies of 0.95, 0.96, and 0.85 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively. Random forest achieved the accuracies of 0.90, 0.82, and 0.90 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively, while SVM yielded the accuracies of 1, 0.86 and 0.65 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively. CONCLUSIONS By identifying aberrant functional connectivity and activity as potential biomarkers, the radiomic approach facilitates a deeper understanding and provides new insights into the pathophysiology of DPD to support the clinical diagnosis with high prediction accuracy.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, USA
| | - Chen Xue
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, Auburn, USA
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, USA
| | - Qingling Huang
- Department of Radiology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, Nanjing Medical University Affiliated Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
16
|
Yang L, Wei AH, Ouyang TT, Cao ZZ, Duan AW, Zhang HH. Functional plasticity abnormalities over the lifespan of first-episode patients with major depressive disorder: a resting state fMRI study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:349. [PMID: 33708976 PMCID: PMC7944321 DOI: 10.21037/atm-21-367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Neurodevelopmental and neurodegenerative theories of depression suggest that patients with major depressive disorder (MDD) may follow abnormal developmental, maturational, and aging processes. However, a lack of lifespan studies has precluded verification of these theories. Herein, we analyzed functional magnetic resonance imaging (fMRI) data to comprehensively characterize age-related functional trajectories, as measured by the fractional amplitude of low frequency fluctuations (fALFF), over the course of MDD. Methods In total, 235 MDD patients with age-differentiated onsets and 235 age- and sex-matched healthy controls (HC) were included in this study. We determined the pattern of age-related fALFF changes by cross-sectionally establishing the general linear model (GLM) between fALFF and age over a lifespan. Furthermore, the subjects were divided into four age groups to assess age-related neural changes in detail. Inter-group fALFF comparison (MDD vs. HC) was conducted in each age group and Granger causal analysis (GCA) was applied to investigate effective connectivity between regions. Results Compared with the HC, no significant quadratic or linear age effects were found in MDD over the entire lifespan, suggesting that depression affects the normal developmental, maturational, and degenerative process. Inter-group differences in fALFF values varied significantly at different ages of onset. This implies that MDD may impact brain functions in a highly dynamic way, with different patterns of alterations at different stages of life. Moreover, the GCA analysis results indicated that MDD followed a distinct pattern of effective connectivity relative to HC, and this may be the neural basis of MDD with age-differentiated onsets. Conclusions Our findings provide evidence that normal developmental, maturational, and ageing processes were affected by MDD. Most strikingly, functional plasticity changes in MDD with different ages of onset involved dynamic interactions between neuropathological processes in a tract-specific manner.
Collapse
Affiliation(s)
- Li Yang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - An-Hai Wei
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China.,College of Communication Engineering of Chongqing University, Chongqing, China
| | - Tan-Te Ouyang
- Department of Biomedical Engineering and Medical Imaging, Army Military Medical University, Chongqing, China
| | - Zhen-Zhen Cao
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Ao-Wen Duan
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - He-Hua Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Qiu YH, Huang ZH, Gao YY, Feng SJ, Huang B, Wang WY, Xu QH, Zhao JH, Zhang YH, Wang LM, Nie K, Wang LJ. Alterations in intrinsic functional networks in Parkinson's disease patients with depression: A resting-state functional magnetic resonance imaging study. CNS Neurosci Ther 2020; 27:289-298. [PMID: 33085178 PMCID: PMC7871794 DOI: 10.1111/cns.13467] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aims The aim of this research was to investigate the alterations in functional brain networks and to assess the relationship between depressive impairment and topological network changes in Parkinson's disease (PD) patients with depression (DPD). Methods Twenty‐two DPD patients, 23 PD patients without depression (NDPD), and 25 matched healthy controls (HCs) were enrolled. All participants were examined by resting‐state functional magnetic resonance imaging scans. Graph theoretical analysis and network‐based statistic methods were used to analyze brain network topological properties and abnormal subnetworks, respectively. Results The DPD group showed significantly decreased local efficiency compared with the HC group (P = .008, FDR corrected). In nodal metrics analyses, the degree of the right inferior occipital gyrus (P = .0001, FDR corrected) was positively correlated with the Hamilton Depression Rating Scale scores in the DPD group. Meanwhile, the temporal visual cortex, including the bilateral middle temporal gyri and right inferior temporal gyrus in the HC and NDPD groups and the left posterior cingulate gyrus in the NDPD group, was defined as hub region, but not in the DPD group. Compared with the HC group, the DPD group had extensive weakening of connections between the temporal‐occipital visual cortex and the prefrontal‐limbic network. Conclusions These results suggest that PD depression is associated with disruptions in the topological organization of functional brain networks, mainly involved the temporal‐occipital visual cortex and the posterior cingulate gyrus and may advance our current understanding of the pathophysiological mechanisms underlying DPD.
Collapse
Affiliation(s)
- Yi-Hui Qiu
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhi-Heng Huang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu-Yuan Gao
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Shu-Jun Feng
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wan-Yi Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Qi-Huan Xu
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jie-Hao Zhao
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu-Hu Zhang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li-Min Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li-Juan Wang
- Department of Neurology, Guangdong Provincial Peoples' Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
18
|
Liao H, Fan J, Shen Q, Cai S, Wang M, Wang C, Zhang H, Liu J, Zhu X, Tan C. Alterations of Interhemispheric Functional Connectivity in Parkinson's Disease With Depression: A Resting-State Functional MRI Study. Front Hum Neurosci 2020; 14:193. [PMID: 32581743 PMCID: PMC7289948 DOI: 10.3389/fnhum.2020.00193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Depression is the most common non-motor symptom in patients with Parkinson's disease (PD) with unknown mechanisms, but the diagnostic criteria of PD with depression (PDD) are not uniform. PURPOSE The aim of the study was to investigate interhemispheric interactions between PDD patients and patients with PD without depression (PDND). METHODS The voxel-mirrored homotopic connectivity (VMHC) combined with the seed-based method was used to investigate intrinsic resting-state functional connectivity (RSFC) in 33 PDD patients, 60 PDND, and 47 healthy controls (HCs). RESULTS PDD patients exhibited a decreased VMHC in the bilateral medial frontal gyrus and paracentral lobule (MFG/PCL) than did PDND patients. Parkinson's disease with depression had a decreased VMHC in the bilateral precentral gyrus than had PDND and HC (p < 0.05). Parkinson's disease with depression had a decreased homotopic RSFC from the medial frontal gyrus (MFG)/PCL to the contralateral supplementary motor area (SMA) than had PDND (p < 0.05). The decreased homotopic RSFC from the right MFG/PCL to the left SMA was negatively correlated with Hamilton Depression Rating Scale scores (p < 0.05), but not with illness duration, Beck's Depression Inventory, and Unified Parkinson's Disease Rating Scale in PD patients. CONCLUSIONS Our findings indicated that the occurrence of depression in Parkinson's disease is associated with the dysfunctional connectivity from the MFG/PCL to the contralateral SMA, which could be used as potential neuroimaging markers for the diagnosis of depression in PD patients.
Collapse
Affiliation(s)
- Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Lee K, Cao X. Bayesian group selection in logistic regression with application to MRI data analysis. Biometrics 2020; 77:391-400. [PMID: 32365231 DOI: 10.1111/biom.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
We consider Bayesian logistic regression models with group-structured covariates. In high-dimensional settings, it is often assumed that only a small portion of groups are significant, and thus, consistent group selection is of significant importance. While consistent frequentist group selection methods have been proposed, theoretical properties of Bayesian group selection methods for logistic regression models have not been investigated yet. In this paper, we consider a hierarchical group spike and slab prior for logistic regression models in high-dimensional settings. Under mild conditions, we establish strong group selection consistency of the induced posterior, which is the first theoretical result in the Bayesian literature. Through simulation studies, we demonstrate that the proposed method outperforms existing state-of-the-art methods in various settings. We further apply our method to a magnetic resonance imaging data set for predicting Parkinson's disease and show its benefits over other contenders.
Collapse
Affiliation(s)
- Kyoungjae Lee
- Department of Statistics, Inha University, Incheon, South Korea
| | - Xuan Cao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
20
|
Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. HANDBOOK OF CLINICAL NEUROLOGY 2020; 165:83-121. [PMID: 31727232 DOI: 10.1016/b978-0-444-64012-3.00007-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder with a complex pathophysiology characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Persons with PD experience several motoric and neuropsychiatric symptoms. Neuropsychiatric features of PD include depression, anxiety, psychosis, impulse control disorders, and apathy. In this chapter, we will utilize the National Institutes of Mental Health Research Domain Criteria (RDoC) to frame and integrate observations from two prevailing disease constructions: neurotransmitter anomalies and circuit physiology. When there is available evidence, we posit how unified translational observations may have clinical relevance and postulate importance outside of PD. Finally, we review the limited evidence available for pharmacologic management of these symptoms.
Collapse
|
21
|
Li Y, Huang P, Guo T, Guan X, Gao T, Sheng W, Zhou C, Wu J, Song Z, Xuan M, Gu Q, Xu X, Yang Y, Zhang M. Brain structural correlates of depressive symptoms in Parkinson's disease patients at different disease stage. Psychiatry Res Neuroimaging 2020; 296:111029. [PMID: 31918166 DOI: 10.1016/j.pscychresns.2019.111029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) pathology may damage emotion circuit and cause depression. We investigated whether the neural basis of depressive symptoms varies at different PD stages. Seventy-six healthy controls (HC) and 98 PD patients (divided into early and middle stage groups) underwent brain magnetic resonance imaging (MRI) and general neuropsychological tests. Voxel-based morphometry and tract-based analysis were used to study the association between brain structural alterations and the Hamilton Depression Scale 17 Item (HAMD-17) scores in different groups. Comparing with HC group, PD patients showed widespread brain alterations in both gray and white matter. The HAMD-17 scores were positively correlated with GM volume in the right pre-central gyrus of early PD patients. In the middle stage group, HAMD-17 scores were positively correlated with GM volume in midbrain and right superior temporal gyrus, and negatively associated with GM volume in left anterior cingulate and superior frontal gyrus. In white matter analysis, The HAMD-17 scores were positively correlated with fractional anisotropy value of the bilateral inferior fronto-occipital fasciculus in the early stage group, but not the middle stage group. We concluded that the neural basis of depressive symptoms might be distinct in different stages of PD, implying the need for differential treatments.
Collapse
Affiliation(s)
- Yanxuan Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Ting Gao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Wenshuang Sheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University 325000, Wenzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine 310000, Hangzhou, China.
| |
Collapse
|
22
|
Chong CD, Wang L, Wang K, Traub S, Li J. Homotopic region connectivity during concussion recovery: A longitudinal fMRI study. PLoS One 2019; 14:e0221892. [PMID: 31577811 PMCID: PMC6774501 DOI: 10.1371/journal.pone.0221892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/16/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients normalized during the recovery process. The relationship between symptom recovery and change in hfc was assessed using post-hoc analyses. METHODS This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2 males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori selected pain-processing regions. Concussed patients underwent imaging at two time-points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5) and again at 5-months post-concussion (mean time following concussion: 121 days, SD = 13). At both time-points, symptoms associated with concussion were assessed using the Sports Concussion Assessment Tool (SCAT-3). RESULTS Concussed patients had significantly weaker hfc in the following six regions 1-month post-concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal trigeminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger hfc in concussed patients relative to HC. Longitudinally, patients showed significant symptom recovery 5-months post-concussion and had significant strengthening of hfc patterns in seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc analyses indicated a significant negative correlation between somatosensory functional connectivity strengthening and symptom severity. CONCLUSION At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-processing regions relative to HC. However, over a period of 5-months, region-pair connectivity showed significant recovery and normalization. Those patients with more successful symptom recovery at 5-months post-concussion had more functional somatosensory strengthening, suggesting an association between functional strengthening and post-concussion symptom recovery.
Collapse
Affiliation(s)
| | - Lujia Wang
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Kun Wang
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Stephen Traub
- Mayo Clinic Arizona, Phoenix, AZ, United States of America
| | - Jing Li
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
23
|
Abstract
In addition to motor symptoms, behavioural complications are commonly found in patients with Parkinson's disease (PD). Behavioural complications, including depression, anxiety, apathy, impulse control disorder and psychosis, together have a large impact on PD patient's quality of life. Many neuroimaging studies using PET, SPECT and MRI techniques have been conducted to study the underlying neural mechanisms of PD pathogenesis and pathophysiology in relation to its behavioural complications. This review will survey these PET, SPECT and MRI studies to describe the current understanding of the neuro-chemical, functional and structural changes associated with behavioural complications in PD patients.
Collapse
|
24
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
25
|
Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den Heuvel OA. Anxiety in Parkinson's disease is associated with reduced structural covariance of the striatum. J Affect Disord 2018; 240:113-120. [PMID: 30059937 DOI: 10.1016/j.jad.2018.07.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 07/19/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Anxiety is highly prevalent in Parkinson's disease (PD) and has great negative impact on quality of life. Functional and structural neuroimaging studies have contributed to our understanding of the symptomatology of PD but still little is known about the pathophysiology of PD-related anxiety. METHODS We used seed-based structural covariance analysis to study the anatomical network correlates of anxiety in PD. Structural covariance analysis is based on the statistical correlation between regional brain volumes measured on T1-weighted magnetic resonance images. We investigated the association between anxiety symptoms, as measured by the Beck Anxiety Inventory (BAI), and seed-to-whole-brain structural covariance networks in 115 patients with idiopathic PD using five bilateral seeds: basolateral amygdala, centromedial-superficial amygdala, dorsal caudate nucleus, dorsal-caudal putamen, and nucleus accumbens. RESULTS Severity of anxiety correlated negatively with structural covariance between the left striatal sub-regions and the contralateral caudate nucleus. Moreover, severity of anxiety was associated with reduced structural covariance between the right dorsal caudate nucleus and ipsilateral ventrolateral prefrontal cortex and between the left nucleus accumbens and ipsilateral dorsolateral prefrontal cortex. Structural covariance of the amygdalar seeds did not correlate with anxiety. CONCLUSIONS We interpret these findings as a reduced interhemispheric cooperation between the left and right striatum and reduced prefrontal-striatal connectivity, possibly related to impaired 'top-down' regulation of emotions. These findings shed more light on the pathophysiology of PD-related anxiety LIMITATIONS: This study did not include PD patients with an anxiety disorder.
Collapse
Affiliation(s)
- Caroline S Oosterwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands.
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Gou L, Zhang W, Li C, Shi X, Zhou Z, Zhong W, Chen T, Wu X, Yang C, Guo D. Structural Brain Network Alteration and its Correlation With Structural Impairments in Patients With Depression in de novo and Drug-Naïve Parkinson's Disease. Front Neurol 2018; 9:608. [PMID: 30093879 PMCID: PMC6070599 DOI: 10.3389/fneur.2018.00608] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose: Depression is common in Parkinson's disease (PD) and is correlated with the severity of motor deficits and quality of life. The present study aimed to investigate alterations in the structural brain network related to depression in Parkinson's disease (d-PD) and their correlations with structural impairments of white matter (WM). Materials and Methods: Data were acquired from the Parkinson Progression Markers Initiative (PPMI) database. A total of 84 de novo and drug-naïve PD patients were screened and classified into two groups according to the 15-item Geriatric Depression Scale (GDS-15): d-PD (n = 28) and nondepression in PD (nd-PD, n = 56). Additionally, 37 healthy controls (HC) were screened. All subjects underwent DTI and 3D-T1WI on a 3.0 T MR scanner. Individual structural brain networks were constructed and analyses were performed using graph theory and network-based statistics (NBS) at both global and local levels. Differences in global topological properties were explored among the three groups. The association models between node and edge changes and the GDS-15 were constructed to detect regions that were specifically correlated with d-PD. Tract-based spatial statistics (TBSS) was used to detect structural impairments of WM between the d-PD and nd-PD groups. The correlations between altered global topological properties and structural impairments were analyzed in the d-PD group. Results: The global efficiency and characteristic path length of the structural brain network were impaired in the d-PD group compared with those in the nd-PD and HC groups. Thirteen nodes and 1 subnetwork with 10 nodes and 12 edges specifically correlated with d-PD were detected. The left hippocampus, left parahippocampal, left lingual, left middle occipital, left inferior occipital, left fusiform, left middle temporal, and left inferior temporal regions were all involved in the results of node and edge analysis. No WM microstructural impairments were identified in the d-PD group. Conclusion: Our study suggests that the integration of the structural brain network is impaired with disrupted connectivity of limbic system and visual system in the de novo and drug-naïve d-PD patients.The topological properties assessing integration of the structural brain network can serve as a potential objective neuroimaging marker for early diagnosis of d-PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Wu JY, Zhang Y, Wu WB, Hu G, Xu Y. Impaired long contact white matter fibers integrity is related to depression in Parkinson's disease. CNS Neurosci Ther 2017; 24:108-114. [PMID: 29125694 DOI: 10.1111/cns.12778] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Depression is one of the most common nonmotor symptoms in Parkinson's disease (PD). But the pathogenesis is still unclear. Studies have shown that depression in PD is closely related to the white matter abnormalities, but the number of studies is still very small and lack of whole brain white matter lesions study. METHODS In this study, we investigated whole brain white matter integrity in 31 depressed PD patients and 37 nondepressed PD patients by diffusion tensor imaging. RESULTS There was no difference in age, gender, age of onset, disease duration, Hoehn-Yahr scale, Unified Parkinson's Disease Rating Scale scores-III, and Mini-Mental State Examination scores between the two groups. The only difference was the Hamilton Depression Rating Scale. Depressed PD patients showed reduced fractional anisotropy values in the left anterior corona radiata, left posterior thalamic radiation, left cingulum, left superior longitudinal fasciculus, left sagittal stratum (including inferior longitudinal fasciculus and inferior fronto-occipital fasciculus), and left uncinate fasciculus. In patients with depression, the Hamilton Depression Rating Scale (HDRS) was negatively correlated with the FA value in the left cingulum (r = -0.712, P = .032) and left superior longitudinal fasciculus (r = -0.699, P = .025). CONCLUSIONS This study suggested depression in PD was related to impaired white matter integrity especially the long contact fibers in the left hemisphere. These findings may be helpful for further understanding the potential mechanisms underlying depression in PD.
Collapse
Affiliation(s)
- Jia-Yong Wu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yang Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wen-Bo Wu
- Department of Medical Imaging, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Yao Q, Zhu D, Li F, Xiao C, Lin X, Huang Q, Shi J. Altered Functional and Causal Connectivity of Cerebello-Cortical Circuits between Multiple System Atrophy (Parkinsonian Type) and Parkinson's Disease. Front Aging Neurosci 2017; 9:266. [PMID: 28848423 PMCID: PMC5554370 DOI: 10.3389/fnagi.2017.00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 01/28/2023] Open
Abstract
Lesions of the cerebellum lead to motor and non-motor deficits by influencing cerebral cortex activity via cerebello-cortical circuits. It remains unknown whether the cerebello-cortical “disconnection” underlies motor and non-motor impairments both in the parkinsonian variant of multiple system atrophy (MSA-P) and Parkinson’s disease (PD). In this study, we investigated both the functional and effective connectivity of the cerebello-cortical circuits from resting-state functional magnetic resonance imaging (rs-fMRI) data of three groups (26 MSA-P patients, 31 PD patients, and 30 controls). Correlation analysis was performed between the causal connectivity and clinical scores. PD patients showed a weakened cerebellar dentate nucleus (DN) functional coupling in the posterior cingulate cortex (PCC) and inferior parietal lobe compared with MSA-P or controls. MSA-P patients exhibited significantly enhanced effective connectivity from the DN to PCC compared with PD patients or controls, as well as declined causal connectivity from the left precentral gyrus to right DN compared with the controls, and this value is significantly correlated with the motor symptom scores. Our findings demonstrated a crucial role for the cerebello-cortical networks in both MSA-P and PD patients in addition to striatal-thalamo-cortical (STC) networks and indicated that different patterns of cerebello-cortical loop degeneration are involved in the development of the diseases.
Collapse
Affiliation(s)
- Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Donglin Zhu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Feng Li
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Xingjian Lin
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Qingling Huang
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|