1
|
Kolosova O, Zgadzay Y, Stetsenko A, Sukhinina AP, Atamas A, Validov S, Rogachev A, Usachev K, Jenner L, Dmitriev SE, Yusupova G, Guskov A, Yusupov M. Mechanism of read-through enhancement by aminoglycosides and mefloquine. Proc Natl Acad Sci U S A 2025; 122:e2420261122. [PMID: 40273100 PMCID: PMC12054815 DOI: 10.1073/pnas.2420261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Nonsense mutations are associated with numerous and diverse pathologies, yet effective treatment strategies remain elusive. A promising approach to combat these conditions involves the use of aminoglycosides, particularly in combination with stop-codon read-through enhancers, for developing drugs that can rescue the production of full-length proteins. Using X-ray crystallography and single-particle cryo-EM, we obtained structures of the eukaryotic ribosome in complexes with several aminoglycosides (geneticin G418, paromomycin, and hygromycin B) and the antimalarial drug mefloquine (MFQ), which has also been identified as a read-through enhancer. Our study reveals a binding site of MFQ, which holds significant promise for the development of therapies targeting premature termination codon-related genetic and oncological diseases. The results underscore the crucial role of the bridge B7b/c in mediating the effects of MFQ on subunit rotation dynamics. Through a comprehensive analysis of the interactions between the drugs and the eukaryotic ribosome, we propose a unifying hypothesis for read-through enhancement by small molecules, highlighting the role of decoding center rearrangements and intersubunit rotation dynamics.
Collapse
Affiliation(s)
- Olga Kolosova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Yury Zgadzay
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Anastasia P. Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow119234, Russia
| | - Anastasia Atamas
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Shamil Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan420008, Russia
| | - Andrey Rogachev
- Moscow Centre for Advanced Studies, Moscow123592, Russia
- Joint Institute for Nuclear Research, Dubna141980, Russia
| | - Konstantin Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan420008, Russia
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow119234, Russia
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, the Netherlands
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch67400, France
| |
Collapse
|
2
|
Guerrieri AN, Hattinger CM, Marchesini F, Melloni M, Serra M, Ibrahim T, Penzo M. The Interplay Between the MYC Oncogene and Ribosomal Proteins in Osteosarcoma Onset and Progression: Potential Mechanisms and Indication of Candidate Therapeutic Targets. Int J Mol Sci 2024; 25:12031. [PMID: 39596100 PMCID: PMC11593864 DOI: 10.3390/ijms252212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis. Therefore, curing OS is a clinical challenge, particularly for patients that do not respond to standard treatments. MYC has frequently been reported to be involved in the pathogenesis of OS and its high expression may be associated with drug resistance and patients' worse prognosis. Moreover, MYC is a master regulator of ribosomal proteins (RPs) synthesis and ribosome biogenesis (RiBi), which is often up-regulated in human tumors. In recent years, RPs have been recognized not only for their traditional role in ribosome assembly but also for their extra-ribosomal functions, many of which are linked to the onset and progression of cancer. In this review we focus on the role and possible interplay of MYC and RPs expression in association with drug resistance and worse prognosis in OS and discuss therapeutic options that target de-regulated MYC, RiBi, or RPs, which are already clinically available or under evaluation in clinical trials.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Federica Marchesini
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Martina Melloni
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Marianna Penzo
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Synthetic macrolides overcoming MLS BK-resistant pathogens. Cell Discov 2024; 10:75. [PMID: 38992047 PMCID: PMC11239830 DOI: 10.1038/s41421-024-00702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiao-Tian Lian
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xie-Peng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bing-Zhi Fan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jue-Ru Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhao Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Xiao-Tong Pei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jin-Zhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
4
|
Fedorovskiy AG, Burakov AV, Terenin IM, Bykov DA, Lashkevich KA, Popenko VI, Makarova NE, Sorokin II, Sukhinina AP, Prassolov VS, Ivanov PV, Dmitriev SE. A Solitary Stalled 80S Ribosome Prevents mRNA Recruitment to Stress Granules. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1786-1799. [PMID: 38105199 DOI: 10.1134/s000629792311010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023]
Abstract
In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.
Collapse
Affiliation(s)
- Artem G Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anton V Burakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Sirius University of Science and Technology, Sirius, Krasnodar Region, 354340, Russia
| | - Dmitry A Bykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Nadezhda E Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia P Sukhinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Ivanov
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Subbaiah S P V, Uttamrao PP, Das U, Sundaresan S, Rathinavelan T. Concentration and time-dependent amyloidogenic characteristics of intrinsically disordered N-terminal region of Saccharomyces cerevisiae Stm1. Front Microbiol 2023; 14:1206945. [PMID: 37928673 PMCID: PMC10620681 DOI: 10.3389/fmicb.2023.1206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Saccharomyces cerevisiae Stm1 protein is a ribosomal association factor, which plays an important role in preserving ribosomes in a nutrition-deprived environment. It is also shown to take part in apoptosis-like cell death. Stm1 N-terminal region (Stm1_N1-113) is shown to recognize purine motif DNA triplex and G-quadruplex. Circular dichroism (CD) spectra of Stm1_N1-113 (enriched in positively-charged Lysine and Arginine; negatively-charged Aspartate; polar-uncharged Threonine, Asparagine, Proline and Serine; hydrophobic Alanine, Valine, and Glycine) collected after 0 and 24 h indicate that the protein assumes beta-sheet conformation at the higher concentrations in contrast to intrinsically disordered conformation seen for its monomeric form found in the crystal structure. Thioflavin-T kinetics experiments indicate that the lag phase is influenced by the salt concentration. Atomic force microscopy (AFM) images collected for a variety of Stm1_N1-113 concentrations (in the range of 1-400 μM) in the presence of 150 mM NaCl at 0, 24, and 48 h indicate a threshold concentration requirement to observe the time-dependent amyloid formation. This is prominent seen at the physiological salt concentration of 150 mM NaCl with the fibrillation observed for 400 μM concentration at 48 h, whereas oligomerization or proto-fibrillation is seen for the other concentrations. Such concentration-dependent fibrillation of Stm1_N1-113 explains that amyloid fibrils formed during the overexpression of Stm1_N1-113 may act as a molecular device to trigger apoptosis-like cell death.
Collapse
Affiliation(s)
- Venkata Subbaiah S P
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uttam Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | |
Collapse
|
6
|
Lidsky PV, Yuan J, Lashkevich KA, Dmitriev SE, Andino R. Monitoring integrated stress response in live Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548942. [PMID: 37502856 PMCID: PMC10369977 DOI: 10.1101/2023.07.13.548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- University of California San Francisco, San Francisco, CA, 94158
| | - Jing Yuan
- University of California San Francisco, San Francisco, CA, 94158
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Raul Andino
- University of California San Francisco, San Francisco, CA, 94158
| |
Collapse
|
7
|
Shmygarev VI, Prokopenko Y, Terekhov SS, Zakharova MY, Dubinnyi MA, Smirnov IV, Yampolsky IV, Tsarkova AS. Amicoumacin-based prodrug development approach. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, is highly contagious and has a severe morbidity. Providing care to patients with COVID-19 requires the development of new types of antiviral drugs. The aim of this work is to develop a prodrug for the treatment of coronavirus disease using the antibiotic Amicoumacin A (Ami), the mechanism of action of which is based on translation inhibition. Enzymatic hydrolysis of an inactivated prodrug by the SARS-CoV-2 main protease can lead to the release of the active Ami molecule and, as a consequence, the suppression of protein biosynthesis in infected cells. To test the proposed hypothesis, a five-stage synthesis of an inactivated analogue of Amicoumacin A was carried out. Its in vitro testing with the SARS-CoV-2 recombinant protease MPro showed a low percentage of hydrolysis. Further optimization of the peptide fragment of the inactivated analog recognized by the SARS-CoV-2 MPro protease may lead to an increase in proteolysis and the release of Amicoumacin A.
Collapse
Affiliation(s)
- VI Shmygarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - YuA Prokopenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - SS Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - MYu Zakharova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - MA Dubinnyi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - IV Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - IV Yampolsky
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia;Pirogov Russian National Research Medical University, Moscow, Russia
| | - AS Tsarkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Zyrina NV, Agalarov SC. 16S rRNA from E. coli Significantly Stimulates Translation of Reporter mRNA in a Eucaryotic Cell-Free System. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Sparsomycin Exhibits Potent Antiplasmodial Activity In Vitro and In Vivo. Pharmaceutics 2022; 14:pharmaceutics14030544. [PMID: 35335918 PMCID: PMC8954220 DOI: 10.3390/pharmaceutics14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The emerging spread of drug-resistant malaria parasites highlights the need for new antimalarial agents. This study evaluated the growth-inhibitory effects of sparsomycin (Sm), a peptidyl transferase inhibitor, against Plasmodium falciparum 3D7 (chloroquine-sensitive strain), P. falciparum K1 (resistant to multiple drugs, including chloroquine), P. yoelii 17XNL (cause of uncomplicated rodent malaria) and P. berghei ANKA (cause of complicated rodent malaria). Using a fluorescence-based assay, we found that Sm exhibited half-maximal inhibitory concentrations (IC50) of 12.07 and 25.43 nM against P. falciparum 3D7 and K1, respectively. In vitro treatment of P. falciparum 3D7 with Sm at 10 or 50 nM induced morphological alteration, blocked parasites in the ring state and prevented erythrocyte reinvasion, even after removal of the compound. In mice infected with P. yoelii 17XNL, the administration of 100 μg/kg Sm for 7 days did not affect parasitemia. Meanwhile, treatment with 300 μg/kg Sm resulted in a significantly lower parasitemia peak (18.85%) than that observed in the control group (40.13%). In mice infected with P. berghei ANKA, both four and seven doses of Sm (300 μg/kg) prolonged survival by 33.33%. Our results indicate that Sm has potential antiplasmodial activities in vitro and in vivo, warranting its further development as an alternative treatment for malaria.
Collapse
|
10
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
11
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
12
|
Xenocoumacin 2 reduces protein biosynthesis and inhibits inflammatory and angiogenesis-related processes in endothelial cells. Biomed Pharmacother 2021; 140:111765. [PMID: 34058438 DOI: 10.1016/j.biopha.2021.111765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Xenocoumacin (Xcn) 1 and 2 are the major antibiotics produced by the insect-pathogenic bacterium Xenorhabdus nematophila. Although the antimicrobial activity of Xcns has been explored, research regarding their action on mammalian cells is lacking. We aimed to investigate the action of Xcns in the context of inflammation and angiogenesis. We found that Xcns do not impair the viability of primary endothelial cells (ECs). Particularly Xcn2, but not Xcn1, inhibited the pro-inflammatory activation of ECs: Xcn2 diminished the interaction between ECs and leukocytes by downregulating cell adhesion molecule expression and blocked critical steps of the NF-κB activation pathway including the nuclear translocation of NF-κB p65 as well as the activation of inhibitor of κBα (IκBα) and IκB kinase β (IKKβ). Furthermore, the synthesis of pro-inflammatory mediators and enzymes, nitric oxide (NO) production and prostaglandin E2 (PGE2), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was evaluated in leukocytes. The results showed that Xcns reduced viability, NO release, and iNOS expression in activated macrophages. Beyond these anti-inflammatory properties, Xcn2 effectively hindered pro-angiogenic processes in HUVECs, such as proliferation, undirected and chemotactic migration, sprouting, and network formation. Most importantly, we revealed that Xcn2 inhibits de novo protein synthesis in ECs. Consequently, protein levels of receptors that mediate the inflammatory and angiogenic signaling processes and that have a short half-live are reduced by Xcn2 treatment, thus explaining the observed pharmacological activities. Overall, our research highlights that Xcn2 exhibits significant pharmacological in vitro activity regarding inflammation and angiogenesis, which is worth to be further investigated preclinically.
Collapse
|
13
|
Shablykina OV, Shilin SV, Moskvina VS, Ishchenko VV, Khilya VP. Progress in the Chemistry of Amino-Acid Derivatives of Isocoumarins and 3,4-Dihydroisocoumarins. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Maksimova EM, Vinogradova DS, Osterman IA, Kasatsky PS, Nikonov OS, Milón P, Dontsova OA, Sergiev PV, Paleskava A, Konevega AL. Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation. Front Microbiol 2021; 12:618857. [PMID: 33643246 PMCID: PMC7907450 DOI: 10.3389/fmicb.2021.618857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.
Collapse
Affiliation(s)
- Elena M Maksimova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Daria S Vinogradova
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,NanoTemper Technologies Rus, St. Petersburg, Russia
| | - Ilya A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel S Kasatsky
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Pohl Milón
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.,National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
15
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021; 61:102315. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Li J, Fang F, Wang R, Li Y, Xu B, Liu H, Zhou Y. A Rh(iii)-catalyzed C–H activation/regiospecific annulation cascade of benzoic acids with propargyl acetates to unusual 3-alkylidene-isochromanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00387a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new approach to synthesize isochromanones with benzoic acids and propargyl acetates, which introducing an unusual exocyclic C–C double bond at the 3-position with high regioselectivity and moderate to excellent yields.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- State Key Laboratory of Drug Research
| | - Feifei Fang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Run Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yuan Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Bin Xu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Hong Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
17
|
Zumbrunn C, Krüsi D, Stamm C, Caspers P, Ritz D, Rueedi G. Synthesis and Structure-Activity Relationship of Xenocoumacin 1 and Analogues as Inhibitors of Ribosomal Protein Synthesis. ChemMedChem 2020; 16:891-897. [PMID: 33236408 DOI: 10.1002/cmdc.202000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 11/08/2022]
Abstract
Ribosomal protein synthesis is an important target in antibacterial drug discovery. Numerous natural products have served as starting points for the development of antibiotics. We report here the total synthesis of xenocoumacin 1, a natural product that binds to 16S ribosomal RNA at a highly conserved region, as well as analogues thereof. Preliminary structure-activity relationship studies were aimed at understanding and modulating the selectivity between eukaryotic and prokaryotic ribosomes. Modifications were mainly tolerated in the aromatic region. Whole-cell activity against Gram-negative bacteria is limited by efflux and penetration, as demonstrated in genetically modified strains of E. coli. Analogues with high selectivity for eukaryotic ribosomes were identified, but it was not possible to obtain inhibitors selective for bacterial protein synthesis. Achieving high selectivity (albeit not the desired one) was thus possible despite the high homology between eukaryotic and prokaryotic ribosomes in the binding region.
Collapse
Affiliation(s)
- Cornelia Zumbrunn
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Daniela Krüsi
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Christina Stamm
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Patrick Caspers
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Georg Rueedi
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
18
|
Wang D, Li J, Zhu G, Zhao K, Jiang W, Li H, Wang W, Kumar V, Dong S, Zhu W, Tian X. Mechanism of the Potential Therapeutic Candidate Bacillus subtilis BSXE-1601 Against Shrimp Pathogenic Vibrios and Multifunctional Metabolites Biosynthetic Capability of the Strain as Predicted by Genome Analysis. Front Microbiol 2020; 11:581802. [PMID: 33193216 PMCID: PMC7649127 DOI: 10.3389/fmicb.2020.581802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 12/02/2022] Open
Abstract
The global shrimp industry has suffered bacterial diseases caused mainly by Vibrio species. The typical vibriosis, acute hepatopancreatic necrosis disease (AHPND), has resulted in mass mortality and devastating economic losses. Thus, therapeutic strategies are highly needed to decrease the risk of vibriosis outbreaks. Herein, we initially identified that the growth of the causative agent of AHPND, Vibrio parahaemolyticus (VP AHPND ) and other vibrios in Pacific white shrimp (Litopenaeus vannamei) was inhibited by a Bacillus subtilis strain BSXE-1601. The natural products amicoumacins A, B, and C were purified from the cell-free supernatant from the strain BSXE-1601, but only amicoumacin A was demonstrated to be responsible for this anti-Vibrio activity. Our discovery provided the first evidence that amicoumacin A was highly active against shrimp pathogens, including the representative strain VP AHPND . Furthermore, we elucidated the amicoumacin A biosynthetic gene cluster by whole genome sequencing of the B. subtilis strain BSXE-1601. In addition to amicoumacin A, the strain BSXE-1601 genome harbored other genes encoding bacillibactin, fengycin, surfactin, bacilysin, and subtilosin A, all of which have previously reported antagonistic activities against pathogenic strains. The whole-genome analysis provided unequivocal evidence in support of the huge potential of the strain BSXE-1601 to produce diverse biologically antagonistic natural products, which may facilitate further studies on the effective therapeutics for detrimental diseases in shrimp.
Collapse
Affiliation(s)
- Dongdong Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jiahui Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Wenwen Jiang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Wenjun Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Vikash Kumar
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| |
Collapse
|
19
|
Wang T, Lu Q, Sun C, Lukianov D, Osterman IA, Sergiev PV, Dontsova OA, Hu X, You X, Liu S, Wu G. Hetiamacin E and F, New Amicoumacin Antibiotics from Bacillus subtilis PJS Using MS/MS-Based Molecular Networking. Molecules 2020; 25:E4446. [PMID: 32992672 PMCID: PMC7583885 DOI: 10.3390/molecules25194446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/17/2022] Open
Abstract
To combat escalating levels of antibiotic resistance, novel strategies are developed to address the everlasting demand for new antibiotics. This study aimed at investigating amicoumacin antibiotics from the desert-derived Bacillus subtilis PJS by using the modern MS/MS-based molecular networking approach. Two new amicoumacins, namely hetiamacin E (1) and hetiamacin F (2), were finally isolated. The planar structures were determined by analysis of extensive NMR spectroscopic and HR-ESI-MS data, and the absolute configurations were concluded by analysis of the CD spectrum. Hetiamacin E (1) showed strong antibacterial activities against methicillin-sensitive and resistant Staphylococcus epidermidis at 2-4 µg/mL, and methicillin-sensitive and resistant Staphylococcus aureus at 8-16 µg/mL. Hetiamacin F (2) exhibited moderate antibacterial activities against Staphylococcus sp. at 32 µg/mL. Both compounds were inhibitors of protein biosynthesis demonstrated by a double fluorescent protein reporter system.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinpei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dmitrii Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Ilya Andreevich Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Petr Vladimirovich Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Anatolievna Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119992, Russia
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Affiliation(s)
- Yue Wang
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
| | - Chengzhong Yu
- Australisches Institut für Bioingenieurwesen und Nanotechnologie Universität Queensland Brisbane QLD 4072 Australien
- Fakultät für Chemie und Molekulartechnik Pädagogische Universität Ostchina Shanghai 200241 P. R. China
| |
Collapse
|
21
|
Wang Y, Yu C. Emerging Concepts of Nanobiotechnology in mRNA Delivery. Angew Chem Int Ed Engl 2020; 59:23374-23385. [PMID: 32400110 DOI: 10.1002/anie.202003545] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Introducing mRNA into cells has attracted intense interest for diverse applications; however, success requires delivery solutions. Engineered nanomaterials have been applied as mRNA nanocarriers; their functions are designed mainly as delivery vehicles, but rarely in regulation of the protein translation. Recently, progress in nanobiotechnology has shifted the design principle of mRNA nanocarriers from simple delivery tools to translation modulators. Here, we review the emerging concepts of nanomaterials regulating mRNA translation and recent progress in mRNA delivery. Designer nanomaterials providing integrated functions for specific mRNA applications are also reviewed to provide insights for the design of next-generation nanomaterials to revolutionize mRNA technology.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
22
|
Osterman IA, Wieland M, Maviza TP, Lashkevich KA, Lukianov DA, Komarova ES, Zakalyukina YV, Buschauer R, Shiriaev DI, Leyn SA, Zlamal JE, Biryukov MV, Skvortsov DA, Tashlitsky VN, Polshakov VI, Cheng J, Polikanov YS, Bogdanov AA, Osterman AL, Dmitriev SE, Beckmann R, Dontsova OA, Wilson DN, Sergiev PV. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nat Chem Biol 2020; 16:1071-1077. [PMID: 32601485 DOI: 10.1038/s41589-020-0578-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022]
Abstract
The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.
Collapse
Affiliation(s)
- Ilya A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia. .,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Maximiliane Wieland
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Tinashe P Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kseniya A Lashkevich
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii A Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Ekaterina S Komarova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuliya V Zakalyukina
- Department of Soil Science and Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Robert Buschauer
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Dmitrii I Shiriaev
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Jaime E Zlamal
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mikhail V Biryukov
- Department of Soil Science and Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexey A Bogdanov
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergey E Dmitriev
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia. .,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
23
|
Deep Functional Profiling Facilitates the Evaluation of the Antibacterial Potential of the Antibiotic Amicoumacin. Antibiotics (Basel) 2020; 9:antibiotics9040157. [PMID: 32252356 PMCID: PMC7235827 DOI: 10.3390/antibiotics9040157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
The global spread of antibiotic resistance is forcing the scientific community to find new molecular strategies to counteract it. Deep functional profiling of microbiomes provides an alternative source for the discovery of novel antibiotic producers and probiotics. Recently, we implemented this ultrahigh-throughput screening approach for the isolation of Bacillus pumilus strains efficiently producing the ribosome-targeting antibiotic amicoumacin A (Ami). Proteomics and metabolomics revealed essential insight into the activation of Ami biosynthesis. Here, we applied omics to boost Ami biosynthesis, providing the optimized cultivation conditions for high-scale production of Ami. Ami displayed a pronounced activity against Lactobacillales and Staphylococcaceae, including methicillin-resistant Staphylococcus aureus (MRSA) strains, which was determined using both classical and massive single-cell microfluidic assays. However, the practical application of Ami is limited by its high cytotoxicity and particularly low stability. The former is associated with its self-lactonization, serving as an improvised intermediate state of Ami hydrolysis. This intramolecular reaction decreases Ami half-life at physiological conditions to less than 2 h, which is unprecedented for a terminal amide. While we speculate that the instability of Ami is essential for Bacillus ecology, we believe that its stable analogs represent attractive lead compounds both for antibiotic discovery and for anticancer drug development.
Collapse
|
24
|
Alekhina OM, Terenin IM, Dmitriev SE, Vassilenko KS. Functional Cyclization of Eukaryotic mRNAs. Int J Mol Sci 2020; 21:ijms21051677. [PMID: 32121426 PMCID: PMC7084953 DOI: 10.3390/ijms21051677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
The closed-loop model of eukaryotic translation states that mRNA is circularized by a chain of the cap-eIF4E-eIF4G-poly(A)-binding protein (PABP)-poly(A) interactions that brings 5' and 3' ends together. This circularization is thought to promote the engagement of terminating ribosomes to a new round of translation at the same mRNA molecule, thus enhancing protein synthesis. Despite the general acceptance and the elegance of the hypothesis, it has never been proved experimentally. Using continuous in situ monitoring of luciferase synthesis in a mammalian in vitro system, we show here that the rate of translation initiation at capped and polyadenylated reporter mRNAs increases after the time required for the first ribosomes to complete mRNA translation. Such acceleration strictly requires the presence of a poly(A)-tail and is abrogated by the addition of poly(A) RNA fragments or m7GpppG cap analog to the translation reaction. The optimal functional interaction of mRNA termini requires 5' untranslated region (UTR) and 3' UTR of moderate lengths and provides stronger acceleration, thus a longer poly(A)-tail. Besides, we revealed that the inhibitory effect of the dominant negative R362Q mutant of initiation factor eIF4A diminishes in the course of translation reaction, suggesting a relaxed requirement for ATP. Taken together, our results imply that, upon the functional looping of an mRNA, the recycled ribosomes can be recruited to the start codon of the same mRNA molecule in an eIF4A-independent fashion. This non-canonical closed-loop assisted reinitiation (CLAR) mode provides efficient translation of the functionally circularized mRNAs.
Collapse
Affiliation(s)
- Olga M. Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ilya M. Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (S.E.D.); (K.S.V.); Tel.: +7-903-2220066 (S.E.D.); +7-496-7318232 (K.S.V.)
| | - Konstantin S. Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia;
- Correspondence: (S.E.D.); (K.S.V.); Tel.: +7-903-2220066 (S.E.D.); +7-496-7318232 (K.S.V.)
| |
Collapse
|
25
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
26
|
Pellegrino S, Meyer M, Könst ZA, Holm M, Voora VK, Kashinskaya D, Zanette C, Mobley DL, Yusupova G, Vanderwal CD, Blanchard SC, Yusupov M. Understanding the role of intermolecular interactions between lissoclimides and the eukaryotic ribosome. Nucleic Acids Res 2019; 47:3223-3232. [PMID: 30759226 PMCID: PMC6451132 DOI: 10.1093/nar/gkz053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Natural products that target the eukaryotic ribosome are promising therapeutics to treat a variety of cancers. It is therefore essential to determine their molecular mechanism of action to fully understand their mode of interaction with the target and to inform the development of new synthetic compounds with improved potency and reduced cytotoxicity. Toward this goal, we have previously established a short synthesis pathway that grants access to multiple congeners of the lissoclimide family. Here we present the X-ray co-crystal structure at 3.1 Å resolution of C45, a potent congener with two A-ring chlorine-bearing stereogenic centers with ‘unnatural’ configurations, with the yeast 80S ribosome, intermolecular interaction energies of the C45/ribosome complex, and single-molecule FRET data quantifying the impact of C45 on both human and yeast ribosomes. Together, these data provide new insights into the role of unusual non-covalent halogen bonding interactions involved in the binding of this synthetic compound to the 80S ribosome.
Collapse
Affiliation(s)
- Simone Pellegrino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Mélanie Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Zef A Könst
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Vamsee K Voora
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA
| | - Daniya Kashinskaya
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Camila Zanette
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 91010-92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 91010-92697, USA
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Chris D Vanderwal
- Department of Chemistry, University of California, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional PhD Training Program in Chemical Biology, Weill Cornell Medicine, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|
27
|
Tsukaguchi S, Enomoto M, Towada R, Ogura Y, Kuwahara S. Unified Total Synthesis of Hetiamacins A-D. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shogo Tsukaguchi
- Graduate School of Agricultural Science; Tohoku University; 468-1 Aramaki-Aza-Aoba Aoba-ku, Sendai 980-0845 Japan
| | - Masaru Enomoto
- Graduate School of Agricultural Science; Tohoku University; 468-1 Aramaki-Aza-Aoba Aoba-ku, Sendai 980-0845 Japan
| | - Ryo Towada
- Graduate School of Agricultural Science; Tohoku University; 468-1 Aramaki-Aza-Aoba Aoba-ku, Sendai 980-0845 Japan
| | - Yusuke Ogura
- Graduate School of Agricultural Science; Tohoku University; 468-1 Aramaki-Aza-Aoba Aoba-ku, Sendai 980-0845 Japan
| | - Shigefumi Kuwahara
- Graduate School of Agricultural Science; Tohoku University; 468-1 Aramaki-Aza-Aoba Aoba-ku, Sendai 980-0845 Japan
| |
Collapse
|
28
|
Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:2038-2053. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Peter Neubauer
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Matthias Gimpel
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
29
|
Abstract
Cardiovascular diseases have been associated with genetic variants and increased plasma level of the secreted protein PCSK9. In this issue of Cell Chemical Biology, Petersen et al. (2016) describe an inhibitor of PCSK9 secretion in human cells that, surprisingly, targets the 80S ribosome.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France; Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch 67404, France; Institut National de Santé et de Recherche Médicale (INSERM) U964, Illkirch 67404, France; Université de Strasbourg, Strasbourg 67081, France
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France; Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch 67404, France; Institut National de Santé et de Recherche Médicale (INSERM) U964, Illkirch 67404, France; Université de Strasbourg, Strasbourg 67081, France.
| |
Collapse
|
30
|
Zakalyukina YV, Birykov MV, Lukianov DA, Shiriaev DI, Komarova ES, Skvortsov DA, Kostyukevich Y, Tashlitsky VN, Polshakov VI, Nikolaev E, Sergiev PV, Osterman IA. Nybomycin-producing Streptomyces isolated from carpenter ant Camponotus vagus. Biochimie 2019; 160:93-99. [PMID: 30797881 DOI: 10.1016/j.biochi.2019.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/18/2019] [Indexed: 11/17/2022]
Abstract
A novel strain of Actinomycetes was isolated from the body of an ant (Camponotus vagus Scopoli) and its genetic and morphological properties were characterized. The 16S rDNA gene sequence analysis of the isolate revealed its high phylogenetic relationship with type strains of Streptomyces violaceochromogenes NBRC 13100T. As a result of antimicrobial activity assessment, it was found that the fermentation broth of the isolated strain both inhibited the growth and induced the SOS response in E. coli BW25113 ΔtolC strain cells. Using bioassay-guided fractionation, mass spectrometric and NMR analyses we identified the active compound to be nybomycin, a previously described antibiotic. Here we report for the first time Streptomyces producer of nybomycin in association with carpenter ants and demonstrate cytotoxic activity of nybomycin against human cell lines.
Collapse
Affiliation(s)
- Yuliya V Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Mikhail V Birykov
- Department of Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Dmitrii A Lukianov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia
| | - Dmitrii I Shiriaev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ekaterina S Komarova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Dmitry A Skvortsov
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V., Russia
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia
| | - Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia; Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ilya A Osterman
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025, Russia; Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
31
|
Akulich KA, Sinitcyn PG, Makeeva DS, Andreev DE, Terenin IM, Anisimova AS, Shatsky IN, Dmitriev SE. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress. Biochimie 2018; 157:92-101. [PMID: 30419262 DOI: 10.1016/j.biochi.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023]
Abstract
Short upstream open reading frames (uORFs) are the most prevalent cis-acting regulatory elements in the mammalian transcriptome which can orchestrate mRNA translation. Apart from being "passive roadblocks" that decrease expression of the main coding regions, particular uORFs can serve as specific sensors for changing conditions, thus regulating translation in response to cell stress. Here we report a novel uORF-based regulatory mechanism that is employed under conditions of hyperosmotic stress by at least two human mRNAs, coding for translation reinitiation/recycling factor eIF2D and E3 ubiquitin ligase MDM2. This novel mode of translational control selectively downregulates their expression and requires as few as one uORF. Using a set of reporter mRNAs and fleeting mRNA transfection (FLERT) technique, we provide evidence that the phenomenon does not rely on delayed reinitiation, altered AUG recognition, ribosome stalling, mRNA destabilization or other known mechanisms. Instead, it is based on events taking place at uORF stop codon or immediately downstream. Functional aspects and implications of the novel regulatory mechanism to cell physiology are discussed.
Collapse
Affiliation(s)
- Kseniya A Akulich
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Pavel G Sinitcyn
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
32
|
Young DJ, Makeeva DS, Zhang F, Anisimova AS, Stolboushkina EA, Ghobakhlou F, Shatsky IN, Dmitriev SE, Hinnebusch AG, Guydosh NR. Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo. Mol Cell 2018; 71:761-774.e5. [PMID: 30146315 PMCID: PMC6225905 DOI: 10.1016/j.molcel.2018.07.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 02/05/2023]
Abstract
The recycling of ribosomal subunits after translation termination is critical for efficient gene expression. Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR) function as 40S recycling factors in vitro, but it is unknown whether they perform this function in vivo. Ribosome profiling of tma deletion strains revealed 80S ribosomes queued behind the stop codon, consistent with a block in 40S recycling. We found that unrecycled ribosomes could reinitiate translation at AUG codons in the 3' UTR, as evidenced by peaks in the footprint data and 3' UTR reporter analysis. In vitro translation experiments using reporter mRNAs containing upstream open reading frames (uORFs) further established that reinitiation increased in the absence of these proteins. In some cases, 40S ribosomes appeared to rejoin with 60S subunits and undergo an 80S reinitiation process in 3' UTRs. These results support a crucial role for Tma64, Tma20, and Tma22 in recycling 40S ribosomal subunits at stop codons and translation reinitiation.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Desislava S Makeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Fan Zhang
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Fardin Ghobakhlou
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation & Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Wu G, Liu S, Wang T, Jiang Z, Lv K, Wang Y, Sun C. Total Synthesis of Originally Proposed and Revised Structure of Hetiamacin A. Org Lett 2018; 20:3566-3569. [DOI: 10.1021/acs.orglett.8b01350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Ting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Zhongke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian Tan Xi Li No. 1, Beijing 100050, PR China
| |
Collapse
|
34
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
35
|
Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets. Int J Mol Sci 2018; 19:ijms19020368. [PMID: 29373494 PMCID: PMC5855590 DOI: 10.3390/ijms19020368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family. On the contrary, microtubules have traditionally been targeted by microtubule inhibiting agents, used for the treatment of diseases such as cancer, in spite of the deleterious toxicities associated with their clinical utility. The Research Collaboratory for Structural Bioinformatics (RCSB) was used here to identify therapeutic drugs targeting the plakin proteins, particularly the spectraplakins MACF1 and BPAG1, which contain microtubule-binding domains. RCSB analysis revealed that plakin proteins had 329 ligands, of which more than 50% were MACF1 and BPAG1 ligands and 10 were documented, clinically or experimentally, to have several therapeutic applications as anticancer, anti-inflammatory, and antibiotic agents.
Collapse
|
36
|
Sogorin EA, Selikhanov GK, Agalarov SC. Coupling of translation initiation and termination does not depend on the mode of initiation. BIOCHEMISTRY (MOSCOW) 2017; 82:816-820. [DOI: 10.1134/s0006297917070069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
38
|
Crespi S, Jäger S, König B, Fagnoni M. A Photocatalytic Meerwein Approach to the Synthesis of Isochromanones and Isochromenones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefano Crespi
- PhotoGreen Lab; Department of Chemistry; University of Pavia; V.le Taramelli 10 27100 Pavia Italy
| | - Stefanie Jäger
- Institut für Organische Chemie; Department of Chemistry; Universität Regensburg; Universitätstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Institut für Organische Chemie; Department of Chemistry; Universität Regensburg; Universitätstraße 31 93053 Regensburg Germany
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; V.le Taramelli 10 27100 Pavia Italy
| |
Collapse
|
39
|
Akulich KA, Andreev DE, Terenin IM, Smirnova VV, Anisimova AS, Makeeva DS, Arkhipova VI, Stolboushkina EA, Garber MB, Prokofjeva MM, Spirin PV, Prassolov VS, Shatsky IN, Dmitriev SE. Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci Rep 2016; 6:37905. [PMID: 27892500 PMCID: PMC5124965 DOI: 10.1038/srep37905] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023] Open
Abstract
mRNAs lacking 5′ untranslated regions (leaderless mRNAs) are molecular relics of an ancient translation initiation pathway. Nevertheless, they still represent a significant portion of transcriptome in some taxons, including a number of eukaryotic species. In bacteria and archaea, the leaderless mRNAs can bind non-dissociated 70 S ribosomes and initiate translation without protein initiation factors involved. Here we use the Fleeting mRNA Transfection technique (FLERT) to show that translation of a leaderless reporter mRNA is resistant to conditions when eIF2 and eIF4F, two key eukaryotic translation initiation factors, are inactivated in mammalian cells. We report an unconventional translation initiation pathway utilized by the leaderless mRNA in vitro, in addition to the previously described 80S-, eIF2-, or eIF2D-mediated modes. This mechanism is a bacterial-like eIF5B/IF2-assisted initiation that has only been reported for hepatitis C virus-like internal ribosome entry sites (IRESs). Therefore, the leaderless mRNA is able to take any of four different translation initiation pathways in eukaryotes.
Collapse
Affiliation(s)
- Kseniya A Akulich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ilya M Terenin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria V Smirnova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksandra S Anisimova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Desislava S Makeeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Valentina I Arkhipova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria B Garber
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|