1
|
Sun J, Ren H, Wang J, Xiao X, Zhu L, Wang Y, Yang L. CHAC1: a master regulator of oxidative stress and ferroptosis in human diseases and cancers. Front Cell Dev Biol 2024; 12:1458716. [PMID: 39534397 PMCID: PMC11554486 DOI: 10.3389/fcell.2024.1458716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
CHAC1, an essential regulator of oxidative stress and ferroptosis, is increasingly recognized for its significant roles in these cellular processes and its impact on various human diseases and cancers. This review aims to provide a comprehensive overview of CHAC1's molecular functions, regulatory mechanisms, and effects in different pathological contexts. Specifically, the study objectives are to elucidate the biochemical pathways involving CHAC1, explore its regulatory network, and discuss its implications in disease progression and potential therapeutic strategies. As a γ-glutamyl cyclotransferase, CHAC1 degrades glutathione, affecting calcium signaling and mitochondrial function. Its regulation involves transcription factors like ATF4 and ATF3, which control CHAC1 mRNA expression. CHAC1 is crucial for maintaining redox balance and regulating cell death pathways in cancer. Its elevated levels are associated with poor prognosis in many cancers, indicating its potential as a biomarker and therapeutic target. Additionally, CHAC1 influences non-cancerous diseases such as neurodegenerative and cardiovascular disorders. Therapeutically, targeting CHAC1 could increase cancer cell sensitivity to ferroptosis, aiding in overcoming resistance to standard treatments. This review compiles current knowledge and recent discoveries, emphasizing CHAC1's vital role in human diseases and its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jiasen Sun
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Hui Ren
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Jiawen Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Xiang Xiao
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lin Zhu
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanyan Wang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Lili Yang
- Department of Cardiovascular Disease, Ankang Central Hospital, Ankang, Shaanxi, China
| |
Collapse
|
2
|
Zhu G, Luo D, Zhao Y, Xiang Z, Chen C, Li N, Hao X, Ding X, Zhang Y, Zhao Y. Pacidusin B isolated from Phyllanthus acidus triggers ferroptotic cell death in HT1080 cells. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:34. [PMID: 38780674 PMCID: PMC11116305 DOI: 10.1007/s13659-024-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Cancer cells generally exhibit 'iron addiction' phenotypes, which contribute to their vulnerability to ferroptosis inducers. Ferroptosis is a newly discovered form of programmed cell death caused by iron-dependent lipid peroxidation. In the present study, pacidusin B, a dichapetalin-type triterpenoid from Phyllanthus acidus (L.) Skeels (Euphorbiaceae), induces ferroptosis in the HT1080 human fibrosarcoma cell line. Cells treated with pacidusin B exhibited the morphological characteristic 'ballooning' phenotype of ferroptosis. The biochemical hallmarks of ferroptosis were also observed in pacidusin B-treated cells. Both oxidative stress and ER stress play significant roles in pacidusin B-induced ferroptosis. The activation of the PERK-Nrf2-HO-1 signaling pathway led to iron overload, while inhibition of GPX4 further sensitized cancer cells to ferroptosis. Furthermore, the molecular docking study showed that pacidusin B docked in the same pocket in xCT as the ferroptosis inducer erastin. These results revealed that pacidusin B exerts anticancer effects via inducing ER-mediated ferroptotic cell death.
Collapse
Affiliation(s)
- Guangyu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dian Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueqin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengrui Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
3
|
Liu S, Zhuo L, Chen L, He Y, Chen X, Zhang H, Zhou Y, Ni Z, Zhao S, Hu X. E3 ubiquitin ligase RNF148 functions as an oncogene in colorectal cancer by ubiquitination-mediated degradation of CHAC2. Carcinogenesis 2024; 45:247-261. [PMID: 38190483 DOI: 10.1093/carcin/bgae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Abstract
We previously reported that RNF148 was involved in the ubiquitination-mediated degradation of CHAC2. However, its molecular mechanism was not determined. In this study, we investigated the role and mechanism of RNF148 in the progression of colorectal cancer (CRC), especially in the process of ubiquitination-mediated degradation of CHAC2. Our results revealed that RNF148 was upregulated in most CRC tissues, and its expression significantly correlated with the 3-year overall survival rate and most clinicopathological parameters of CRC patients. Furthermore, RNF148 served as an independent prognostic biomarker of CRC and promoted CRC cell proliferation and migration while inhibiting cell apoptosis and sensitivity to 5-FU. Mechanistically, RNF148 used its protease-associated domain to bind to the CHAC domain of CHAC2 and target it for degradation. In addition, we identified two phosphorylation and three ubiquitination residues of CHAC2 and identified Y118 and K102 as the critical phosphorylation and ubiquitination residues, respectively. We also identified CHAC2's and RNF148's interacting proteins and discovered their potential interaction network. In conclusion, our current study unveiled the role of RNF148 in CRC and the mechanism of RNF148 in the ubiquitination-mediated degradation of CHAC2, which shed light on providing potential prognostic biomarkers and molecular targets for CRC patients.
Collapse
Affiliation(s)
- Shuiping Liu
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Division of Cellular and Molecular Research, Laboratory of Cancer Genomics, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Lvjia Zhuo
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lu Chen
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying He
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xudong Chen
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao Zhang
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Zhou
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziheng Ni
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shujuan Zhao
- Department of Respiratory Medicine of Affiliated Hospital, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaotong Hu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
4
|
A novel endoplasmic stress mediator, Kelch domain containing 7B (KLHDC7B), increased Harakiri (HRK) in the SubAB-induced apoptosis signaling pathway. Cell Death Discov 2021; 7:360. [PMID: 34799565 PMCID: PMC8605022 DOI: 10.1038/s41420-021-00753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Locus for Enterocyte Effacement (LEE)-positive Shiga-toxigenic Escherichia coli (STEC) contributes to many global foodborne diseases, with infection characterized by severe gastrointestinal symptoms, including bloody diarrhea. The incidence of LEE-negative STEC-mediated disease is also increasing globally. Subtilase cytotoxin (SubAB) is released by some LEE-negative STEC strains. It cleaves BiP, which is a chaperone protein located in the endoplasmic reticulum (ER), thereby causing apoptosis induced by ER stress. To date, the apoptotic signaling pathway mediated by SubAB has not been identified. In the current study, RNA-seq analysis showed that SubAB significantly induced the expression of Kelch domain containing 7B (KLHDC7B). We explored the role of KLHDC7B in the SubAB-induced apoptotic pathway. SubAB-induced KLHDC7B mRNA expression was increased after 12 h of incubation of toxin with HeLa cells. KLHDC7B expression was downregulated by knockdown of PKR-like endoplasmic reticulum kinase (PERK), CEBP homologous protein (CHOP), activating transcription factor 4 (ATF4), and CEBP β (CEBPB). KLHDC7B knockdown suppressed SubAB-stimulated CHOP expression, poly(ADP-ribose) polymerase (PARP) cleavage, and cytotoxicity. The over-expressed KLHDC7B was localized to the nucleus and cytosolic fractions. Next, we used RNA-seq to analyze the effect of KLHDC7B knockdown on apoptosis induced by SubAB, and found that the gene encoding for the pro-apoptotic Bcl-2 family protein, Harakiri (HRK), was upregulated in SubAB-treated control cells. However, this effect was not observed in SubAB-treated KLHDC7B-knockdown cells. Therefore, we identified the pathway through which SubAB-induced KLHDC7B regulates HRK expression, which is essential for apoptosis in toxin-mediated ER stress.
Collapse
|
5
|
Sigdel A, Bisinotto RS, Peñagaricano F. Genes and pathways associated with pregnancy loss in dairy cattle. Sci Rep 2021; 11:13329. [PMID: 34172762 PMCID: PMC8233422 DOI: 10.1038/s41598-021-92525-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Pregnancy loss directly impairs reproductive performance in dairy cattle. Here, we investigated genetic factors associated with pregnancy loss following detection of a viable embryo around 42 days of gestation. The objectives of this study were to perform whole-genome scans and subsequent gene-set analyses for identifying candidate genes, functional gene-sets and gene signaling pathways implicated in pregnancy loss in US Holstein cows. Data consisted of about 58,000 pregnancy/abortion records distributed over nulliparous, primiparous, and multiparous cows. Threshold models were used to assess the binary response of pregnancy loss. Whole‐genome scans identified at least seven genomic regions on BTA2, BTA10, BTA14, BTA16, BTA21, BTA24 and BTA29 associated with pregnancy loss in heifers and lactating cows. These regions harbor several candidate genes that are directly implicated in pregnancy maintenance and fetal growth, such as CHST14, IGF1R, IGF2, PSEN2, SLC2A5 and WNT4. Moreover, the enrichment analysis revealed at least seven significantly enriched processes, containing genes associated with pregnancy loss, including calcium signaling, cell–cell attachment, cellular proliferation, fetal development, immunity, membrane permeability, and steroid metabolism. Additionally, the pathway analysis revealed a number of significant gene signaling pathways that regulate placental development and fetal growth, including Wnt, Hedgehog, Notch, MAPK, Hippo, mTOR and TGFβ pathways. Overall, our findings contribute to a better understanding of the genetic and biological basis of pregnancy loss in dairy cattle and points out novel strategies for improving pregnancy maintenance via marker‐assisted breeding.
Collapse
Affiliation(s)
- Anil Sigdel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J Biotechnol 2021; 337:35-45. [PMID: 34171439 DOI: 10.1016/j.jbiotec.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
Collapse
|
7
|
Nomura Y, Sylvester CF, Nguyen LO, Kandeel M, Hirata Y, Mungrue IN, Oh-Hashi K. Characterization of the 5'-flanking region of the human and mouse CHAC1 genes. Biochem Biophys Rep 2020; 24:100834. [PMID: 33102815 PMCID: PMC7573368 DOI: 10.1016/j.bbrep.2020.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The Unfolded Protein Response pathway is a conserved signaling mechanism having important roles in cellular physiology and is perturbed accompanying disease. We previously identified the novel UPR target gene CHAC1, a direct target of ATF4, downstream of PERK-EIF2A and activated by the UPR pathway. CHAC1 enzyme directs catalysis of γ-linked glutamate bonds within specific molecular targets. CHAC1 is the first enzyme characterized that can catalyze intracellular glutathione degradation in eukaryotes, having implications for regulation of oxidative stress. DDIT3 (CHOP) is a terminal UPR transcription factor, regulated by ATF4 and an output promoting cell death signaling. Herein we examine the relationship of CHOP controlling CHAC1 transcription in humans and mice. We note parallel induction of CHOP and CHAC1 in human cells after agonist induced UPR. Expanding upon previous reports, we define transcriptional induction of CHAC1 in humans and mice driven by ATF4 through a synergistic relationship with conserved ATF/CRE and CARE DNA sequences of the CHAC1 promoter. Using this system, we also tested effects of CHOP on CHAC1 transcription, and binding at the CHAC1 ATF/CRE using IM-EMSA. These data indicate a novel inhibitory effect of CHOP on CHAC1 transcription, which was ablated in the absence of the ATF/CRE control element. While direct binding of ATF4 to CHAC1 promoter sequences was confirmed, binding of CHOP to the CHAC1 ATF/CRE was not evident at baseline or after UPR induction. These data reveal CHAC1 as a novel CHOP inhibited target gene, acting through an upstream ATF/CRE motif via an indirect mechanism.
Collapse
Affiliation(s)
- Yuki Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Charity F Sylvester
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Lisa O Nguyen
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Lo SG, Wong SF, Mak JW, Choo KK, Ng KP. Gene expression changes in human bronchial epithelial cells (BEAS-2B) and human pulmonary alveolar epithelial cells (HPAEpiC) after interaction with Cladosporium sphaerospermum. Med Mycol 2020; 58:333-340. [PMID: 31309220 DOI: 10.1093/mmy/myz061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cladosporium is one of the most abundant spore. Fungi of this genus can cause respiratory allergy and intrabronchial lesion. We studied the differential expression of host genes after the interaction of Cladosporium sphaerospermum conidia with Human Bronchial Epithelial Cells (BEAS-2B) and Human Pulmonary Alveolar Epithelial Cells (HPAEpiC). C. sphaerospermum conidia were harvested and co-cultured with BEAS-2B cells or HPAEpiC cells for 48 hours respectively. This culture duration was chosen as it was associated with high germination rate. RNA was extracted from two biological replicates per treatment. RNA of BEAS-2B cells was used to assess changes in gene expression using AffymetrixGeneChip® Human Transcriptome Array 2.0. After co-culture with Cladosporium spores, 68 individual genes were found differentially expressed (P ≤ 0.05) and up-regulated ≥ 1.5 folds while 75 genes were found differentially expressed at ≤ -1.5 folds compared with controls. Reverse transcription and qPCR were performed on the RNA collected from both BEAS-2B cells and HPAEpiC cells to validate the microarray results with 7 genes. Based on the findings, infected pulmonary epithelial cells exhibited an increase in cell death-related genes and genes associated with innate immunity.
Collapse
Affiliation(s)
- Sing Gee Lo
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Khi Khi Choo
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Nguyen YTK, Park JS, Jang JY, Kim KR, Vo TTL, Kim KW, Han BW. Structural and Functional Analyses of Human ChaC2 in Glutathione Metabolism. Biomolecules 2019; 10:biom10010031. [PMID: 31878259 PMCID: PMC7022552 DOI: 10.3390/biom10010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Glutathione (GSH) degradation plays an essential role in GSH homeostasis, which regulates cell survival, especially in cancer cells. Among human GSH degradation enzymes, the ChaC2 enzyme acts on GSH to form 5-l-oxoproline and Cys-Gly specifically in the cytosol. Here, we report the crystal structures of ChaC2 in two different conformations and compare the structural features with other known γ-glutamylcyclotransferase enzymes. The unique flexible loop of ChaC2 seems to function as a gate to achieve specificity for GSH binding and regulate the constant GSH degradation rate. Structural and biochemical analyses of ChaC2 revealed that Glu74 and Glu83 play crucial roles in directing the conformation of the enzyme and in modulating the enzyme activity. Based on a docking study of GSH to ChaC2 and binding assays, we propose a substrate-binding mode and catalytic mechanism. We also found that overexpression of ChaC2, but not mutants that inhibit activity of ChaC2, significantly promoted breast cancer cell proliferation, suggesting that the GSH degradation by ChaC2 affects the growth of breast cancer cells. Our structural and functional analyses of ChaC2 will contribute to the development of inhibitors for the ChaC family, which could effectively regulate the progression of GSH degradation-related cancers.
Collapse
Affiliation(s)
- Yen T. K. Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Jun Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Tam T. L. Vo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
- Correspondence: ; Tel.: +82-2-8807898
| |
Collapse
|
10
|
Perra L, Balloy V, Foussignière T, Moissenet D, Petat H, Mungrue IN, Touqui L, Corvol H, Chignard M, Guillot L. CHAC1 Is Differentially Expressed in Normal and Cystic Fibrosis Bronchial Epithelial Cells and Regulates the Inflammatory Response Induced by Pseudomonas aeruginosa. Front Immunol 2018; 9:2823. [PMID: 30555487 PMCID: PMC6282009 DOI: 10.3389/fimmu.2018.02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
In cystic fibrosis (CF), Pseudomonas aeruginosa (Pa) colonizes the lungs, leading to chronic inflammation of the bronchial epithelium. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (CHAC1) mRNA is differentially expressed in primary human airway epithelial cells from bronchi (hAECBs) from patients with CF and healthy patients at baseline and upon infection with Pa. CHAC1 degrades glutathione and is associated with ER stress and apoptosis pathways. In this study, we examined the roles of CHAC1 in the inflammatory response and apoptosis in lung epithelial cells. First, we confirmed by reverse transcription quantitative polymerase chain reaction that CHAC1 mRNA was overexpressed in hAECBs from patients without CF compared with the expression in hAECBs from patients with CF upon Pa (PAK strain) infection. Moreover, the Pa virulence factors LPS and flagellin were shown to induce CHAC1 expression in cells from patients without CF. Using NCI-H292 lung epithelial cells, we found that LPS-induced CHAC1 mRNA expression was PERK-independent and involved ATF4. Additionally, using CHAC1 small interfering RNA, we showed that reduced CHAC1 expression in the context of LPS and flagellin stimulation was associated with modulation of inflammatory markers and alteration of NF-κB signaling. Finally, we showed that Pa was not able to induce apoptosis in NCI-H292 cells. Our results suggest that CHAC1 is involved in the regulation of inflammation in bronchial cells during Pa infection and may explain the excessive inflammation present in the respiratory tracts of patients with CF.
Collapse
Affiliation(s)
- Léa Perra
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Tobias Foussignière
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Didier Moissenet
- Department of Bacteriology, APHP, Hôpital St-Antoine, Paris, France
| | - Hortense Petat
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lhousseine Touqui
- Equipe mixte Institut Pasteur/Paris V "Mucoviscidose et Bronchopathies Chroniques" Institut Pasteur, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France.,Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - Michel Chignard
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| | - Loic Guillot
- Sorbonne Université, Inserm, Centre de recherche Saint-Antoine (CRSA), Paris, France
| |
Collapse
|
11
|
Oh-Hashi K, Matsumoto S, Sakai T, Nomura Y, Okuda K, Nagasawa H, Hirata Y. Elucidating the rapid action of 2-(2-chlorophenyl)ethylbiguanide on HT-29 cells under a serum- and glucose-deprived condition. Cell Biol Toxicol 2017; 34:279-290. [PMID: 28871429 DOI: 10.1007/s10565-017-9410-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
We recently demonstrated the cytotoxic action of a novel phenformin derivative, 2-(2-chlorophenyl)ethylbiguanide (2-Cl-Phen), on HT-29 cells under a serum- and glucose-deprived condition. In that study, we showed that the ATF6 arm of the ER stress pathway and c-Myc expression were downregulated 12 h after the treatment with 2-Cl-Phen. Through characterization of intracellular events at the early phase of the 2-Cl-Phen treatment before noticeable morphological changes, we found rapid fluctuations in the c-Myc and ATF4 proteins but not in their mRNAs in 2-Cl-Phen-treated HT-29 cells under the serum- and glucose-deprived condition. The 2-Cl-Phen-mediated downregulation of ATF4 protein was not paralleled by the phosphorylation status of PERK and eIF2α. Reduction of c-Myc expression by 2-Cl-Phen was more profound than that of ATF4 expression, and phosphorylated c-Myc was downregulated within 2 h. Pharmacological studies on the expression of c-Myc and ATF4 proteins showed that this decrease was mediated through proteasomal degradation but not by autophagy. Interestingly, treatment with lithium chloride, which is a well-known inhibitor of GSK3β, partially recovered the expression of ATF4 protein, but its effect on the level of total c-Myc protein was negligible. Treatment with 2-Cl-Phen increased the expression of phosphorylated AMPK, but Compound C, an AMPK inhibitor, did not influence the expression of c-Myc protein in HT-29 cells. Finally, we observed that 2-Cl-Phen partially attenuated the gene expression of integrin subunit α1 (ITGA1), a downstream target of c-Myc. Taken together, these results show that 2-Cl-Phen rapidly downregulated the expression of c-Myc in addition to ER stress responses in a post-translational manner. Further elucidation and improvement of this multi-target-directed compound will provide new insights for developing therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. .,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Shiori Matsumoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takayuki Sakai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan
| | - Yuki Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kensuke Okuda
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan.,Laboratory of Bioorganic and Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu, 501-1196, Japan
| | - Yoko Hirata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|