1
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
3
|
De la Cadena A, Vernuccio F, Ragni A, Sciortino G, Vanna R, Ferrante C, Pediconi N, Valensise C, Genchi L, Laptenok SP, Doni A, Erreni M, Scopigno T, Liberale C, Ferrari G, Sampietro M, Cerullo G, Polli D. Broadband stimulated Raman imaging based on multi-channel lock-in detection for spectral histopathology. APL PHOTONICS 2022; 7. [DOI: 10.1063/5.0093946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Spontaneous Raman microscopy reveals the chemical composition of a sample in a label-free and non-invasive fashion by directly measuring the vibrational spectra of molecules. However, its extremely low cross section prevents its application to fast imaging. Stimulated Raman scattering (SRS) amplifies the signal by several orders of magnitude thanks to the coherent nature of the nonlinear process, thus unlocking high-speed microscopy applications that provide analytical information to elucidate biochemical mechanisms with subcellular resolution. Nevertheless, in its standard implementation, narrowband SRS provides images at only one frequency at a time, which is not sufficient to distinguish constituents with overlapping Raman bands. Here, we report a broadband SRS microscope equipped with a home-built multichannel lock-in amplifier simultaneously measuring the SRS signal at 32 frequencies with integration time down to 44 µs, allowing for detailed, high spatial resolution mapping of spectrally congested samples. We demonstrate the capability of our microscope to differentiate the chemical constituents of heterogeneous samples by measuring the relative concentrations of different fatty acids in cultured hepatocytes at the single lipid droplet level and by differentiating tumor from peritumoral tissue in a preclinical mouse model of fibrosarcoma.
Collapse
Affiliation(s)
| | | | - Andrea Ragni
- Electronics, Information, and Bioengineering Department, Politecnico di Milano 2 , Italy
| | - Giuseppe Sciortino
- Electronics, Information, and Bioengineering Department, Politecnico di Milano 2 , Italy
| | - Renzo Vanna
- Institute for Photonics and Nanotechnologies, CNR (IFN-CNR) 3 , Milan, Italy
| | - Carino Ferrante
- Physics Department, Universitá di Roma “La Sapienza,” 4 Roma, Italy
- Italian Institute of Technology, Center for Life Nano-and Neuro-Science 5 , Roma, Italy
- ENEA, FSN-FISS-SNI Laboratory 6 , Roma, Italy
- Italian Institute of Technology, Graphene Labs 7 , Genoa, Italy
| | - Natalia Pediconi
- Physics Department, Universitá di Roma “La Sapienza,” 4 Roma, Italy
| | | | - Luca Genchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) 9 , 23955 Thuwal, Saudi Arabia
| | - Sergey P. Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) 9 , 23955 Thuwal, Saudi Arabia
| | - Andrea Doni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital 10 , Milan, Italy
| | - Marco Erreni
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital 10 , Milan, Italy
| | - Tullio Scopigno
- Physics Department, Universitá di Roma “La Sapienza,” 4 Roma, Italy
- Italian Institute of Technology, Center for Life Nano-and Neuro-Science 5 , Roma, Italy
- Italian Institute of Technology, Graphene Labs 7 , Genoa, Italy
| | - Carlo Liberale
- Computer, Electrical and Mathematical Sciences Division, King Abdullah University of Science and Technology (KAUST) 11 , 23955 Thuwal, Saudi Arabia
| | - Giorgio Ferrari
- Electronics, Information, and Bioengineering Department, Politecnico di Milano 2 , Italy
| | - Marco Sampietro
- Electronics, Information, and Bioengineering Department, Politecnico di Milano 2 , Italy
| | - Giulio Cerullo
- Physics Department, Politecnico di Milano 1 , Milan, Italy
- Institute for Photonics and Nanotechnologies, CNR (IFN-CNR) 3 , Milan, Italy
| | - Dario Polli
- Physics Department, Politecnico di Milano 1 , Milan, Italy
- Institute for Photonics and Nanotechnologies, CNR (IFN-CNR) 3 , Milan, Italy
| |
Collapse
|
4
|
Seo J, Yun JE, Kim SJ, Chun YS. Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment. Pflugers Arch 2022; 474:591-601. [PMID: 35348849 DOI: 10.1007/s00424-022-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Cancer cells rewire metabolic processes to adapt to the nutrient- and oxygen-deprived tumour microenvironment, thereby promoting their proliferation and metastasis. Previous research has shown that modifying glucose metabolism, the Warburg effect, makes glycolytic cancer cells more invasive and aggressive. Lipid metabolism has also been receiving attention because lipids function as energy sources and signalling molecules. Because obesity is a risk factor for various cancer types, targeting lipid metabolism may be a promising cancer therapy. Here, we review the lipid metabolic reprogramming in cancer cells mediated by hypoxia-inducible factor-1 (HIF-1). HIF-1 is the master transcription factor for tumour growth and metastasis by transactivating genes related to proliferation, survival, angiogenesis, invasion, and metabolism. The glucose metabolic shift (the Warburg effect) is mediated by HIF-1. Recent research on HIF-1-related lipid metabolic reprogramming in cancer has confirmed that HIF-1 also modifies lipid accumulation, β-oxidation, and lipolysis in cancer, triggering its progression. Therefore, targeting lipid metabolic alterations by HIF-1 has therapeutic potential for cancer. We summarize the role of the lipid metabolic shift mediated by HIF-1 in cancer and its putative applications for cancer therapy.
Collapse
Affiliation(s)
- Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan.,Kanagawa Institute of Industrial Science and Technology, Kawasaki, 213-0012, Japan
| | - Jeong-Eun Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
5
|
Abbey D, Conlon D, Rainville C, Elwyn S, Quiroz-Figueroa K, Billheimer J, Schultz DC, Hand NJ, Cherry S, Rader DJ. Lipid droplet screen in human hepatocytes identifies TRRAP as a regulator of cellular triglyceride metabolism. Clin Transl Sci 2021; 14:1369-1379. [PMID: 34156146 PMCID: PMC8301584 DOI: 10.1111/cts.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocytes store triglycerides (TGs) in the form of lipid droplets (LDs), which are increased in hepatosteatosis. The regulation of hepatic LDs is poorly understood and new therapies to reduce hepatosteatosis are needed. We performed a siRNA kinase and phosphatase screen in HuH‐7 cells using high‐content automated imaging of LDs. Changes in accumulated lipids were quantified with developed pipeline that measures intensity, area, and number of LDs. Selected “hits,” which reduced lipid accumulation, were further validated with other lipid and expression assays. Among several siRNAs that resulted in significantly reduced LDs, one was targeted to the nuclear adapter protein, transformation/transcription domain‐associated protein (TRRAP). Knockdown of TRRAP reduced triglyceride accumulation in HuH‐7 hepatocytes, in part by reducing C/EBPα‐mediated de novo synthesis of TGs. These findings implicate TRRAP as a novel regulator of hepatic TG metabolism and nominate it as a potential drug target for hepatosteatosis.
Collapse
Affiliation(s)
- Deepti Abbey
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donna Conlon
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Rainville
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susannah Elwyn
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Quiroz-Figueroa
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David C Schultz
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas J Hand
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Englinger B, Laemmerer A, Moser P, Kallus S, Röhrl C, Pirker C, Baier D, Mohr T, Niederstaetter L, Meier-Menches SM, Gerner C, Gabler L, Gojo J, Timelthaler G, Senkiv J, Jäger W, Kowol CR, Heffeter P, Berger W. Lipid droplet-mediated scavenging as novel intrinsic and adaptive resistance factor against the multikinase inhibitor ponatinib. Int J Cancer 2020; 147:1680-1693. [PMID: 32064608 PMCID: PMC7497038 DOI: 10.1002/ijc.32924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Ponatinib is a small molecule multi‐tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1‐driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co‐culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib‐selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell‐defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics. What's new? Ponatinib is a small‐molecule multi‐tyrosine kinase inhibitor clinically approved for anticancer therapy. However, to date, the intracellular pharmacokinetics of this compound and the molecular mechanisms underlying resistance in cancer cells remain largely unknown. Here, the authors found that ponatinib was selectively scavenged by lipid droplets in cancer cells. Ponatinib accumulation into lipid droplets emerged as a critical determinant of intrinsic and acquired drug resistance. The findings suggest that lipid droplets represent an underestimated organelle influencing intracellular pharmacokinetics and anticancer tyrosine kinase inhibitor activity. Moreover, co‐targeting of lipogenic cancer cell phenotypes might enhance the efficacy of ponatinib and other lipophilic pharmaceuticals.
Collapse
Affiliation(s)
- Bernhard Englinger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Anna Laemmerer
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Patrick Moser
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Sebastian Kallus
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.,University of Applied Sciences Upper Austria, Wels, Austria
| | - Christine Pirker
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Dina Baier
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Johannes Gojo
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria
| | - Julia Senkiv
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tsukui T, Chen Z, Fuda H, Furukawa T, Oura K, Sakurai T, Hui SP, Chiba H. Novel Fluorescence-Based Method To Characterize the Antioxidative Effects of Food Metabolites on Lipid Droplets in Cultured Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9934-9941. [PMID: 31402655 DOI: 10.1021/acs.jafc.9b02081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fluorescence microscopic method for characterizing size, quantity, and oxidation of lipid droplets (LDs) in HepG2 cells was developed. LDs were induced by palmitic (PA), oleic (OA), or linoleic acids (LA) and stained with two fluorescent probes for neutral lipids and lipid peroxides. Each fatty acid increased the number of LDs and oxidized LDs (oxLDs) and the degree of LD oxidation time dependently, as well as increased intracellular triglyceride hydroperoxides. LDs induced by LA without 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) showed the most significant oxidation degree over PA and OA, especially in large LDs (area ≥ 3 μm2, oxLD/LD = 52.3 ± 21.7%). Under this condition, two food-derived antioxidants were evaluated, and both of them significantly improved the LD characteristics. Moreover, chlorogenic acid reduced the quantity of large LDs by 74.0-87.6% in a dose-dependent manner. The proposed method provides a new approach to evaluate the effect of dietary antioxidants on LD characteristics.
Collapse
Affiliation(s)
- Takayuki Tsukui
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-3-1-15 , Higashi-ku, Sapporo 007-0894 , Japan
| | - Zhen Chen
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Hirotoshi Fuda
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Takayuki Furukawa
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Kotaro Oura
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Toshihiro Sakurai
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5 , Kita-ku, Sapporo 060-0812 , Japan
| | - Hitoshi Chiba
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-3-1-15 , Higashi-ku, Sapporo 007-0894 , Japan
| |
Collapse
|
8
|
Li JF, Li YS, Zhang YY, Sun SF, Han TS, Li YH, Feng FM. Regulation of P300 and HDAC1 on endoplasmic reticulum stress in isoniazid-induced HL-7702 hepatocyte injury. J Cell Physiol 2019; 234:15299-15307. [PMID: 30786008 DOI: 10.1002/jcp.28175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
P300 and HDAC1 can be involved in the development of various liver diseases by regulating gene transcription. Endoplasmic reticulum stress (ERS) is one of the main pathways of apoptosis and is activated during inflammatory responses, but the roles of P300 and HDAC1 in ERS in antituberculosis drug-induced liver injury (ADLI) are not clear. This study confirms that isoniazid can change the states of P300 and HDAC1 in HL-7702 hepatocyte metabolism and induce ERS, causing hepatocyte injury and apoptosis. When combined with C646, however, P300 can be reduced. HL-7702 cells were flattened, and the cytoplasm became crinkled. To a certain extent, ERS was relieved, but hepatocytes suffered worse damage, and the rate of cell apoptosis markedly increased. When MS-275 was applied, HDAC1 level was increased, cell fusion appeared, and fluorescence intensity of endoplasmic reticulum was weakened. In addition, ERS was aggravated, but liver injury was relieved, and the apoptosis rate significantly decreased. Therefore, alteration of P300 and HDAC1 status and ERS are involved in ADLI, and changes in P300 and HDAC1 can regulate ERS and then affect cell damage.
Collapse
Affiliation(s)
- Jin-Feng Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying-Shu Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yi-Yang Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shu-Feng Sun
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Tie-Sheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu-Hong Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fu-Min Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
9
|
Exner T, Beretta CA, Gao Q, Afting C, Romero-Brey I, Bartenschlager R, Fehring L, Poppelreuther M, Füllekrug J. Lipid droplet quantification based on iterative image processing. J Lipid Res 2019; 60:1333-1344. [PMID: 30926625 DOI: 10.1194/jlr.d092841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous and highly dynamic subcellular organelles required for the storage of neutral lipids. LD number and size distribution are key parameters affected not only by nutrient supply but also by lipotoxic stress and metabolic regulation. Current methods for LD quantification lack general applicability and are either based on time consuming manual evaluation or show limitations if LDs are high in numbers or closely clustered. Here, we present an ImageJ-based approach for the detection and quantification of LDs stained by neutral lipid dyes in images acquired by conventional wide-field fluorescence microscopy. The method features an adjustable preprocessing procedure that resolves LD clusters. LD identification is based on their circular edges and central fluorescence intensity maxima. Adaptation to different cell types is mediated by a set of interactive parameters. Validation was done for three different cell lines using manual evaluation of LD numbers and volume measurement by 3D rendering of confocal datasets. In an application example, we show that overexpression of the acyl-CoA synthetase, FATP4/ACSVL5, in oleate-treated COS7 cells increased the size of LDs but not their number.
Collapse
Affiliation(s)
- Tarik Exner
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Carlo A Beretta
- CellNetworks Math-Clinic Core Facility, BioQuant Heidelberg University, Heidelberg, Germany
| | - Qi Gao
- CellNetworks Math-Clinic Core Facility, BioQuant Heidelberg University, Heidelberg, Germany
| | - Cassian Afting
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology Heidelberg University, Heidelberg, Germany.,Department of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Leonard Fehring
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Levchenko SM, Kuzmin AN, Ohulchanskyy TY, Pliss A, Qu J, Prasad PN. Near-Infrared Irradiation Affects Lipid Metabolism in Neuronal Cells, Inducing Lipid Droplets Formation. ACS Chem Neurosci 2019; 10:1517-1523. [PMID: 30499655 DOI: 10.1021/acschemneuro.8b00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is known that lipids play an outstanding role in cellular regulation, and their dysfunction has been linked to many diseases. Thus, modulation of lipid metabolism may provide new pathways for disease treatment or prevention. In this work, near-infrared (NIR) light was applied to modulate lipid metabolism and increase intracellular lipid content in rat cortical neurons (RCN). Using label-free CARS microscopy, we have monitored the intracellular lipid content in RCN at a single-cell level. A major increase in average level of lipid per cell after treatment with laser diode at 808 nm was found, nonlinearly dependent on the irradiation dose. Moreover, a striking formation of lipid droplets (LDs) in the irradiated RCN was discovered. Further experiments and analysis reveal a strong correlation between NIR light induced generation of reactive oxygen species (ROS), lipids level, and LDs formation in RCN. Our findings can contribute to a development of therapeutic approaches for neurological disorders via NIR light control of lipid metabolism in neuronal cells.
Collapse
Affiliation(s)
- Svitlana M. Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Andrey N. Kuzmin
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Tymish Y. Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
11
|
Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model. Sci Rep 2018; 8:13638. [PMID: 30206377 PMCID: PMC6134080 DOI: 10.1038/s41598-018-31835-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting.
Collapse
|
12
|
Yuan L, Liu X, Zhang L, Zhang Y, Chen Y, Li X, Wu K, Cao J, Hou W, Que Y, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerg Microbes Infect 2018; 7:144. [PMID: 30097574 PMCID: PMC6086841 DOI: 10.1038/s41426-018-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
The human liver chimeric mouse with primary human hepatocytes (PHHs) engraftment has been demonstrated to be a useful animal model to study hepatitis B virus (HBV) pathogenesis and evaluate anti-HBV drugs. However, the disadvantages of using PHHs include the inability for cellular expansion in vitro, limited donor availability, individual differences, and ethical issues, necessitating the development of alternatives. To obtain in vitro expandable hepatocytes, we optimized the hepatic differentiation procedure of the human liver progenitor cell line, HepaRG, using four functional small molecules (4SM) and enriched the precursor hepatocyte-like cells (HLCs). HepaRG cells of different hepatic differentiation states were engrafted to immunodeficient mice (FRGS) with weekly 4SM treatment. The HepaRG-engrafted mice were challenged with HBV and/or treated with several antivirals to evaluate their effects. We demonstrated that the 4SM treatment enhanced hepatic differentiation and promoted cell proliferation capacity both in vitro and in vivo. Mice engrafted with enriched HepaRG of prehepatic differentiation and treated with 4SM displayed approximately 10% liver chimerism at week 8 after engraftment and were maintained at this level for another 16 weeks. Therefore, we developed a HepaRG-based human liver chimeric mouse model: HepaRG-FRGS. Our experimental results showed that the liver chimerism of the mice was adequate to support chronic HBV infection for 24 weeks and to evaluate antivirals. We also demonstrated that HBV infection in HepaRG cells was dependent on their hepatic differentiation state and liver chimerism in vivo. Overall, HepaRG-FRGS mice provide a novel human liver chimeric mouse model to study chronic HBV infection and evaluate anti-HBV drugs.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| |
Collapse
|
13
|
Dubaisi S, Barrett KG, Fang H, Guzman-Lepe J, Soto-Gutierrez A, Kocarek TA, Runge-Morris M. Regulation of Cytosolic Sulfotransferases in Models of Human Hepatocyte Development. Drug Metab Dispos 2018; 46:1146-1156. [PMID: 29858374 PMCID: PMC6038032 DOI: 10.1124/dmd.118.081398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) are expressed during early life and therefore metabolize endogenous and xenobiotic chemicals during development. Little is currently known about the regulation of individual SULTs in the developing human liver. We characterized SULT expression in primary cultures of human fetal hepatocytes and the HepaRG model of liver cell differentiation. SULT1A1 (transcript variants 1-4), SULT1C2, SULT1C4, SULT1E1, and SULT2A1 were the most abundant transcripts in human fetal hepatocytes. In HepaRG cells, SULT1B1, SULT1C2/3/4, and SULT1E1 mRNA levels increased during the transition from proliferation to confluency and then decreased as the cells underwent further differentiation. By contrast, SULT2A1 mRNA levels increased during differentiation, whereas SULT1A1 and SULT2B1 mRNA levels remained relatively constant. The temporal patterns of SULT1C2, SULT1E1, and SULT2A1 protein content were consistent with those observed at the mRNA level. To identify regulators of SULT expression, cultured fetal hepatocytes and HepaRG cells were treated with a panel of lipid- and xenobiotic-sensing receptor activators. The following effects were observed in both fetal hepatocytes and HepaRG cells: 1) liver X receptor activator treatment increased SULT1A1 transcript variant 5 levels; 2) vitamin D receptor activator treatment increased SULT1C2 and SULT2B1 mRNA levels; and 3) farnesoid X receptor activator treatment decreased SULT2A1 expression. Activators of aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, and peroxisome proliferator-activated receptors produced additional gene-dependent effects on SULT expression in HepaRG cells. These findings suggest that SULT-regulating chemicals have the potential to modulate physiologic processes and susceptibility to xenobiotic stressors in the developing human liver.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Kathleen G Barrett
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Hailin Fang
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Jorge Guzman-Lepe
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Alejandro Soto-Gutierrez
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| |
Collapse
|
14
|
Dobrowolny G, Lepore E, Martini M, Barberi L, Nunn A, Scicchitano BM, Musarò A. Metabolic Changes Associated With Muscle Expression of SOD1 G93A. Front Physiol 2018; 9:831. [PMID: 30042688 PMCID: PMC6048270 DOI: 10.3389/fphys.2018.00831] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder, classified into sporadic or familial forms and characterized by motor neurons death, muscle atrophy, weakness, and paralysis. Among the familial cases of ALS, approximately 20% are caused by dominant mutations in the gene coding for superoxide dismutase (SOD1) protein. Of note, mutant SOD1 toxicity is not necessarily limited to the central nervous system. ALS is indeed a multi-systemic and multifactorial disease that affects whole body physiology and induces severe metabolic changes in several tissues, including skeletal muscle. Nevertheless, whether alterations in the plasticity, heterogeneity, and metabolism of muscle fibers are the result of motor neuron degeneration or alternatively occur independently of it remain to be elucidated. To address this issue, we made use of a mouse model (MLC/SOD1G93A) that overexpresses the SOD1 mutant gene selectively in skeletal muscle. We found an alteration in the metabolic properties of skeletal muscle characterized by alteration in fiber type composition and metabolism. Indeed, we observed an alteration of muscle glucose metabolism associated with the induction of Phosphofructokinases and Pyruvate dehydrogenase kinase 4 expression. The upregulation of Pyruvate dehydrogenase kinase 4 led to the inhibition of Pyruvate conversion into Acetyl-CoA. Moreover, we demonstrated that the MLC/SOD1G93A transgene was associated with an increase of lipid catabolism and with the inhibition of fat deposition inside muscle fibers. All together these data demonstrate that muscle expression of the SOD1G93A gene induces metabolic changes, along with a preferential use of lipid energy fuel by muscle fibers. We provided evidences that muscle metabolic alterations occurred before disease symptoms and independently of motor neuron degeneration, indicating that skeletal muscle is likely an important therapeutic target in ALS.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Laboratory affiliated to Istituto Pasteur - Fondazione Cenci Bolognetti, DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Elisa Lepore
- Laboratory affiliated to Istituto Pasteur - Fondazione Cenci Bolognetti, DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Martina Martini
- Laboratory affiliated to Istituto Pasteur - Fondazione Cenci Bolognetti, DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Laura Barberi
- Laboratory affiliated to Istituto Pasteur - Fondazione Cenci Bolognetti, DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Abigail Nunn
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur - Fondazione Cenci Bolognetti, DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
15
|
Cohen BC, Raz C, Shamay A, Argov-Argaman N. Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism. J Mammary Gland Biol Neoplasia 2017; 22:235-249. [PMID: 29188493 DOI: 10.1007/s10911-017-9386-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mammary epithelial cells (MEC) secrete fat in the form of milk fat globules (MFG) which are found in milk in diverse sizes. MFG originate from intracellular lipid droplets, and the mechanism underlying their size regulation is still elusive. Two main mechanisms have been suggested to control lipid droplet size. The first is a well-documented pathway, which involves regulation of cellular triglyceride content. The second is the fusion pathway, which is less-documented, especially in mammalian cells, and its importance in the regulation of droplet size is still unclear. Using biochemical and molecular inhibitors, we provide evidence that in MEC, lipid droplet size is determined by fusion, independent of cellular triglyceride content. The extent of fusion is determined by the cell membrane's phospholipid composition. In particular, increasing phosphatidylethanolamine (PE) content enhances fusion between lipid droplets and hence increases lipid droplet size. We further identified the underlying biochemical mechanism that controls this content as the mitochondrial enzyme phosphatidylserine decarboxylase; siRNA knockdown of this enzyme reduced the number of large lipid droplets threefold. Further, inhibition of phosphatidylserine transfer to the mitochondria, where its conversion to PE occurs, diminished the large lipid droplet phenotype in these cells. These results reveal, for the first time to our knowledge in mammalian cells and specifically in mammary epithelium, the missing biochemical link between the metabolism of cellular complex lipids and lipid-droplet fusion, which ultimately defines lipid droplet size.
Collapse
Affiliation(s)
- Bat-Chen Cohen
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel.
| | - Chen Raz
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Avi Shamay
- Department of Ruminant Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Nurit Argov-Argaman
- The Animal Science Department, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
16
|
Golla U, Swagatika S, Chauhan S, Tomar RS. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget 2017; 8:98426-98454. [PMID: 29228701 PMCID: PMC5716741 DOI: 10.18632/oncotarget.21416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic targets and plethora of cellular pathways including cellular signaling, metal homeostasis, vacuolar transport, and lipid homeostasis that are primarily targeted by KP1019. We also demonstrated that KP1019 modulates the effects of TOR (target of rapamycin) signaling pathway and induces accumulation of neutral lipids (lipid droplets) in both yeast and HeLa cells. Interestingly, KP1019-mediated effects were found augmented with metal ions (Al3+/Ca2+/Cd2+/Cu2+/Mn2+/Na+/Zn2+), and neutralized by Fe2+, antioxidants, osmotic stabilizer, and ethanolamine. Additionally, our comprehensive screening of yeast histone H3/H4 mutant library revealed several histone residues that could significantly modulate the KP1019-induced toxicity. Altogether, our findings in both the yeast and HeLa cells provide molecular insights into mechanisms of action of KP1019 and various factors (chemical/genetic/epigenetic) that can alter the therapeutic efficiency of this clinically important anticancer drug.
Collapse
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| |
Collapse
|
17
|
In-line balanced detection stimulated Raman scattering microscopy. Sci Rep 2017; 7:10745. [PMID: 28878228 PMCID: PMC5587718 DOI: 10.1038/s41598-017-09839-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
We introduce a novel configuration for stimulated Raman scattering (SRS) microscopy, called In-line Balanced Detection (IBD), which employs a birefringent plate to generate a time-delayed polarization-multiplexed collinear replica of the probe, acting as a reference. Probe and reference cross the sample at the same position, thus maintaining their balance during image acquisition. IBD can be implemented in any conventional SRS setup, by adding a few simple elements, bringing its sensitivity close to the shot-noise limit even with a noisy laser. We tested IBD with a fiber-format laser system and observed signal-to-noise ratio improvement by up to 30 dB.
Collapse
|