1
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
2
|
Liu B, Liu C, Li Z, Liu W, Cui H, Yuan J. A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii. Nat Commun 2024; 15:8590. [PMID: 39366980 PMCID: PMC11452633 DOI: 10.1038/s41467-024-52970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium. The cytoplasmic dynein is the motor moving towards the minus end of microtubules (MTs) and likely be responsible for cargo transport to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain (DHC) proteins in the P. yoelii and identify DHC3 showing peripheral localization in ookinetes. DHC3 is localized at SPMTs throughout ookinete morphogenesis. We also identify five other dynein subunits localizing at SPMTs. DHC3 disruption impairs ookinete development, shape, and gliding, leading to failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes display defective formation or localization of apical organelles and structures. Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent manner, likely functioning as the receptors for the cargoes driven by SPMT-dynein. Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete morphogenesis. Our study reveals an SPMT-based dynein motor driving the transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morphogenesis of Plasmodium.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjia Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Gui L, O'Shaughnessy WJ, Cai K, Reetz E, Reese ML, Nicastro D. Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery. Nat Commun 2023; 14:1775. [PMID: 36997532 PMCID: PMC10063558 DOI: 10.1038/s41467-023-37327-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
The apical complex is a specialized collection of cytoskeletal and secretory machinery in apicomplexan parasites, which include the pathogens that cause malaria and toxoplasmosis. Its structure and mechanism of motion are poorly understood. We used cryo-FIB-milling and cryo-electron tomography to visualize the 3D-structure of the apical complex in its protruded and retracted states. Averages of conoid-fibers revealed their polarity and unusual nine-protofilament arrangement with associated proteins connecting and likely stabilizing the fibers. Neither the structure of the conoid-fibers nor the architecture of the spiral-shaped conoid complex change during protrusion or retraction. Thus, the conoid moves as a rigid body, and is not spring-like and compressible, as previously suggested. Instead, the apical-polar-rings (APR), previously considered rigid, dilate during conoid protrusion. We identified actin-like filaments connecting the conoid and APR during protrusion, suggesting a role during conoid movements. Furthermore, our data capture the parasites in the act of secretion during conoid protrusion.
Collapse
Affiliation(s)
- Long Gui
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - William J O'Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Kai Cai
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Evan Reetz
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Michael L Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Qian P, Wang X, Guan C, Fang X, Cai M, Zhong CQ, Cui Y, Li Y, Yao L, Cui H, Jiang K, Yuan J. Apical anchorage and stabilization of subpellicular microtubules by apical polar ring ensures Plasmodium ookinete infection in mosquito. Nat Commun 2022; 13:7465. [PMID: 36463257 PMCID: PMC9719560 DOI: 10.1038/s41467-022-35270-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Morphogenesis of many protozoans depends on a polarized establishment of cortical cytoskeleton containing the subpellicular microtubules (SPMTs), which are apically nucleated and anchored by the apical polar ring (APR). In malaria parasite Plasmodium, APR emerges in the host-invading stages, including the ookinete for mosquito infection. So far, the fine structure and molecular components of APR as well as the underlying mechanism of APR-mediated apical positioning of SPMTs are largely unknown. Here, we resolve an unprecedented APR structure composed of a top ring plus approximate 60 radiating spines. We report an APR-localizing and SPMT-binding protein APR2. APR2 disruption impairs ookinete morphogenesis and gliding motility, leading to Plasmodium transmission failure in mosquitoes. The APR2-deficient ookinetes display defective apical anchorage of APR and SPMT due to the impaired integrity of APR. Using protein proximity labeling, we obtain a Plasmodium ookinete APR proteome and validate ten undescribed APR proteins. Among them, APRp2 and APRp4 directly interact with APR2 and also mediate the apical anchorage of SPMTs. This study sheds light on the molecular basis of APR in the organization of Plasmodium ookinete SPMTs.
Collapse
Affiliation(s)
- Pengge Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanbin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
7
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
8
|
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol 2022; 76:113-134. [PMID: 35609946 DOI: 10.1146/annurev-micro-041320-010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom;
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom;
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
9
|
Dos Santos Pacheco N, Tosetti N, Krishnan A, Haase R, Maco B, Suarez C, Ren B, Soldati-Favre D. Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex. mBio 2021; 12:e0205721. [PMID: 34607461 PMCID: PMC8546650 DOI: 10.1128/mbio.02057-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. IMPORTANCE The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii, the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion. The conditional depletion of the apical cap structural protein AC9 or AC10 leads to a disorganization of SPMTs as well as the loss of the APR and conoid, resulting in a microneme secretion defect and a block in motility, invasion, and egress. We show here that the depletion of the kinase ERK7 phenocopies AC9 and AC10 mutants. The combination of ultrastructure expansion microscopy and NHS-ester staining revealed that ERK7-depleted parasites exhibit a dilated apical plasma membrane and an altered positioning of the rhoptries, while electron microscopy images unambiguously highlight the loss of the APR.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1016/j.cub.2021.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
11
|
Orosz F. Apicortin, a Constituent of Apicomplexan Conoid/Apical Complex and Its Tentative Role in Pathogen-Host Interaction. Trop Med Infect Dis 2021; 6:tropicalmed6030118. [PMID: 34209186 PMCID: PMC8293464 DOI: 10.3390/tropicalmed6030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.
Collapse
Affiliation(s)
- Ferenc Orosz
- Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
12
|
Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Commun Biol 2021; 4:760. [PMID: 34145386 PMCID: PMC8213788 DOI: 10.1038/s42003-021-02273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.
Collapse
|
13
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
14
|
Bertiaux E, Balestra AC, Bournonville L, Louvel V, Maco B, Soldati-Favre D, Brochet M, Guichard P, Hamel V. Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biol 2021; 19:e3001020. [PMID: 33705377 PMCID: PMC7951857 DOI: 10.1371/journal.pbio.3001020] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Aurélia C. Balestra
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Lorène Bournonville
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Vincent Louvel
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Bohumil Maco
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Dominique Soldati-Favre
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Mathieu Brochet
- University of Geneva, Department of Microbiology and Molecular Medicine, Faculty of Medicine, Geneva, Switzerland
| | - Paul Guichard
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Faculty of Science, Geneva, Switzerland
| |
Collapse
|
15
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Multivalent Interactions Drive the Toxoplasma AC9:AC10:ERK7 Complex To Concentrate ERK7 in the Apical Cap. mBio 2021; 13:e0286421. [PMID: 35130732 PMCID: PMC8822341 DOI: 10.1128/mbio.02864-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Toxoplasma inner membrane complex (IMC) is a specialized organelle that is crucial for the parasite to establish an intracellular lifestyle and ultimately cause disease. The IMC is composed of both membrane and cytoskeletal components, further delineated into the apical cap, body, and basal subcompartments. The apical cap cytoskeleton was recently demonstrated to govern the stability of the apical complex, which controls parasite motility, invasion, and egress. While this role was determined by individually assessing the apical cap proteins AC9, AC10, and the mitogen-activated protein kinase ERK7, how the three proteins collaborate to stabilize the apical complex is unknown. In this study, we use a combination of deletion analyses and yeast two-hybrid experiments to establish that these proteins form an essential complex in the apical cap. We show that AC10 is a foundational component of the AC9:AC10:ERK7 complex and demonstrate that the interactions among them are critical to maintaining the apical complex. Importantly, we identify multiple independent regions of pairwise interaction between each of the three proteins, suggesting that the AC9:AC10:ERK7 complex is organized by multivalent interactions. Together, these data support a model in which multiple interacting domains enable the oligomerization of the AC9:AC10:ERK7 complex and its assembly into the cytoskeletal IMC, which serves as a structural scaffold that concentrates ERK7 kinase activity in the apical cap. IMPORTANCE The phylum Apicomplexa consists of obligate, intracellular parasites, including the causative agents of toxoplasmosis, malaria, and cryptosporidiosis. Hallmarks of these parasites are the IMC and the apical complex, both of which are unique structures that are conserved throughout the phylum and required for parasite survival. The apical cap portion of the IMC has previously been shown to stabilize the apical complex. Here, we expand on those studies to determine the precise protein-protein interactions of the apical cap complex that confer this essential function. We describe the multivalent nature of these interactions and show that the resulting protein oligomers likely tether ERK7 in the apical cap. This study represents the first description of the architecture of the apical cap at a molecular level, expanding our understanding of the unique cell biology that drives Toxoplasma infections.
Collapse
|
17
|
Dos Santos Pacheco N, Tosetti N, Koreny L, Waller RF, Soldati-Favre D. Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa. Trends Parasitol 2020; 36:688-704. [DOI: 10.1016/j.pt.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
|
18
|
Gubbels MJ, Keroack CD, Dangoudoubiyam S, Worliczek HL, Paul AS, Bauwens C, Elsworth B, Engelberg K, Howe DK, Coppens I, Duraisingh MT. Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Front Cell Infect Microbiol 2020; 10:269. [PMID: 32582569 PMCID: PMC7289922 DOI: 10.3389/fcimb.2020.00269] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a “binary fission” mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline D Keroack
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sriveny Dangoudoubiyam
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Hanna L Worliczek
- Department of Biology, Boston College, Chestnut Hill, MA, United States.,Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Ciara Bauwens
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States.,School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Daniel K Howe
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
19
|
Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis. Proc Natl Acad Sci U S A 2020; 117:12164-12173. [PMID: 32409604 PMCID: PMC7275706 DOI: 10.1073/pnas.1921245117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apicomplexan parasites include organisms that cause widespread and devastating human diseases such as malaria, cryptosporidiosis, and toxoplasmosis. These parasites are named for a structure, called the “apical complex,” that organizes their invasion and secretory machinery. We found that two proteins, apical cap protein 9 (AC9) and an enzyme called ERK7, work together to facilitate apical complex assembly. Intriguingly, ERK7 is an ancient molecule that is found throughout Eukaryota, though its regulation and function are poorly understood. AC9 is a scaffold that concentrates ERK7 at the base of the developing apical complex. In addition, AC9 binding likely confers substrate selectivity upon ERK7. This simple competitive regulatory model may be a powerful but largely overlooked mechanism throughout biology. Apicomplexan parasites use a specialized cilium structure called the apical complex to organize their secretory organelles and invasion machinery. The apical complex is integrally associated with both the parasite plasma membrane and an intermediate filament cytoskeleton called the inner-membrane complex (IMC). While the apical complex is essential to the parasitic lifestyle, little is known about the regulation of apical complex biogenesis. Here, we identify AC9 (apical cap protein 9), a largely intrinsically disordered component of the Toxoplasma gondii IMC, as essential for apical complex development, and therefore for host cell invasion and egress. Parasites lacking AC9 fail to successfully assemble the tubulin-rich core of their apical complex, called the conoid. We use proximity biotinylation to identify the AC9 interaction network, which includes the kinase extracellular signal-regulated kinase 7 (ERK7). Like AC9, ERK7 is required for apical complex biogenesis. We demonstrate that AC9 directly binds ERK7 through a conserved C-terminal motif and that this interaction is essential for ERK7 localization and function at the apical cap. The crystal structure of the ERK7–AC9 complex reveals that AC9 is not only a scaffold but also inhibits ERK7 through an unusual set of contacts that displaces nucleotide from the kinase active site. ERK7 is an ancient and autoactivating member of the mitogen-activated kinase (MAPK) family and its regulation is poorly understood in all organisms. We propose that AC9 dually regulates ERK7 by scaffolding and concentrating it at its site of action while maintaining it in an “off” state until the specific binding of a true substrate.
Collapse
|
20
|
Tosetti N, Dos Santos Pacheco N, Bertiaux E, Maco B, Bournonville L, Hamel V, Guichard P, Soldati-Favre D. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. eLife 2020; 9:56635. [PMID: 32379047 PMCID: PMC7228768 DOI: 10.7554/elife.56635] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorène Bournonville
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Leung JM, Nagayasu E, Hwang YC, Liu J, Pierce PG, Phan IQ, Prentice RA, Murray JM, Hu K. A doublecortin-domain protein of Toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers. BMC Mol Cell Biol 2020; 21:8. [PMID: 32111164 PMCID: PMC7048138 DOI: 10.1186/s12860-020-0249-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND TgDCX is a doublecortin-domain protein associated with the conoid fibers, a set of strongly curved non-tubular tubulin-polymers in Toxoplasma. TgDCX deletion impairs conoid structure and parasite invasion. TgDCX contains two tubulin-binding domains: a partial P25α and the DCX/doublecortin domain. Orthologues are found in apicomplexans and their free-living relatives Chromera and Vitrella. RESULTS We report that isolated TgDCX-containing conoid fibers retain their pronounced curvature, but loss of TgDCX destabilizes the fibers. We crystallized and determined the 3D-structure of the DCX-domain, which is similar to those of human doublecortin and well-conserved among TgDCX orthologues. However, the orthologues vary widely in targeting to the conoid in Toxoplasma and in modulating microtubule organization in Xenopus cells. Several orthologues bind to microtubules in Xenopus cells, but only TgDCX generates short, strongly curved microtubule arcs. EM analysis shows microtubules decorated with TgDCX bundled into rafts, often bordered on one edge by a "C"-shaped incomplete tube. A Chromera orthologue closely mimics TgDCX targeting in Toxoplasma and binds to microtubules in Xenopus cells, but does not generate arcs or "C"-shaped tubes, and fails to rescue the defects of the TgDCX-knockout parasite. CONCLUSIONS These observations suggest that species-specific features of TgDCX enable it to generate strongly curved tubulin-polymers to support efficient host-cell invasion.
Collapse
Affiliation(s)
| | - Eiji Nagayasu
- Department of Infectious Diseases, Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yu-Chen Hwang
- Nikon Instruments Inc, Melville, New York, 11747, USA
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Phillip G Pierce
- UCB, and Seattle Structural Genomics Center for Infectious Disease, Bainbridge Island, WA, 98110, USA
| | - Isabelle Q Phan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, and Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
| | - Robin A Prentice
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, and Seattle Structural Genomics Center for Infectious Disease, Seattle, WA, 98109, USA
- University of Washington, Brotman Bady Institute, Seattle, WA, 98195, USA
| | - John M Murray
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
22
|
Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E, Stock J, Brady D, Waller RF, Holder AA, Tewari R. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 2019; 21:e13082. [PMID: 31283102 PMCID: PMC6851706 DOI: 10.1111/cmi.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.
Collapse
Affiliation(s)
- Richard J. Wall
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | | | | | - Edward Rea
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Jessica Stock
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Declan Brady
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Ross F. Waller
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rita Tewari
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
23
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
24
|
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 2017; 8:2236. [PMID: 29269729 PMCID: PMC5740107 DOI: 10.1038/s41467-017-02341-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites. Apicomplexan parasites such as Toxoplasma gondii possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Collapse
|
25
|
Saini E, Zeeshan M, Brady D, Pandey R, Kaiser G, Koreny L, Kumar P, Thakur V, Tatiya S, Katris NJ, Limenitakis RS, Kaur I, Green JL, Bottrill AR, Guttery DS, Waller RF, Heussler V, Holder AA, Mohmmed A, Malhotra P, Tewari R. Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development. Sci Rep 2017; 7:15577. [PMID: 29138437 PMCID: PMC5686188 DOI: 10.1038/s41598-017-15781-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, possess a distinctive membranous structure of flattened alveolar vesicles supported by a proteinaceous network, and referred to as the inner membrane complex (IMC). The IMC has a role in actomyosin-mediated motility and host cell invasion. Here, we examine the location, protein interactome and function of PhIL1, an IMC-associated protein on the motile and invasive stages of both human and rodent parasites. We show that PhIL1 is located in the IMC in all three invasive (merozoite, ookinete-, and sporozoite) stages of development, as well as in the male gametocyte and locates both at the apical and basal ends of ookinete and sporozoite stages. Proteins interacting with PhIL1 were identified, showing that PhIL1 was bound to only some proteins present in the glideosome motor complex (GAP50, GAPM1–3) of both P. falciparum and P. berghei. Analysis of PhIL1 function using gene targeting approaches indicated that the protein is required for both asexual and sexual stages of development. In conclusion, we show that PhIL1 is required for development of all zoite stages of Plasmodium and it is part of a novel protein complex with an overall composition overlapping with but different to that of the glideosome.
Collapse
Affiliation(s)
- Ekta Saini
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK
| | - Rajan Pandey
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Pradeep Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shreyansh Tatiya
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Nicholas J Katris
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | | | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester, LE2 7LX, UK
| | - David S Guttery
- Department of Cancer studies, University of Leicester, Leicester, LE2 7LX, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | | | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, NG72UH, UK.
| |
Collapse
|
26
|
Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 2016; 20:731-743. [PMID: 27978434 DOI: 10.1016/j.chom.2016.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Jessica Stock
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnault Graindorge
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Yu-Fu Hung
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| |
Collapse
|