1
|
Wang Y, Yang L, Li X, Yang Q, Ma R, Wu Z. Expression of DDX49 in breast cancer and its mechanism regulating the proliferation and metastasis of breast cancer cells. Growth Factors 2025; 43:45-55. [PMID: 40178930 DOI: 10.1080/08977194.2025.2484007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
DEAD-box RNA helicase (DDX) is linked to the invasion, drug resistance, proliferation, and epithelial-mesenchymal transition of tumour cells. This study examined the potential mechanisms of DDX49 in breast cancer. The expression of DDX49 in breast cancer tissues and cells was evaluated. The effects of DDX49 on proliferation, invasion, migration and apoptosis of breast cancer cells were evaluated. The expression of proteins associated with the JAK/STAT pathway was examined. A xenograft tumour model was established. DDX49 expression is elevated in breast cancer tissues and cell lines. shDDX49 suppressed the ability of breast cancer cells to proliferate, invade, and migrate, but promoted apoptosis. Conversely, overexpression of DDX49 exerted an opposite effect. The activation of the JAK-STAT signalling pathway is inhibited by the shDDX49. shDDX49 efficiently inhibits tumour growth in mice with breast cancer. shDDX49 may hinder the growth and spread of breast cancer cells by inhibiting the JAK-STAT pathway.
Collapse
Affiliation(s)
- Yuanbin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Yang
- Department of Chemotherapy Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangli Li
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruimin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Lai M, Yu Y, Chen C, Yu J, Hung H, Chan S. DDX3 participates in miRNA biogenesis and RNA interference through translational control of PACT and interaction with AGO2. FEBS Open Bio 2025; 15:180-195. [PMID: 39543456 PMCID: PMC11705417 DOI: 10.1002/2211-5463.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
DDX3 is a DEAD-box RNA helicase that plays multiple roles in RNA metabolism, including translation. We previously reported that DDX3 is required for translation of PACT, a binding partner of Dicer, suggesting a role for DDX3 in microRNA (miRNA) biogenesis and RNA interference (RNAi). Emerging evidence suggests that DDX3 plays a vital role in tumorigenesis and cancer progression, however, its underlying mechanism is still not fully understood. Here, we showed that the control of PACT by DDX3 is conserved in human cells and Caenorhabditis elegans. Using a miRNA microarray, we found that DDX3 regulates the expression of a small subset of cancer-related miRNAs. These oncogenic miRNAs were down-regulated by knockdown of DDX3 or PACT and up-regulated by overexpression of DDX3 or PACT in HEK293T cells. Similar results were obtained in human cancer HCT116 and HeLa cells. Dual luciferase reporter assay showed that DDX3 and PACT are required for short hairpin RNA (shRNA)-induced RNAi. We also performed co-immunoprecipitation to confirm the interaction between DDX3 and AGO2, a significant component of the RNA-induced silencing complex, supporting a role for DDX3 in the RNAi pathway. We further examined the effects of DDX3 and PACT on cell proliferation, and stable overexpression of DDX3 in HEK293 cells results in loss of contact inhibition of cell growth. Hence, we propose that DDX3 may participate in cancer development by regulating the RNAi pathway.
Collapse
Affiliation(s)
- Ming‐Chih Lai
- Department of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Graduate Institute of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Department of Colorectal SurgeryNew Taipei Municipal Tucheng HospitalTaiwan
| | - Yen‐Ling Yu
- Department of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
| | - Chiao‐Nung Chen
- Graduate Institute of MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Jau‐Song Yu
- Graduate Institute of Biomedical SciencesChang Gung UniversityTaoyuanTaiwan
- Molecular Medicine Research CenterChang Gung UniversityTaoyuanTaiwan
| | - Hsin‐Yuan Hung
- Department of Colorectal SurgeryNew Taipei Municipal Tucheng HospitalTaiwan
| | - Shih‐Peng Chan
- Graduate Institute of MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Hossain MM, Mishra AK, Yadav AK, Ismail M, Sata TN, Sah AK, Banik A, Sharma G, Venugopal SK. Free fatty acid-induced DDX3 inhibits autophagy via miR-141 upregulation in diet-induced MASLD mice model system. Ann Hepatol 2024; 30:101758. [PMID: 39631458 DOI: 10.1016/j.aohep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the primary causes of chronic liver disease and may lead to liver cirrhosis and hepatocellular carcinoma. Recent reports suggested that DEAD-box RNA helicase (DDX3) acts as a sensor of free fat accumulation and may modulate the pathogenesis via miRNAs. Hence, we hypothesized that DDX3 might modulate MASLD progression via miRNA-141-mediated inhibition of Sirt-1 and autophagy. MATERIALS AND METHODS RNA and total protein were isolated from free fatty acid-treated HepG2 cells or CDAA-fed C57BL/6 mice (6 mice per group) for 6, 18, 32, or 54 weeks. The cells were transfected with DDX3 or miR-141 or siRNA to DDX3, and Western blots for autophagy markers were performed. RESULTS The FFAs induced the DDX3 and miRNA-141 expression, while downregulating Sirt-1, beclin-1, Atg7, and LC3-II. Overexpression of DDX3 resulted in increased miRNA-141. Overexpression of DDX3 or miRNA-141 downregulated Sirt-1 expression and autophagy marker proteins, while these effects were reversed with siRNA to DDX3. The expression of both DDX3 and miRNA-141 was significantly increased, while autophagy markers were downregulated in CDAA-fed mice. CONCLUSIONS These results confirmed that FFA-induced DDX3 induced the expression of miRNA-141, which in turn targeted Sirt-1 and decreased autophagy.
Collapse
Affiliation(s)
- Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amit K Mishra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - Ajay K Yadav
- Department of Medical and Molecular genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Md Ismail
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amrendra K Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Arnab Banik
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gopal Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
4
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
5
|
Xu P, Liu K, Huang S, Lv J, Yan Z, Ge H, Cheng Q, Chen Z, Ji P, Qian Y, Li B, Xu H, Yang L, Xu Z, Zhang D. N 6-methyladenosine-modified MIB1 promotes stemness properties and peritoneal metastasis of gastric cancer cells by ubiquitinating DDX3X. Gastric Cancer 2024; 27:275-291. [PMID: 38252226 DOI: 10.1007/s10120-023-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Peritoneal metastasis (PM), one of the most typical forms of metastasis in advanced gastric cancer (GC), indicates a poor prognosis. Exploring the potential molecular mechanism of PM is urgently necessary, as it has not been well studied. E3 ubiquitin ligase has been widely established to exert a biological function in various cancers, but its mechanism of action in GC with PM remains unknown. METHODS The effect of MIB1 on PM of GC was confirmed in vitro and in vivo. Co-immunoprecipitation (Co-IP) and mass spectrometry demonstrated the association between MIB1 and DDX3X. Western blot, flow cytometry and immunofluorescence determined that DDX3X was ubiquitylated by MIB1 and promoted stemness. We further confirmed that METTL3 promoted the up-regulation of MIB1 by RNA immunoprecipitation (RIP), luciferase reporter assay and other experiments. RESULTS We observed that the E3 ubiquitin ligase Mind bomb 1 (MIB1) was highly expressed in PMs, and patients with PM with high MIB1 expression showed a worse prognosis than those with low MIB1 expression. Mechanistically, our study demonstrated that the E3 ubiquitin ligase MIB1 promoted epithelial-mesenchymal transition (EMT) progression and stemness in GC cells by degrading DDX3X. In addition, METTL3 mediated m6A modification to stabilize MIB1, which required the m6A reader IGF2BP2. CONCLUSIONS Our study elucidated the specific molecular mechanism by which MIB1 promotes PM of GC, and suggested that targeting the METTL3-MIB1-DDX3X axis may be a promising therapeutic strategy for GC with PM.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peicheng Ji
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yawei Qian
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
7
|
Zhang W, Cao L, Yang J, Zhang S, Zhao J, Shi Z, Liao K, Wang H, Chen B, Qian Z, Xu H, Wu L, Liu H, Wang H, Ma C, Qiu Y, Ge J, Chen J, Lin Y. AEP-cleaved DDX3X induces alternative RNA splicing events to mediate cancer cell adaptation in harsh microenvironments. J Clin Invest 2023; 134:e173299. [PMID: 37988165 PMCID: PMC10849765 DOI: 10.1172/jci173299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Oxygen and nutrient deprivation are common features of solid tumors. Although abnormal alternative splicing (AS) has been found to be an important driving force in tumor pathogenesis and progression, the regulatory mechanisms of AS that underly the adaptation of cancer cells to harsh microenvironments remain unclear. Here, we found that hypoxia- and nutrient deprivation-induced asparagine endopeptidase (AEP) specifically cleaved DDX3X in a HIF1A-dependent manner. This cleavage yields truncated carboxyl-terminal DDX3X (tDDX3X-C), which translocates and aggregates in the nucleus. Unlike intact DDX3X, nuclear tDDX3X-C complexes with an array of splicing factors and induces AS events of many pre-mRNAs; for example, enhanced exon skipping (ES) in exon 2 of the classic tumor suppressor PRDM2 leads to a frameshift mutation of PRDM2. Intriguingly, the isoform ARRB1-Δexon 13 binds to glycolytic enzymes and regulates glycolysis. By utilizing in vitro assays, glioblastoma organoids, and animal models, we revealed that AEP/tDDX3X-C promoted tumor malignancy via these isoforms. More importantly, high AEP/tDDX3X-C/ARRB1-Δexon 13 in cancerous tissues was tightly associated with poor patient prognosis. Overall, our discovery of the effect of AEP-cleaved DDX3X switching on alternative RNA splicing events identifies a mechanism in which cancer cells adapt to oxygen and nutrient shortages and provides potential diagnostic and/or therapeutic targets.
Collapse
Affiliation(s)
- Wenrui Zhang
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Zhang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianyi Zhao
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonggang Shi
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keman Liao
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binghong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Haoping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linshi Wu
- Department of Biliary-Pancreatic Surgery and
| | - Hua Liu
- Department of General Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Mishra AK, Hossain MM, Umar M, Sata TN, Yadav AK, Sah AK, Ismail M, Nayak B, Shalimar, Venugopal SK. DDX3-mediated miR-34 expression inhibits autophagy and HBV replication in hepatic cells. J Viral Hepat 2023; 30:327-334. [PMID: 36597176 DOI: 10.1111/jvh.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
HBV entry to the host cells and its successful infection depends on its ability to modulate the host restriction factors. DEAD box RNA helicase, DDX3, is shown to inhibit HBV replication. However, the exact mechanism of inhibition still remains unclear. DDX3 is involved in multitude or RNA metabolism processes including biogenesis of miRNAs. In this study, we sought to determine the mechanism involved in DDX3-mediated HBV inhibition. First, we observed that HBx protein of HBV downregulated DDX3 expression in HBV-infected cells. Overexpression of DDX3 inhibited HBx, HBsAg and total viral load, while its knockdown reversed the result in Hep G2.2.15 cells. Expression of miR-34 was downregulated in HBV-infected cells. Overexpression of pHBV1.3 further confirmed that HBV downregulates miR-34 expression. Consistent with the previous finding that DDX3 is involved in miRNA biogenesis, we observed that expression of miR-34 positively corelated with DDX3 expression. miRNA target prediction tools showed that miR-34 can target autophagy pathway which is hijacked by HBV for the benefit of its own replication. Indeed, transfection with miR-34 oligos downregulated the expression of autophagy marker proteins in HBV-expressing cells. Overexpression of DDX3 in HBV-expressing cells, downregulated expression of autophagy proteins while silencing of DDX3 reversed the results. These results led us to conclude that DDX3 upregulates miR-34 expression and thus inhibits autophagy in HBV-expressing cells while HBx helps HBV evade DDX3-mediated inhibition by downregulating DDX3 expression in HBV-infected cells.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Md Musa Hossain
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Mohd Umar
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Ajay K Yadav
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Amrendra Kumar Sah
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Md Ismail
- Lab of molecular medicine and Hepatology, FLSB, South Asian University, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
9
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
10
|
Zhou Z, Zhu B, Meng Q, Zhang T, Wu Y, Yu R, Gao S. Research progress in molecular pathology markers in medulloblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:139-156. [PMID: 36937322 PMCID: PMC10017192 DOI: 10.37349/etat.2023.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 03/06/2023] Open
Abstract
Medulloblastoma (MB) is the commonest primary malignant brain cancer. The current treatment of MB is usually surgical resection combined with radiotherapy or chemotherapy. Although great progress has been made in the clinical management of MB, tumor metastasis and recurrence are still the main cause of death. Therefore, definitive and timely diagnosis is of great importance for improving therapeutic effects on MB. In 2016, the World Health Organization (WHO) divided MB into four subtypes: wingless-type mouse mammary tumor virus integration site (WNT), sonic hedgehog (SHH), non-WNT/non-SHH group 3, and group 4. Each subtype of MB has a unique profile in copy number variation, DNA alteration, gene transcription, or post-transcriptional/translational modification, all of which are associated with different biological manifestations, clinical features, and prognosis. This article reviewed the research progress of different molecular pathology markers in MB and summarized some targeted drugs against these molecular markers, hoping to stimulate the clinical application of these molecular markers in the classification, diagnosis, and treatment of MB.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qingming Meng
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yihao Wu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Correspondence: Rutong Yu, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China; Department of Neurosurgery, Xuzhou Children’s Hospital, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Shangfeng Gao, Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
11
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
12
|
Hu X, Li F, Zhou Y, Gan H, Wang T, Li L, Long H, Li B, Pang P. DDX24 promotes metastasis by regulating RPL5 in non-small cell lung cancer. Cancer Med 2022; 11:4513-4525. [PMID: 35864588 PMCID: PMC9741967 DOI: 10.1002/cam4.4835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a leading cause of cancer death, and metastasis is a crucial determinant of increased cancer mortality. DDX24 has garnered increased attention due to its correlation with tumorigenesis and malignant progression. However, the correlation between DDX24 and NSCLC remains unclear. METHODS DDX24 expression in NSCLC tissues and survival rate of patients was analyzed using bioinformatic analysis. Transwell assays, wound-healing assays, and tail vein lung colonization models were employed to determine the role of DDX24 in migration and invasion in vitro and in vivo. We searched for DDX24-interacting proteins using co-immunoprecipitation followed by mass spectroscopy and verified the interaction. The influence of DDX24 on RPL5 expression and ubiquitination was examined using protein stability assays. RESULTS DDX24 expression was upregulated in NSCLC cell lines and tumors of patients, particularly those with high tumor grades. A high DDX24 level was also correlated with a poor prognosis. DDX24 upregulation enhanced the migration and invasion ability of NSCLC cells, whereas its downregulation had the opposite effects. In vivo xenograft experiments confirmed that tumors with high DDX24 expression had higher metastatic abilities. The interaction between DDX24 and RPL5 promoted its ubiquitination and destabilized it. CONCLUSIONS DDX24 acted as a pro-tumorigenic factor and promoted metastasis in NSCLC. DDX24 interacted with RPL5 to promote its ubiquitination and degradation. As a result, targeting DDX24/RPL5 axis may provide a novel potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xinyan Hu
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Fangfang Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingP.R. China
| | - Yulan Zhou
- Department of NursingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China
| | - Hairun Gan
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Tiancheng Wang
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Luting Li
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Haoyu Long
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Bing Li
- Department of OphthalmologyThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China
| | - Pengfei Pang
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| |
Collapse
|
13
|
Wang J, Yang F, Zhuang J, Huo Q, Li J, Xie N. TRIM58 Inactivates p53/p21 to Promote Chemoresistance via Ubiquitination of DDX3 in Breast Cancer. Int J Biochem Cell Biol 2021; 143:106140. [PMID: 34954155 DOI: 10.1016/j.biocel.2021.106140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy resistance is that the most important reason behind of carcinoma treatment failure but the underlying molecular mechanisms are unclear. Members of the tripartite motifcontaining protein (TRIM) family play crucial roles in the carcinogenesis and development of resistance against chemotherapy. Herein, we first confirmed that TRIM58 is highly expressed in triple-negative breast cancer tissues and drug-resistant MCF7/ADR cells. Furthermore, TRIM58 knockdown resulted in increased sensitivity of MCF7/ADR cells toward doxorubicin in vitro and in vivo. In contrast, TRIM58 overexpression in breast cancer cells increased doxorubicin resistance. TRIM58 was found to interact with DDX3, a protein recently reported to modulate resistance against chemotherapy. We found that TRIM58 negatively regulates DDX3 expression downstream of the P53/P21 pathway, and that DDX3 is degraded by TRIM58-mediated ubiquitination. Knockdown of DDX3 reversed doxorubicin chemotherapy sensitivity induced by TRIM58 knockdown via the P53/P21 pathway.Our study reveals that TRIM58 mediates a novel mechanism underlying the development of resistance against chemotherapy in breast cancer and provides potential targets for developing novel therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Juan Wang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China; University of South China, Hunan, 421001, China
| | - Fan Yang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, China
| | - Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Jiaying Li
- University of South China, Hunan, 421001, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
14
|
Pradhan UK, Sharma NK, Kumar P, Kumar A, Gupta S, Shankar R. miRbiom: Machine-learning on Bayesian causal nets of RBP-miRNA interactions successfully predicts miRNA profiles. PLoS One 2021; 16:e0258550. [PMID: 34637468 PMCID: PMC8509996 DOI: 10.1371/journal.pone.0258550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Formation of mature miRNAs and their expression is a highly controlled process. It is very much dependent upon the post-transcriptional regulatory events. Recent findings suggest that several RNA binding proteins beyond Drosha/Dicer are involved in the processing of miRNAs. Deciphering of conditional networks for these RBP-miRNA interactions may help to reason the spatio-temporal nature of miRNAs which can also be used to predict miRNA profiles. In this direction, >25TB of data from different platforms were studied (CLIP-seq/RNA-seq/miRNA-seq) to develop Bayesian causal networks capable of reasoning miRNA biogenesis. The networks ably explained the miRNA formation when tested across a large number of conditions and experimentally validated data. The networks were modeled into an XGBoost machine learning system where expression information of the network components was found capable to quantitatively explain the miRNAs formation levels and their profiles. The models were developed for 1,204 human miRNAs whose accurate expression level could be detected directly from the RNA-seq data alone without any need of doing separate miRNA profiling experiments like miRNA-seq or arrays. A first of its kind, miRbiom performed consistently well with high average accuracy (91%) when tested across a large number of experimentally established data from several conditions. It has been implemented as an interactive open access web-server where besides finding the profiles of miRNAs, their downstream functional analysis can also be done. miRbiom will help to get an accurate prediction of human miRNAs profiles in the absence of profiling experiments and will be an asset for regulatory research areas. The study also shows the importance of having RBP interaction information in better understanding the miRNAs and their functional projectiles where it also lays the foundation of such studies and software in future.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, Delhi, India
| | - Nitesh Kumar Sharma
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Prakash Kumar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, Delhi, India
| | - Ashwani Kumar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
| | - Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India)CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
15
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
16
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
18
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
19
|
Lin TC. DDX3X Multifunctionally Modulates Tumor Progression and Serves as a Prognostic Indicator to Predict Cancer Outcomes. Int J Mol Sci 2019; 21:ijms21010281. [PMID: 31906196 PMCID: PMC6982152 DOI: 10.3390/ijms21010281] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022] Open
Abstract
DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-Linked (DDX3X), also known as DDX3, is one of the most widely studied and evolutionarily conserved members of the DEAD-box RNA helicase subfamily, and has been reported to participate in several cytosolic steps of mRNA metabolism. DDX3X facilitates the translation of specific targets via its helicase activity and regulates factors of the translation initiation complex. Emerging evidence illustrates the biological activities of DDX3X beyond its originally identified functions. The nonconventional regulatory effects include acting as a signaling adaptor molecule independent of enzymatic RNA remodeling, and DDX3X exhibits abnormal expression in cancers. DDX3X interacts with specific components to perform both oncogenic and tumor-suppressive roles in modulating tumor proliferation, migration, invasion, drug resistance, and cancer stemness in many types of cancers, indicating the need to unravel the associated molecular mechanisms. In this review article, we summarized and integrated current findings relevant to DDX3X in cancer research fields, cytokines and compounds modulating DDX3X's functions, and the released transcriptomic information and cancer patient clinical data from public databases. We found evidence for DDX3X having multiple impacts on cancer progression, and evaluated DDX3X expression levels in a pancancer panel and its associations with patient survival in each cancer-type cohort.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
20
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|
21
|
Xu L, Zhang Y, Tang J, Wang P, Li L, Yan X, Zheng X, Ren S, Zhang M, Xu M. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:867-881. [PMID: 30602498 DOI: 10.1158/1055-9965.epi-18-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46-1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52-3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29-3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35-2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30-2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50-3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16-1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25-3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23-1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jianwei Tang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaokai Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
22
|
Yu H, Liu Y, Niu C, Cheng Y. Diosgenin increased DDX3 expression in hepatocellular carcinoma. Am J Transl Res 2018; 10:3590-3599. [PMID: 30662610 PMCID: PMC6291714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Liver cancer, one of the most common malignant tumors occurred worldwide, has emerged as a main health trouble and accounts for leading cancer-related death. Diosgenin is provided as an important material in the pharmaceutical industry, and is used to manage various medical troubles such as cancer because of its multiple bioactivities. DEAD box polypeptide 3 (DDX3) is involved in cancer biogenesis and modulates cancer progression. However, the role of DDX3 in human hepatocellular carcinoma (HCC) has not been fully understood. In the present study, we investigated the anti-tumor effects of diosgenin on HCC cells and whether DDX3 is involved in its antitumor activity. We observed that diosgenin dramatically inhibited cell proliferation, triggered apoptotic cell death, induced G2/M phase arrest, suppressed cell migration and invasion abilities. Moreover, the expression of DDX3 was measured and the results showed that DDX3 was significantly up-regulated upon diosgenin exposure. All together, our data indicated that diosgenin shows a cytotoxic effect on HCC cells and has potential therapeutic values for HCC patients.
Collapse
Affiliation(s)
- Hong Yu
- Department of Liver Disease, Yantai Infectious Diseases HospitalYantai, Shandong, China
| | - Yuanni Liu
- Department of Liver Disease, Yantai Infectious Diseases HospitalYantai, Shandong, China
| | - Chuanzhen Niu
- Department of Liver Disease, Yantai Infectious Diseases HospitalYantai, Shandong, China
| | - Yu Cheng
- Department of Medical Oncology, Yantai Yuhuangding Hospital Affiliated with Qingdao UniversityYantai, Shandong, China
| |
Collapse
|
23
|
Chan CH, Chen CM, Lee YHW, You LR. DNA Damage, Liver Injury, and Tumorigenesis: Consequences of DDX3X Loss. Mol Cancer Res 2018; 17:555-566. [PMID: 30297359 DOI: 10.1158/1541-7786.mcr-18-0551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
The pleiotropic roles of DEAD-box helicase 3, X-linked (DDX3X), including its functions in transcriptional and translational regulation, chromosome segregation, DNA damage, and cell growth control, have highlighted the association between DDX3X and tumorigenesis. However, mRNA transcripts and protein levels of DDX3X in patient specimens have shown the controversial correlations of DDX3X with hepatocellular carcinoma (HCC) prevalence. In this study, generation of hepatocyte-specific Ddx3x-knockout mice revealed that loss of Ddx3x facilitates liver tumorigenesis. Loss of Ddx3x led to profound ductular reactions, cell apoptosis, and compensatory proliferation in female mutants at 6 weeks of age. The sustained phosphorylation of histone H2AX (γH2AX) and significant accumulation of DNA single-strand breaks and double-strand breaks in liver indicated that the replicative stress occurred in female mutants. Further chromatin immunoprecipitation analyses demonstrated that DDX3X bound to promoter regions and regulated the expression of DNA repair factors, DDB2 and XPA, to maintain genome stability. Loss of Ddx3x led to decreased levels of DNA repair factors, which contributed to an accumulation of unrepaired DNA damage, replication stress, and eventually, spontaneous liver tumors and DEN-induced HCCs in Alb-Cre/+;Ddx3xflox/flox mice. IMPLICATIONS: These data identify an important role of DDX3X in the regulation of DNA damage repair to protect against replication stress in liver and HCC development and progression.
Collapse
Affiliation(s)
- Chieh-Hsiang Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. .,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
You S, Wang F, Hu Q, Li P, Zhang C, Yu Y, Zhang Y, Li Q, Bao Q, Liu P, Li J. Abnormal expression of YEATS4 associates with poor prognosis and promotes cell proliferation of hepatic carcinoma cell by regulation the TCEA1/DDX3 axis. Am J Cancer Res 2018; 8:2076-2087. [PMID: 30416857 PMCID: PMC6220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023] Open
Abstract
YEATS domain containing 4 (YEATS4) is usually amplified and functions as an oncogene in several malignancies, such as colorectum, ovarian, breast and lung. However, the biological role of YEATS4 in hepatocellular carcinoma (HCC) has not yet been discussed. Herein, we found that YEATS4 was significantly upregulated in HCC compared to para-cancerous tissues, and was associated with poor prognosis, large tumor size, poor differentiation and distant metastasis. In addition, YEATS4 promoted HCC cell proliferation and colony formation by binding to and increasing the transcriptional activity of the TCEA1 promoter. Concurrently, upregulation of TCEA1 increased the stability of the DDX3 protein, a member of the DEAD box RNA helicase family, and augmented the proliferative and colony forming ability of HCC cells. Furthermore, YEATS4 accelerated tumor growth in vivo in a xenograft HCC model. Taken together, our study provides evidence for the first time on the potential role of the YEATS4/TCEA1/DDX3 axis in regulating HCC progression, and presents YEATS4 as a promising therapeutic target and prognosis maker for HCC.
Collapse
Affiliation(s)
- Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Hu
- Medicine Clinical Laboratory of Xiamen Xianyue HospitalXiamen, Fujian, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Changmao Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Yaqi Yu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qiu Li
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Bao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| |
Collapse
|
25
|
Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L, Fan W. MicroRNA regulation of liver cancer stem cells. Am J Cancer Res 2018; 8:1126-1141. [PMID: 30094089 PMCID: PMC6079154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023] Open
Abstract
MicroRNAs (miRNAs), a class of emerging small non-coding RNAs, serve as vital players in modulating multiple biological processes via the post-transcriptional regulation of gene expression. Dysregulated expression of miRNAs in liver cancer is well documented, and the involvement of miRNAs in liver cancer initiation and progression has also been described. Cancer stem cells (CSCs) are a subset of cells known to be at the root of cancer recurrence and resistance to therapy. In this review, we highlight recent reports indicating that miRNAs participate in the regulation of liver cancer stem cells (LCSCs). The Wnt signaling pathway, TGF-beta signaling pathway, JAK/STAT signaling pathway and epithelial-mesenchymal transition (EMT) are all closely correlated with the miRNA modulation of LCSCs. In addition, several miRNAs have been demonstrated to be involved in the regulation of LCSCs in response to therapy sensitivity. Targeting LCSCs by regulating the expression of these miRNAs represents a potential therapeutic strategy for treating cancer drug resistance, metastasis and recurrence in the near future.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People’s Hospital of ZhejiangHuzhou 313100, Zhejiang Province, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) HospitalHangzhou 310003, Zhejiang Province, China
| | - Guansheng Zhong
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou 310000, Zhejiang Province, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
- Department of Pathology and Laboratory Medicine, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
26
|
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, Gui X, Li T, Xiong W, Lu D. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 2018; 9:253. [PMID: 29449541 PMCID: PMC5833746 DOI: 10.1038/s41419-018-0305-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Maternally expressed gene 3 (MEG3) encodes an lncRNA which is suggested to function as a tumor suppressor and has been showed to involve in a variety of cancers. Herein, our findings demonstrate that MEG3 inhibits the malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, MEG3 promotes the expression and maturition of miR122 which targets PKM2. Therefore, MEG3 decreases the expression and nuclear location of PKM2 dependent on miR122. Furthermore, MEG3 also inhibits CyclinD1 and C-Myc via PKM2 in liver cancer cells. On the other hand, MEG3 promotes β-catenin degradation through ubiquitin-proteasome system dependent on PTEN. Strikingly, MEG3 inhibits β-catenin activity through PKM2 reduction and PTEN increase. Significantly, we also found that excessive β-catenin abrogated the effect of MEG3 in liver cancer. In conclusion, our study for the first time demonstrates that MEG3 acts as a tumor suppressor by negatively regulating the activity of the PKM2 and β-catenin signaling pathway in hepatocarcinogenesis and could provide potential therapeutic targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qidi Zheng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Hu Pu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Xin Gui
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Tianming Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China
| | - Wujun Xiong
- Department of Hepatology, Shanghai East Hospital, Tongji University School of Medicine, 200120, Shanghai, China
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Science and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
27
|
Wu L, Chang L, Wang H, Ma W, Peng Q, Yuan Y. Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2018; 42:82-91. [PMID: 28578939 DOI: 10.1016/j.clinre.2017.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent evidence has suggested novel roles of small nucleolar RNAs (snoRNAs) in tumorigenicity. However, the roles of C/D box snoRNA U76 (SNORD76) in the development of hepatocellular carcinoma (HCC) remain unknown. Herein, we systematically evaluated dysregulation of snoRNAs in HCC and clarified the biomarker potential and biological significance of SNORD76 in HCC. METHODS We performed quantitative analyses of the expression of SNORD76 in 66 HCC specimens to compare its expression pattern between tumor tissue and matched non-tumor tissue. The effects of SNORD76 on HCC tumorigenicity were investigated in SK-Hep1 and Huh7 cells as well as in a xenograft nude mouse model. RESULTS SNORD76 expression was significantly upregulated in HCC tissues compared to corresponding non-tumor tissues. This upregulation of SNORD76 in HCC tumors was significantly associated with poorer patient survival. Furthermore, inhibiting SNORD76 expression suppressed cell proliferation by inducing G0/G1 cell cycle arrest and apoptosis. Low SNORD76 expression also resulted in decreased HCC growth in an animal model. Conversely, overexpressing SNORD76 promoted cell proliferation. SNORD76 increased HCC cell invasion by inducing epithelial-mesenchymal transition (EMT). Finally, we found that SNORD76 promoted HCC tumorigenicity through activation of the Wnt/β-catenin pathway. CONCLUSIONS Therefore, we demonstrated for the first time that SNORD76 may function as a novel tumor promoter in HCC and may serve as a promising prognostic biomarker in patients with HCC.
Collapse
Affiliation(s)
- Long Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Lei Chang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Haitao Wang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Weijie Ma
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Qin Peng
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China
| | - Yufeng Yuan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, PR China.
| |
Collapse
|
28
|
Wang Z, Shen GH, Xie JM, Li B, Gao QG. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 495:1503-1509. [PMID: 29203243 DOI: 10.1016/j.bbrc.2017.11.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Rottlerin has been reported to exert its anti-tumor activity in various types of human cancers. However, the underlying molecular mechanism has not been fully elucidated. In the current study, we explored whether rottlerin exhibits its tumor suppressive function in hepatocellular carcinoma cells. Our MTT assay results showed that rottlerin inhibited cell growth in hepatocellular carcinoma cells. Moreover, we found that rottlerin induced cell apoptosis and caused cell cycle arrest at G1 phase. Furthermore, our wound healing assay result demonstrated that rottlerin retarded cell migration in hepatocellular carcinoma cells. Additionally, rottlerin suppressed cell migration and invasion. Notably, we found that rottlerin upregulated DDX3 expression and subsequently downregulated Cyclin D1 expression and increased p21 level. Importantly, down-regulation of DDX3 abrogated the rottlerin-mediated tumor suppressive function, whereas overexpression of DDX3 promoted the anti-tumor activity of rottlerin. Our study suggests that rottlerin exhibits its anti-cancer activity partly due to upregulation of DDX3 in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhong Wang
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China; Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gen-Hai Shen
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China
| | - Jia-Ming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| | - Quan-Gen Gao
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|
29
|
DDX3 localizes to the centrosome and prevents multipolar mitosis by epigenetically and translationally modulating p53 expression. Sci Rep 2017; 7:9411. [PMID: 28842590 PMCID: PMC5573351 DOI: 10.1038/s41598-017-09779-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The DEAD-box RNA helicase DDX3 plays divergent roles in tumorigenesis, however, its function in mitosis is unclear. Immunofluorescence indicated that DDX3 localized to centrosome throughout the cell cycle and colocalized with centrosome-associated p53 during mitosis in HCT116 and U2OS cells. DDX3 depletion promoted chromosome misalignment, segregation defects and multipolar mitosis, eventually leading to G2/M delay and cell death. DDX3 prevented multipolar mitosis by inactivation and coalescence of supernumerary centrosomes. DDX3 silencing suppressed Ser15 phosphorylation of p53 which is required for p53 centrosomal localization. Additionally, knockout of p53 dramatically diminished the association of DDX3 with centrosome, which was rescued by overexpression of the centrosomal targeting-defective p53 S15A mutant, indicating that centrosomal localization of DDX3 is p53 dependent but not through centrosomal location of p53. Furthermore, DDX3 knockdown suppressed p53 transcription through activation of DNA methyltransferases (DNMTs) along with hypermethylation of p53 promoter and promoting the binding of repressive histone marks to p53 promoter. Moreover, DDX3 modulated p53 mRNA translation. Taken together, our study suggests that DDX3 regulates epigenetic transcriptional and translational activation of p53 and colocalizes with p53 at centrosome during mitosis to ensure proper mitotic progression and genome stability, which supports the tumor-suppressive role of DDX3.
Collapse
|
30
|
RNA helicase DDX3 maintains lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with HNF4 and SHP. Sci Rep 2017; 7:41452. [PMID: 28128295 PMCID: PMC5269733 DOI: 10.1038/srep41452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
Multifunctional RNA helicase DDX3 participates in HCV infection, one of the major causes of hepatic steatosis. Here, we investigated the role of DDX3 in hepatic lipid metabolism. We found that HCV infection severely reduced DDX3 expression. Analysis of intracellular triglyceride and secreted ApoB indicated that lipid accumulations were increased while ApoB secretion were decreased in DDX3 knockdown HuH7 and HepG2 cell lines. Down-regulation of DDX3 significantly decreased protein and transcript expression of microsomal triglyceride transfer protein (MTP), a key regulator of liver lipid homeostasis. Moreover, DDX3 interacted with hepatocyte nuclear factor 4 (HNF4) and small heterodimer partner (SHP), and synergistically up-regulated HNF4-mediated transactivation of MTP promoter via its ATPase activity. Further investigation revealed that DDX3 interacted with CBP/p300 and increased the promoter binding affinity of HNF4 by enhancing HNF4 acetylation. Additionally, DDX3 partially relieved the SHP-mediated suppression on MTP promoter by competing with SHP for HNF4 binding which disrupted the inactive HNF4/SHP heterodimer while promoted the formation of the active HNF4 homodimer. Collectively, these results imply that DDX3 regulates MTP gene expression and lipid homeostasis through interplay with HNF4 and SHP, which may also reveal a novel mechanism of HCV-induced steatosis.
Collapse
|
31
|
Cai W, Xiong Chen Z, Rane G, Satendra Singh S, Choo Z, Wang C, Yuan Y, Zea Tan T, Arfuso F, Yap CT, Pongor LS, Yang H, Lee MB, Cher Goh B, Sethi G, Benoukraf T, Tergaonkar V, Prem Kumar A. Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. J Natl Cancer Inst 2017; 109:2957323. [PMID: 28122908 DOI: 10.1093/jnci/djw278] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the most studied areas of human biology over the past century. Despite having attracted much attention, hype, and investments, the search to find a cure for cancer remains an uphill battle. Recent discoveries that challenged the central dogma of molecular biology not only further increase the complexity but also demonstrate how various types of noncoding RNAs such as microRNA and long noncoding RNA, as well as their related processes such as RNA editing, are important in regulating gene expression. Parallel to this aspect, an increasing number of reports have focused on a family of proteins known as DEAD/H-box helicases involved in RNA metabolism, regulation of long and short noncoding RNAs, and novel roles as "editing helicases" and their association with cancers. This review summarizes recent findings on the roles of RNA helicases in various cancers, which are broadly classified into adult solid tumors, childhood solid tumors, leukemia, and cancer stem cells. The potential small molecule inhibitors of helicases and their therapeutic value are also discussed. In addition, analyzing next-generation sequencing data obtained from public portals and reviewing existing literature, we provide new insights on the potential of DEAD/H-box helicases to act as pharmacological drug targets in cancers.
Collapse
Affiliation(s)
- Wanpei Cai
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhi Xiong Chen
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Grishma Rane
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Shikha Satendra Singh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Zhang'e Choo
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Chao Wang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Yi Yuan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Tuan Zea Tan
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Frank Arfuso
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Celestial T Yap
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Lorinc S Pongor
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Henry Yang
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Martin B Lee
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Boon Cher Goh
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Gautam Sethi
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Touati Benoukraf
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Vinay Tergaonkar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| | - Alan Prem Kumar
- Affiliations of authors: Cancer Science Institute of Singapore, National University of Singapore, Singapore (WC, GR, SSS, CW, YY, TZT, HY, BCG, TB, APK); Departments of Pharmacology (WC, GR, SSS, CW, BCG, GS, APK), Physiology (ZXC, ZC, CTY), and Biochemistry (VT), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; KK Women's and Children's Hospital, Singapore (ZXC); Stem Cell and Cancer Biology Laboratory (FA), School of Biomedical Sciences (GS, APK), Curtin Health Innovation Research Institute, Curtin Medical School (APK), Curtin University, Perth, WA, Australia; National University Cancer Institute, National University Health System, Singapore (CTY, BCG, APK); 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary (LSP); MTA TTK Lendület Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary (LSP); Department of Renal Medicine (MBL) and Department of Haematology-Oncology (BCG), National University Health System, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore (VT); Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia (VT); Department of Biological Sciences, University of North Texas, Denton, TX (APK)
| |
Collapse
|
32
|
Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol 2016; 9:74. [PMID: 27578206 PMCID: PMC5006452 DOI: 10.1186/s13045-016-0307-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC) model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.
Collapse
Affiliation(s)
- Aparna Jayachandran
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Bijay Dhungel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Jason C Steel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|