1
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
2
|
Bouron A. Cellular neurobiology of hyperforin. Phytother Res 2024; 38:636-645. [PMID: 37963759 DOI: 10.1002/ptr.8063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/16/2023]
Abstract
Hyperforin is a phloroglucinol derivative isolated from the medicinal plant Hypericum perforatum (St John's wort, SJW). This lipophilic biomolecule displays antibacterial, pro-apoptotic, antiproliferative, and anti-inflammatory activities. In addition, in vitro and in vivo data showed that hyperforin is a promising molecule with potential applications in neurology and psychiatry. For instance, hyperforin possesses antidepressant properties, impairs the uptake of neurotransmitters, and stimulates the brain derived neurotrophic factor (BDNF)/TrkB neurotrophic signaling pathway, the adult hippocampal neurogenesis, and the brain homeostasis of zinc. In fact, hyperforin is a multi-target biomolecule with a complex neuropharmacological profile. However, one prominent pharmacological feature of hyperforin is its ability to influence the homeostasis of cations such as Ca2+ , Na+ , Zn2+ , and H+ . So far, the pathophysiological relevance of these actions is currently unknown. The main objective of the present work is to provide an overview of the cellular neurobiology of hyperforin, with a special focus on its effects on neuronal membranes and the movement of cations.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, Inserm UA13 BGE, Grenoble, France
| |
Collapse
|
3
|
METTL3 Promotes Endothelium-Mesenchymal Transition of Pulmonary Artery Endothelial Cells by Regulating TRPC6/Calcineurin/NFAT Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8269356. [PMID: 36865750 PMCID: PMC9974285 DOI: 10.1155/2023/8269356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Background Endothelium-mesenchymal transition (EndMT) is a process of phenotypic and functional transition from activated endothelial cells to mesenchymal cells. Recently, EndMT has been proved to be one of the main pathological mechanisms of pulmonary artery hypertension (PAH). However, the molecular mechanism is not clear. Methods Primary rat pulmonary arterial endothelial cells (rPAECs) were isolated from Sprague-Dawley rats and verified by CD31 immunofluorescence staining. rPAECs were exposed to hypoxic conditions to induce EndMT. RNA and protein levels in cells were detected by RT-qPCR and Western blot. The migration ability was verified by the transwell assay. The RIP experiment was used to test the m6A modification of TRPC6 mRNA and the binding relationship between TRPC6 and METTL3. Calcineurin/NFAT signaling was measured by using commercial kits. Results METTL3 was found to be highly expressed by hypoxia treatment in a time-dependent manner. Knockdown of METTL3 significantly suppressed cell migration, downregulated the levels of interstitial cell-related markers like α-SMA and vimentin, and increased the levels of endothelial cell markers including CD31 and VE-cadherin. Mechanistically, METTL3 increased TRPC6 expression by enhancing the m6A modification of TRPC6 mRNA, thus activating calcineurin/NFAT signaling. Our experiments showed that METTL3 silencing mediated the inhibitory roles in the hypoxia-mediated EndMT process, which were significantly reversed by TRPC6/calcineurin/NFAT signaling activation. Conclusion Our results elucidated that METTL3 knockdown inhibited the hypoxia-mediated EndMT process by inactivating TRPC6/calcineurin/NFAT signaling.
Collapse
|
4
|
Ma M, Zhao S, Li C, Tang M, Sun T, Zheng Z. Transient receptor potential channel 6 knockdown prevents high glucose-induced Müller cell pyroptosis. Exp Eye Res 2023; 227:109381. [PMID: 36642172 DOI: 10.1016/j.exer.2023.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Transient receptor potential channel 6 (TRPC6) is reported to be involved in the pathogenesis of diabetic complications, but its role in diabetic retinopathy (DR) remains unknown. The aim of our study was to determine the role and mechanism of TRPC6 in DR. METHODS High glucose was used to construct a DR cell model using rat retinal Müller cells (rMC-1). Intracellular Ca2+, reactive oxygen species (ROS) and cell pyroptosis were evaluated by flow cytometry. Protein levels of NLRP3, pro-caspase-1, active caspase-1, gasdermin D (GSDMD), GSDMD-N, TRPC6 and H3K27ac were detected by Western blot. mRNA levels of EP300 and TRPC6 were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Levels of IL-1β and IL-18 were estimated by enzyme linked immunosorbent assay (ELISA). The interaction between EP300 and TRPC6 was validated by a chromatin immunoprecipitation assay. RESULTS The knockdown of TRPC6 reduced inflammation and cell pyroptosis in HG induced rMC-1 cells, whereas overexpression of TRPC6 had the opposite effects. The inhibition of ROS and NLRP3 reversed TRPC6-mediated cell pyroptosis in the DR cell model. In addition, EP300 increased the expression of H3K27ac and TRPC6 to promote cell pyroptosis, which was suppressed by the knockdown of TRPC6. CONCLUSIONS Our study revealed a novel EP300/H3K27ac/TRPC6 signaling pathway that may contribute to HG induced Müller cell pyroptosis. TRPC6 played a novel role in Müller cell pyroptosis triggered by HG, and may be a potential target for DR treatment in the future.
Collapse
Affiliation(s)
- Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Chenxin Li
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Min Tang
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China
| | - Tao Sun
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, China.
| |
Collapse
|
5
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
6
|
Yu J, Li C, Ma L, Zhai B, Xu A, Shao D. Transient receptor potential canonical 6 knockdown ameliorated diabetic kidney disease by inhibiting nuclear factor of activated T cells 2 expression in glomerular mesangial cells. Ren Fail 2022; 44:1780-1790. [DOI: 10.1080/0886022x.2022.2134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Jian Yu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Chunchun Li
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Lisha Ma
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Bin Zhai
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Aiping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Decui Shao
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Peixoto-Neves D, Kanthakumar P, Kumar R, Soni H, Adebiyi A. Loss of urotensin II receptor diminishes hyperglycemia and kidney injury in streptozotocin-treated mice. J Mol Endocrinol 2022; 68:167-178. [PMID: 35244607 PMCID: PMC9334220 DOI: 10.1530/jme-21-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Beyond the CNS, urotensin II (UII) and its receptor (UT) are functionally expressed in peripheral tissues of the endocrine, cardiovascular, and renal systems. The expression levels of UII and UT in the kidney and circulating UII levels are increased in diabetes. UII also promotes mesangial proliferation and matrix accumulation in vitro. Here, we evaluate the effect of UT deletion on the development of hyperglycemia and diabetic kidney disease (DKD) in streptozotocin (STZ)-treated mice. Ten-week-old WT and UT knockout (KO) mice were injected with STZ for 5 days to induce diabetes. Blood glucose levels were measured weekly, and necropsy was performed 12 weeks after STZ injection. UT ablation slowed hyperglycemia and glucosuria in STZ-treated mice. UT KO also ameliorated STZ-induced increase in HbA1c, but not STZ-induced decrease in plasma insulin levels. However, STZ-induced increases in plasma glucagon concentration and immunohistochemical staining for glucagon in pancreatic islets were lessened in UT KO mice. UT ablation also protected against STZ-induced kidney derangements, including albuminuria, mesangial expansion, glomerular lesions, and glomerular endoplasmic reticulum stress. UT is expressed in a cultured pancreatic alpha cell line, and its activation by UII triggered membrane depolarization, T- and L-type voltage-gated Ca2+channel-dependent Ca2+influx, and glucagon secretion. These findings suggest that apart from direct action on the kidneys to cause injury, UT activation by UII may result in DKD by promoting hyperglycemia via induction of glucagon secretion by pancreatic alpha cells.
Collapse
Affiliation(s)
| | | | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis TN, USA
| |
Collapse
|
8
|
Doxorubicin-Induced Fetal Mesangial Cell Death Occurs Independently of TRPC6 Channel Upregulation but Involves Mitochondrial Generation of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22147589. [PMID: 34299212 PMCID: PMC8305841 DOI: 10.3390/ijms22147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.
Collapse
|
9
|
Li C, Ran F, Li Z, Huang S, Duanzhi D, Liu Y, Wu M, Li Q, Wang Y, Liu C, Wang Z, Wang G, Jian S, Jin W. Calcineurin Immune Signaling in Response to Zinc Challenge in the Naked Carp Gymnocypris eckloni. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:792-798. [PMID: 33759007 DOI: 10.1007/s00128-021-03178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Zinc pollution impairs neural processes and protein function and also effects calcium-related transcriptional regulation and enzyme activity. In this study, we investigated pathways that potentially respond to calcium signaling under Zn2+ stress. Specifically we measured relative expressions of GeCNAα, GeCNB, GeMT, GeTNF-α, GeIL-1β, and GeHsp90 in gills, livers, and kidneys of the indicator species Gymnocypris eckloni and found wide variation in their expression between tissues during the course of Zn2+ exposure. Notably, GeCNAα, GeCNB, GeTNF-α, GeIL-1β, and GeMT were rapidly and strongly up-regulated in gills; GeIL-1β and GeHsp90 transcription was quickly induced in kidneys; and GeCNB, GeTNF-α, GeIL-1β, and GeHsp90 were most rapidly up-regulated in livers. GeCNAα and GeMT showed a contrasting late transcriptional up-regulation. These results suggest independent branches for chelation and immune responses during self-protection against Zn2+ toxicity, and the immune response appears to be faster than metal chelation.
Collapse
Affiliation(s)
- Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Fengxia Ran
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zixuan Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Shen Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Droma Duanzhi
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Yanhui Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Minghui Wu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Qimei Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Yuxiang Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Chaoxi Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Zhenji Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Shenlong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
10
|
Abstract
Members of the transient receptor potential (TRP) channels that are expressed in the kidney have gained prominence in recent years following discoveries of their role in maintaining the integrity of the filtration barrier, regulating tubular reabsorption of Ca2+ and Mg2+, and sensing osmotic stimuli. Furthermore, evidence has linked mutations in TRP channels to kidney disease pathophysiological mechanisms, including focal segmental glomerulosclerosis, disturbances in Mg2+ homeostasis, and polycystic kidney disease. Several subtypes of TRP channels are expressed in the renal vasculature, from preglomerular arteries and arterioles to the descending vasa recta. Although investigations on the physiological and pathological significance of renal vascular TRP channels are sparse, studies on isolated vessels and cells have suggested their involvement in renal vasoregulation. Renal blood flow (RBF) is an essential determinant of kidney function, including glomerular filtration, water and solute reabsorption, and waste product excretion. Functional alterations in ion channels that are expressed in the endothelium and smooth muscle of renal vessels can modulate renal vascular resistance, arterial pressure, and RBF. Hence, renal vascular TRP channels are potential therapeutic targets for the treatment of kidney disease. This review summarizes the current knowledge of TRP channel expression in renal vasculature and their role in controlling kidney function in health and disease. TRP channels are widely distributed in mammalian kidneys in glomerular, tubular, and vascular cells. TRPC and TRPV channels are functionally expressed in afferent arterioles. TRPC4 may regulate Ca2+ signaling in the descending vasa recta. Smooth muscle, endothelial, and pericyte TRP channels may participate in signal transduction mechanisms. TRP channels underlie renal autoregulation and regional kidney perfusion in health and disease.
Collapse
Affiliation(s)
- Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S. TRPC6 Attenuates Cortical Astrocytic Apoptosis and Inflammation in Cerebral Ischemic/Reperfusion Injury. Front Cell Dev Biol 2021; 8:594283. [PMID: 33604333 PMCID: PMC7884618 DOI: 10.3389/fcell.2020.594283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channel is an important non-selective cation channel with a variety of physiological roles in the central nervous system. Evidence has shown that TRPC6 is involved in the process of experimental stroke; however, the underlying mechanisms remain unclear. In the present study, the role of astrocytic TRPC6 was investigated in an oxygen-glucose deprivation cell model and middle cerebral artery occlusion (MCAO) mouse model of stroke. HYP9 (a selective TRPC6 agonist) and SKF96365 (SKF; a TRPC antagonist) were used to clarify the exact functions of TRPC6 in astrocytes after ischemic stroke. TRPC6 was significantly downregulated during ischemia/reperfusion (IR) injury in cultured astrocytes and in cortices of MCAO mice. Application of HYP9 in vivo alleviated the brain infarct lesion, astrocytes population, apoptosis, and interleukin-6 (IL-6) and IL-1β release in mouse cortices after ischemia. HYP9 dose-dependently inhibited the downregulation of TRPC6 and reduced astrocytic apoptosis, cytotoxicity and inflammatory responses in IR insult, whereas SKF aggravated the damage in vitro. In addition, modulation of TRPC6 channel diminished IR-induced Ca2+ entry in astrocytes. Furthermore, decreased Ca2+ entry due to TRPC6 contributed to reducing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) nuclear translocation and phosphorylation. Overexpression of astrocytic TRPC6 also attenuated apoptosis, cytotoxicity, inflammatory responses, and NF-κB phosphorylation in modeled ischemia in astrocytes. The results of the present study indicate that the TRPC6 channel can act as a potential target to reduce both inflammatory responses and apoptosis in astrocytes during IR injury, subsequently attenuating ischemic brain damage. In addition, we provide a novel view of stroke therapy by targeting the astrocytic TRPC6 channel.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Pharmacological and genetic inhibition of TRPC6-induced gene transcription. Eur J Pharmacol 2020; 886:173357. [PMID: 32758574 DOI: 10.1016/j.ejphar.2020.173357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential canonical-6 (TRPC6) channels are non-selective cation channels that can be activated by hyperforin, a constituent of Hypericum perforatum. TRPC6 activation has been linked to a variety of biological functions and pathologies, including focal segmental glomerulosclerosis and the development of various tumor entities. Thus, TRPC6 is an interesting drug target, and a specific pharmacological inhibitor would be very valuable for both basic research and therapy of TRPC6-mediated human pathologies. Here, we assessed the biological activity of various TRP channel inhibitors on hyperforin-stimulated TRPC6 channel signaling. Hyperforin stimulates the activity of the transcription factor AP-1 via TRPC6. Expression experiments involving a TRPC6-specific small hairpin RNA confirmed that hyperforin-induced gene transcription requires TRPC6. Cellular AP-1 activity was measured to assess which compound interrupted the TRPC6-induced intracellular signaling cascade. The results show that the compounds 2-APB, clotrimazole, BCTC, TC-I 2014, SAR 7334, and larixyl acetate blocked TRPC6-mediated activation of AP-1. In contrast, the TRPM8-specific inhibitor RQ-00203078 did not inhibit TRPC6-mediated signaling. 2-APB, clotrimazole, BCTC, and TC-I 2014 are broad-spectrum Ca2+ channel inhibitors, while SAR 7334 and larixyl acetate have been proposed to function as rather TRPC6-specific inhibitors. In this study it is shown that both compounds, in addition to inhibiting TRPC6-induced signaling, completely abolished pregnenolone sulfate-mediated signaling via TRPM3 channels. Thus, SAR 7334 and larixyl acetate are not TRPC6-specific inhibitors.
Collapse
|
13
|
Su Y, Chen Q, Ju Y, Li W, Li W. Palmitate induces human glomerular mesangial cells fibrosis through CD36-mediated transient receptor potential canonical channel 6/nuclear factor of activated T cell 2 activation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158793. [PMID: 32800850 DOI: 10.1016/j.bbalip.2020.158793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous study suggested that palmitate (PA) induces human glomerular mesangial cells (HMCs) fibrosis. However, the mechanism is not fully understood. Recent studies suggested that transient receptor potential canonical channel 6 (TRPC6)/nuclear factor of activated T cell 2 (NFAT2) played an important role in renal fibrosis. Moreover, cluster of differentiation 36 (CD36) regulated the synthesis of TPRC6 agonist diglyceride. In the present study, we investigated whether PA induced HMCs fibrosis via TRPC6/NFAT2 mediated by CD36. METHODS A type 2 diabetic nephropathy (DN) model was established in Sprague Dawley rats, and HMCs were stimulated with PA. Lipid accumulation and free fatty acid (FFA) uptake were measured. The expression levels of TGF-β1, p-Smad2/3, FN, TRPC6, NFAT2 and CD36 were evaluated. The intracellular calcium concentration ([Ca2+]i) was assessed. RESULTS FFA were elevated in type 2 DN rats with kidney fibrosis in addition to NFAT2 and CD36 expression. In vitro, PA induced HMCs fibrosis, [Ca2+]i elevation and NFAT2 activation. SKF96365 or TRPC6-siRNA could attenuate PA-induced HMCs damage. By contrast, the TRPC6 activator showed the opposite effect. Moreover, NFAT2-siRNA also suppressed PA-induced HMCs fibrosis. CD36 knockdown inhibited the PA-induced [Ca2+]i elevation and NFAT2 expression. In addition, long-term treatment with PA decreased TRPC6 expression in HMCs. CONCLUSION The results of this study demonstrated that PA could induce the activation of the [Ca2+]i/NFAT2 signaling pathway through TRPC6, which led to HMCs fibrosis. Although activation of TRPC6 attributed to CD36-mediated lipid deposition, long-term stimulation of PA may lead to negative feedback on the expression of TPRC6.
Collapse
Affiliation(s)
- Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qingqing Chen
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yinghui Ju
- Department of Pharmacy, Hefei Ion Medical Center, Hefei 230032, Anhui, China
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| |
Collapse
|
14
|
Sogi C, Takeshita N, Jiang W, Kim S, Maeda T, Yoshida M, Oyanagi T, Ito A, Kimura S, Seki D, Takano I, Sakai Y, Fujiwara I, Kure S, Takano-Yamamoto T. Methionine Enkephalin Suppresses Osteocyte Apoptosis Induced by Compressive Force through Regulation of Nuclear Translocation of NFATc1. JBMR Plus 2020; 4:e10369. [PMID: 32666020 PMCID: PMC7340448 DOI: 10.1002/jbm4.10369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Mechanical stress stimulates bone remodeling, which occurs through bone formation and resorption, resulting in bone adaptation in response to the mechanical stress. Osteocytes perceive mechanical stress loaded to bones and promote bone remodeling through various cellular processes. Osteocyte apoptosis is considered a cellular process to induce bone resorption during mechanical stress-induced bone remodeling, but the underlying molecular mechanisms are not fully understood. Recent studies have demonstrated that neuropeptides play crucial roles in bone metabolism. The neuropeptide, methionine enkephalin (MENK) regulates apoptosis positively and negatively depending on cell type, but the role of MENK in osteocyte apoptosis, followed by bone resorption, in response to mechanical stress is still unknown. Here, we examined the roles and mechanisms of MENK in osteocyte apoptosis induced by compressive force. We loaded compressive force to mouse parietal bones, resulting in a reduction of MENK expression in osteocytes. A neutralizing connective tissue growth factor (CTGF) antibody inhibited the compressive force-induced reduction of MENK. An increase in osteocyte apoptosis in the compressive force-loaded parietal bones was inhibited by MENK administration. Nuclear translocation of NFATc1 in osteocytes in the parietal bones was enhanced by compressive force. INCA-6, which inhibits NFAT translocation into nuclei, suppressed the increase in osteocyte apoptosis in the compressive force-loaded parietal bones. NFATc1-overexpressing MLO-Y4 cells showed increased expression of apoptosis-related genes. MENK administration reduced the nuclear translocation of NFATc1 in osteocytes in the compressive force-loaded parietal bones. Moreover, MENK suppressed Ca2+ influx and calcineurin and calmodulin expression, which are known to induce the nuclear translocation of NFAT in MLO-Y4 cells. In summary, this study shows that osteocytes expressed MENK, whereas the MENK expression was suppressed by compressive force via CTGF signaling. MENK downregulated nuclear translocation of NFATc1 probably by suppressing Ca2+ signaling in osteocytes and consequently inhibiting compressive force-induced osteocyte apoptosis, followed by bone resorption. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | | | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Yuichi Sakai
- Minamihara Sakai Orthodontic Office Nagano Japan
| | - Ikuma Fujiwara
- Department of Pediatrics Sendai City Hospital Sendai Japan
| | - Shigeo Kure
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan.,Department of Biomaterials and Bioengineering Faculty of Dental Medicine, Hokkaido University Sapporo Japan
| |
Collapse
|
15
|
Xiao Y, Liu T, Liu X, Zheng L, Yu D, Zhang Y, Qian X, Liu X. Total Astragalus saponins attenuates CVB3-induced viral myocarditis through inhibiting expression of tumor necrosis factor α and Fas ligand. Cardiovasc Diagn Ther 2019; 9:337-345. [PMID: 31555538 DOI: 10.21037/cdt.2019.07.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To investigate the therapeutic effect of total Astragalus saponins (AST) against viral myocarditis in animal and cell models. Methods Primary myocardiocytes (PMCs) were stimulated by the coxsackie B (CVB) 3 virus to prepare the cell model of viral myocarditis. Cell viability, apoptosis and the mRNA expression of C-Myc, tumor necrosis factor (TNF)-α and Fas were detected to evaluate the protective effects of AST on CVB3-induced PMC damage. Results AST could significantly increase survival and decrease the ratio of heart weight: body weight (P<0.05). The level of myocardial fibrosis in the AST group was significantly lower than that in the CVB3 group. Compared with the CVB3 group, the ejection fraction was increased significantly in the AST group. Levels of lactate dehydrogenase and creatine kinase-MB in the peripheral blood of the AST group were significantly lower than those in the control group. In vitro, AST could significantly decrease CVB3-induced PMC apoptosis. Expression of C-Myc, TNF-α, Fas in the AST group was significantly lower than that in the CVB3 group. Conclusions It is demonstrated that AST was protective against CVB3-induced viral myocarditis, which may be associated with a decrease in CVB3-induced apoptosis and down-regulation of expression of C-Myc, TNF-α and Fas.
Collapse
Affiliation(s)
- Yunfeng Xiao
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot 010110, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaoling Liu
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot 010017, China
| | - Lanbin Zheng
- Department of Psychiatry, Inner Mongolia Mental Health Center, Hohhot 010010, China
| | - Dongsheng Yu
- Department of Psychiatry, Inner Mongolia Mental Health Center, Hohhot 010010, China
| | - Yuanyan Zhang
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xinyu Qian
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiaolei Liu
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
16
|
Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1041-1066. [PMID: 30953689 DOI: 10.1016/j.bbadis.2019.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.
Collapse
Affiliation(s)
- Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Internal Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
17
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
18
|
Soni H, Matthews AT, Pallikkuth S, Gangaraju R, Adebiyi A. γ-secretase inhibitor DAPT mitigates cisplatin-induced acute kidney injury by suppressing Notch1 signaling. J Cell Mol Med 2018; 23:260-270. [PMID: 30407728 PMCID: PMC6307805 DOI: 10.1111/jcmm.13926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin-induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti-cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta-like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor reversed cisplatin-induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin-induced tubular injury and reduction in glomerular filtration rate. Real-time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin-treated mice which were abrogated by DAPT. Cisplatin-induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK-2). siRNA-mediated Dll1 knockdown and DAPT attenuated cisplatin-induced Notch1 cleavage and cytotoxicity in HK-2 cells. These data suggest that Dll1-mediated Notch1 signaling contributes to cisplatin-induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anberitha T Matthews
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sandeep Pallikkuth
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Ramirez GA, Coletto LA, Bozzolo EP, Citterio L, Delli Carpini S, Zagato L, Rovere-Querini P, Lanzani C, Manunta P, Manfredi AA, Sciorati C. The TRPC6 intronic polymorphism, associated with the risk of neurological disorders in systemic lupus erythematous, influences immune cell function. J Neuroimmunol 2018; 325:43-53. [PMID: 30384327 DOI: 10.1016/j.jneuroim.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) carrying a TT genotype for the rs7925662 single nucleotide polymorphism (SNP) in the transient receptor potential canonical channel 6 (TRPC6) gene are more likely to develop neuropsychiatric manifestations (NPSLE). We functionally characterised the effects of TRPC6 on peripheral blood mononuclear cells from 18 patients with SLE and 8 healthy controls with a known genotype. TRPC6 influenced calcium currents, apoptosis rates and cytokine secretion in a disease- and genotype-dependent manner. Cells from TT patients with NPSLE were more dependent on TRPC6 for the generation of calcium currents.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Enrica P Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Unit of Nephrology, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Simona Delli Carpini
- Unit of Nephrology, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Laura Zagato
- Unit of Nephrology, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, San Raffaele Hospital & Scientific Institute Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Lanzani
- Unit of Nephrology, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Paolo Manunta
- Unit of Nephrology, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy
| | - Angelo A Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital & Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, San Raffaele Hospital & Scientific Institute Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Hospital & Scientific Institute Milan, Italy.
| |
Collapse
|
20
|
Soni H, Kaminski D, Gangaraju R, Adebiyi A. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren Fail 2018; 40:314-322. [PMID: 29619879 PMCID: PMC6014303 DOI: 10.1080/0886022x.2018.1456938] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI), a significant complication of cisplatin chemotherapy is associated with reactive oxygen species (ROS)-dependent renal cell death, but the cellular targets of ROS in cisplatin nephrotoxicity are not fully resolved. Here, we investigated cisplatin-induced oxidative renal damage and tested the hypothesis that ROS-dependent shedding of death activator Fas ligand (FasL) occurs in cisplatin nephropathy. We show that intraperitoneal injection of sulfobutyl ether-β-cyclodextrin (Captisol™)-solubilized cisplatin elevated the level of lipid peroxidation product malondialdehyde in mouse kidneys and urinary concentration of oxidative DNA damage biomarker 8-hydroxy-2'-deoxyguanosine. Cisplatin increased mouse kidney-to-body weight ratio and the plasma or urinary levels of predictive biomarkers of AKI, including creatinine, blood urea nitrogen, microalbumin, neutrophil gelatinase-associated lipocalin, and cystatin C. Histological analysis and dUTP nick end labeling of kidney sections indicated tubular injury and renal apoptosis, respectively in cisplatin-treated mice. Whereas the plasma concentration of soluble FasL (sFasL) was unaltered, urinary sFasL was increased ∼4-fold in cisplatin-treated mice. Real-time quantitative live-cell imaging and lactate dehydrogenase assay showed that cisplatin stimulated caspase 3/7 activation and cytotoxicity in a human proximal tubule epithelial cell line which were attenuated by inhibitors of the FasL/Fas system and poly [ADP-ribose] polymerase-1. Moreover, TEMPOL, an intracellular free radical scavenger mitigated cisplatin-induced renal oxidative stress and injury, AKI biomarker and urinary sFasL elevation, and proximal tubule cell death. Our findings indicate that cisplatin-induced oxidative stress triggers the shedding of membrane-bound FasL to sFasL in the kidney. We demonstrate that cisplatin elicits nephrotoxicity by promoting FasL/Fas-dependent oxidative renal tubular cell death.
Collapse
Affiliation(s)
- Hitesh Soni
- a Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Damian Kaminski
- b Department of Ophthalmology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Rajashekhar Gangaraju
- b Department of Ophthalmology , University of Tennessee Health Science Center , Memphis , TN , USA.,c Department of Anatomy and Neurobiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Adebowale Adebiyi
- a Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
21
|
Tang R, Li ZP, Li MX, Li DW, Ye HB, Su KM, Lin H, Zhang WT. Pro-inflammatory role of transient receptor potential canonical channel 6 in the pathogenesis of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 8:1334-1341. [PMID: 30216703 DOI: 10.1002/alr.22208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) has not been fully elucidated. This study sought to explore the role and mechanism of transient receptor potential canonical channel 6 (TRPC6) in the pathogenesis of CRSwNP. METHODS Immunohistochemistry (IHC) was employed to evaluate TRPC6 immunolabeling. Real-time polymerase chain reaction (PCR) was conducted to assay TRPC6, stromal interaction molecule 1 (STIM1), and calcium release-activated calcium channel protein 1 (Orai1) messenger RNA (mRNA) levels in 70 patients with CRSwNP, including eosinophilic CRSwNP (ECRSwNP) or non-eosinophilic CRSwNP (nECRSwNP), and 28 control subjects. The concentrations of inflammatory mediators, including interleukin (IL)-1β, IL-5, and IL-25, were assayed by enzyme-linked immunosorbent assay (ELISA). In experiments on human nasal epithelial cell (HNEC) culture and stimulation, the mean fluorescence intensity (MFI) of intracellular Ca2+ was assayed by flow cytometry. Western blotting, real-time PCR, and ELISA were also conducted to assess the effects and mechanisms of TRPC6 activator 1-oleoyl-2-acetyl-glycerol (OAG) and TRPC6 inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF-96365) on HNECs. RESULTS Upregulation of TRPC6, STIM1, and Orai1 levels was found in CRSwNP patients, particularly in those with ECRSwNP. TRPC6-positive cells correlated positively with the numbers of eosinophils and neutrophils, respectively. Moreover, TRPC6 mRNA was positively correlated with STIM1 and Orai1 mRNA levels. The concentrations of inflammatory mediators, including IL-1β, IL-5, and IL-25, were elevated in CRSwNP, especially in ECRSwNP. In cultured HNECs, TRPC6, STIM1, Orai1, Ca2+ MFI levels, and inflammatory mediators were upregulated by lipopolysaccharide (LPS) and OAG but were inhibited by SKF-96365. CONCLUSION TRPC6 plays a pro-inflammatory role in the pathogenesis of CRSwNP via regulating Ca2+ flow.
Collapse
Affiliation(s)
- Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi-Peng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ming-Xian Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Da-Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hai-Bo Ye
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai-Ming Su
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Tian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Rubil S, Lesch A, Mukaida N, Thiel G. Stimulation of transient receptor potential M3 (TRPM3) channels increases interleukin-8 gene promoter activity involving AP-1 and extracellular signal-regulated protein kinase. Cytokine 2018; 103:133-141. [PMID: 28982580 DOI: 10.1016/j.cyto.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Stimulation of Ca2+ permeable TRPM3 (transient receptor potential melastatin-3) channels with the steroid ligand pregnenolone sulfate activates stimulus-responsive transcription factors, including the transcription factor AP-1 (activator protein-1). As part of a search for AP-1-regulated target genes we analyzed the gene encoding interleukin-8 (IL-8) in HEK293 cells expressing TRPM3 channels. Here, we show that stimulation of TRPM3 channels activated transcription of an IL-8 promoter-controlled reporter gene that was embedded into the chromatin of the cells. Mutational analysis of the IL-8 promoter revealed that the AP-1 binding site of the IL-8 promoter was essential to connect TRPM3 stimulation with the transcription of the IL-8 gene. Genetic experiments revealed that the basic region leucine zipper proteins c-Jun and ATF2 and the ternary complex factor Elk-1 are essential to couple TRPM3 channel stimulation with the IL-8 gene. Moreover, we identified extracellular signal-regulated protein kinase (ERK1/2) as signal transducer connecting TRPM3 stimulation with enhanced transcription of the IL-8 gene. Furthermore, we show that stimulation of TRPC6 (transient receptor potential canonical-6) channels with its ligand hyperforin also increased IL-8 promoter activity, involving the AP-1 binding site within the IL-8 gene, suggesting that activation of IL-8 gene transcription may be a common theme following TRP channel stimulation.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Andrea Lesch
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
23
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
24
|
Fu Y, Wang C, Zhang D, Xin Y, Li J, Zhang Y, Chu X. Increased TRPC6 expression is associated with tubular epithelial cell proliferation and inflammation in diabetic nephropathy. Mol Immunol 2018; 94:75-81. [DOI: 10.1016/j.molimm.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
|
25
|
Fliniaux I, Germain E, Farfariello V, Prevarskaya N. TRPs and Ca2+ in cell death and survival. Cell Calcium 2018; 69:4-18. [DOI: 10.1016/j.ceca.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
26
|
Urotensin II-induced store-operated Ca 2+ entry contributes to glomerular mesangial cell proliferation and extracellular matrix protein production under high glucose conditions. Sci Rep 2017; 7:18049. [PMID: 29273760 PMCID: PMC5741753 DOI: 10.1038/s41598-017-18143-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Glomerular mesangial cell (GMC) proliferation and matrix expansion are pathological hallmarks of a wide range of kidney diseases, including diabetic nephropathy. Although the circulating level of peptide hormone urotensin II (UII) and kidney tissue expression of UII and UII receptors (UTR) are increased in diabetic nephropathy, it remains unclear whether UII regulates GMC growth and extracellular matrix (ECM) accumulation. In this study, we tested the hypothesis that UII-induced Ca2+ signaling controls GMC proliferation and ECM production under normal and high glucose conditions. Mouse GMCs cultured under normal glucose conditions proliferated and synthesized ECM proteins in response to stimulation by mouse UII. UII-induced GMC proliferation and ECM protein synthesis were dependent on TRPC4 channel-mediated store-operated Ca2+ entry (SOCE) and sequential activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Ca2+/cAMP response element-binding protein (CREB) transcription factor. Under high glucose conditions, GMCs synthesized UII. Moreover, proliferation and ECM production in high glucose-challenged GMCs were attenuated by selective UTR antagonist, TRPC4 channel blocker, and CaMKII and CREB-binding protein/p300 inhibitors. These findings indicate that UII-induced SOCE via TRPC4 channels stimulates CaMKII/CREB-dependent GMC proliferation and ECM protein production. Our data also suggest that UII synthesis contributes to GMC proliferation and ECM accumulation under high glucose conditions.
Collapse
|
27
|
Wright KD, Staruschenko A, Sorokin A. Role of adaptor protein p66Shc in renal pathologies. Am J Physiol Renal Physiol 2017; 314:F143-F153. [PMID: 28978535 DOI: 10.1152/ajprenal.00414.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
p66Shc is one of the three adaptor proteins encoded by the Shc1 gene, which are expressed in many organs, including the kidney. Recent studies shed new light on several key questions concerning the signaling mechanisms mediated by p66Shc. The central goal of this review article is to summarize recent findings on p66Shc and the role it plays in kidney physiology and pathology. This article provides a review of the various mechanisms whereby p66Shc has been shown to function within the kidney through a wide range of actions. The mitochondrial and cytoplasmic signaling of p66Shc, as it relates to production of reactive oxygen species (ROS) and renal pathologies, is further discussed.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
28
|
Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res 2017; 124:92-99. [DOI: 10.1016/j.phrs.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
29
|
Abstract
This chapter offers a brief introduction of the functions of TRPC channels in non-neuronal systems. We focus on three major organs of which the research on TRPC channels have been most focused on: kidney, heart, and lung. The chapter highlights on cellular functions and signaling pathways mediated by TRPC channels. It also summarizes several inherited diseases in humans that are related to or caused by TRPC channel mutations and malfunction. A better understanding of TRPC channels functions and the importance of TRPC channels in health and disease should lead to new insights and discovery of new therapeutic approaches for intractable disease.
Collapse
|
30
|
Thiel G, Lesch A, Rubil S, Backes TM, Rössler OG. Regulation of Gene Transcription Following Stimulation of Transient Receptor Potential (TRP) Channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:167-189. [PMID: 29305012 DOI: 10.1016/bs.ircmb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels belong to a heterogeneous superfamily of cation channels that are involved in the regulation of numerous biological functions, including regulation of Ca2+ and glucose homeostasis, tumorigenesis, temperature, and pain sensation. To understand the functions of TRP channels, their associated intracellular signaling pathways and molecular targets have to be identified on the cellular level. Stimulation of TRP channels frequently induces an influx of Ca2+ ions into the cells and the subsequent activation of protein kinases. These intracellular signal transduction pathways ultimately induce changes in the gene expression pattern of the cells. Here, we review the effects of TRPC6, TRPM3, and TRPV1 channel stimulation on the activation of the stimulus-responsive transcription factors AP-1, CREB, Egr-1, Elk-1, and NFAT. Following activation, these transcription factors induce the transcription of delayed response genes. We propose that many biological functions of TRP channels can be explained by the activation of stimulus-responsive transcription factors and their delayed response genes. The proteins encoded by those delayed response genes may be responsible for the biochemical and physiological changes following TRP channel activation.
Collapse
Affiliation(s)
- Gerald Thiel
- Saarland University Medical Faculty, Homburg, Germany.
| | - Andrea Lesch
- Saarland University Medical Faculty, Homburg, Germany
| | - Sandra Rubil
- Saarland University Medical Faculty, Homburg, Germany
| | | | | |
Collapse
|
31
|
Li W, Ding Y, Smedley C, Wang Y, Chaudhari S, Birnbaumer L, Ma R. Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci Rep 2017. [PMID: 28646178 PMCID: PMC5482875 DOI: 10.1038/s41598-017-04067-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present study was conducted to determine if TRPC6 regulates glomerular filtration rate (GFR) and the contractile function of glomerular mesangial cells (MCs). GFR was assessed in conscious TRPC6 wild type and knockout mice, and in anesthetized rats with and without in vivo knockdown of TRPC6 in kidneys. We found that GFR was significantly greater, and serum creatinine level was significantly lower in TRPC6 deficient mice. Consistently, local knockdown of TRPC6 in kidney using TRPC6 specific shRNA construct significantly attenuated Ang II-induced GFR decline in rats. Furthermore, Ang II-stimulated contraction and Ca2+ entry were significantly suppressed in primary MCs isolated from TRPC6 deficient mice, and the Ca2+ response could be rescued by re-introducing TRPC6. Moreover, inhibition of reverse mode of Na+-Ca2+ exchange by KB-R7943 significantly reduced Ca2+ entry response in TRPC6-expressing, but not in TRPC6-knocked down MCs. Ca2+ entry response was also significantly attenuated in Na+ free solution. Single knockdown of TRPC6 and TRPC1 resulted in a comparable suppression on Ca2+ entry with double knockdown of both. These results suggest that TRPC6 may regulate GFR by modulating MC contractile function through multiple Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yanfeng Ding
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Crystal Smedley
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Yanxia Wang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Lutz Birnbaumer
- Transmembrane Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Rong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA.
| |
Collapse
|
32
|
Uslusoy F, Nazıroğlu M, Çiğ B. Inhibition of the TRPM2 and TRPV1 Channels through Hypericum perforatum in Sciatic Nerve Injury-induced Rats Demonstrates their Key Role in Apoptosis and Mitochondrial Oxidative Stress of Sciatic Nerve and Dorsal Root Ganglion. Front Physiol 2017; 8:335. [PMID: 28620309 PMCID: PMC5449501 DOI: 10.3389/fphys.2017.00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Sciatic nerve injury (SNI) results in neuropathic pain, which is characterized by the excessive Ca2+ entry, reactive oxygen species (ROS) and apoptosis processes although involvement of antioxidant Hypericum perforatum (HP) through TRPM2 and TRPV1 activation has not been clarified on the processes in SNI-induced rat, yet. We investigated the protective property of HP on the processes in the sciatic nerve and dorsal root ganglion neuron (DRGN) of SNI-induced rats. The rats were divided into five groups as control, sham, sham+HP, SNI, and SNI+HP. The HP groups received 30 mg/kg HP for 4 weeks after SNI induction. TRPM2 and TRPV1 channels were activated in the neurons by ADP-ribose or cumene peroxide and capsaicin, respectively. The SNI-induced TRPM2 and TRPV1 currents and intracellular free Ca2+ and ROS concentrations were reduced by HP, N-(p-amylcinnamoyl) anthranilic acid (ACA), and capsazepine (CapZ). SNI-induced increase in apoptosis and mitochondrial depolarization in sciatic nerve and DRGN of SNI group were decreased by HP, ACA, and CapZ treatments. PARP-1, caspase 3 and 9 expressions in the sciatic nerve, DRGN, skin, and musculus piriformis of SNI group were also attenuated by HP treatment. In conclusion, increase of mitochondrial ROS, apoptosis, and Ca2+ entry through inhibition of TRPM2 and TRPV1 in the sciatic nerve and DRGN neurons were decreased by HP treatment. The results may be relevant to the etiology and treatment of SNI by HP.
Collapse
Affiliation(s)
- Fuat Uslusoy
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Suleyman Demirel UniversityIsparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel UniversityIsparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel UniversityIsparta, Turkey.,Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel UniversityIsparta, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel UniversityIsparta, Turkey.,Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel UniversityIsparta, Turkey
| |
Collapse
|
33
|
Hyperforin activates gene transcription involving transient receptor potential C6 channels. Biochem Pharmacol 2017; 129:96-107. [DOI: 10.1016/j.bcp.2017.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
|
34
|
NAZIROĞLU M. Is Hypericum perforatum agonist or antagonist of TRPC6 in neurons? ACTA ACUST UNITED AC 2016. [DOI: 10.37212/jcnos.334114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|