1
|
Qu H, Liu Y, Connolly JJ, Mentch FD, Kao C, Hakonarson H. Risk of Alzheimer's disease in Down syndrome: Insights gained by multi-omics. Alzheimers Dement 2025; 21:e14604. [PMID: 40207399 PMCID: PMC11982707 DOI: 10.1002/alz.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). The integration of genomics, transcriptomics, epigenomics, proteomics, and metabolomics enables unprecedented understanding of DS-AD, offering a detailed picture of this complex issue. The vast -omics data also present challenges that reflect the complexity of genetic information flow. These studies nonetheless reveal critical mechanisms behind AD risk, including unique observations in DS that differ from those seen in the general population and familial dominant AD. In addition, the correlations between the AD polygenic risk score and proteins related to female infertility and autoimmune thyroiditis corroborate clinical observations. Metabolomic data reveal disrupted metabolic networks, offering prospects for a dynamic score to create specialized nutritional interventions. By adopting a multidimensional perspective with integrated reductionism, the evolving landscape presents an opportunity to identify promising directions for developing precision strategies to mitigate the impact of AD in the DS population. HIGHLIGHTS: Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). DS-AD is characterized by its polygenic nature, extending beyond chromosome 21 with significant contributions from various chromosomes. DS-AD also presents unique features that differ from those observed in the general population and familial dominant AD. Our review consolidates key findings from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, providing a comprehensive view of the molecular mechanisms underlying DS-AD. We highlight promising research directions to further elucidate the pathogenesis of DS-AD.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yichuan Liu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - John J. Connolly
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Frank D. Mentch
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charlly Kao
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Pulmonary MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
2
|
Garcia-Cabau C, Bartomeu A, Tesei G, Cheung KC, Pose-Utrilla J, Picó S, Balaceanu A, Duran-Arqué B, Fernández-Alfara M, Martín J, De Pace C, Ruiz-Pérez L, García J, Battaglia G, Lucas JJ, Hervás R, Lindorff-Larsen K, Méndez R, Salvatella X. Mis-splicing of a neuronal microexon promotes CPEB4 aggregation in ASD. Nature 2025; 637:496-503. [PMID: 39633052 PMCID: PMC11711090 DOI: 10.1038/s41586-024-08289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
The inclusion of microexons by alternative splicing occurs frequently in neuronal proteins. The roles of these sequences are largely unknown, and changes in their degree of inclusion are associated with neurodevelopmental disorders1. We have previously shown that decreased inclusion of a 24-nucleotide neuron-specific microexon in CPEB4, a RNA-binding protein that regulates translation through cytoplasmic changes in poly(A) tail length, is linked to idiopathic autism spectrum disorder (ASD)2. Why this microexon is required and how small changes in its degree of inclusion have a dominant-negative effect on the expression of ASD-linked genes is unclear. Here we show that neuronal CPEB4 forms condensates that dissolve after depolarization, a transition associated with a switch from translational repression to activation. Heterotypic interactions between the microexon and a cluster of histidine residues prevent the irreversible aggregation of CPEB4 by competing with homotypic interactions between histidine clusters. We conclude that the microexon is required in neuronal CPEB4 to preserve the reversible regulation of CPEB4-mediated gene expression in response to neuronal stimulation.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bartomeu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Chit Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Julia Pose-Utrilla
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Picó
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Berta Duran-Arqué
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcos Fernández-Alfara
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Judit Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry and Institute for Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - José J Lucas
- Center for Molecular Biology Severo Ochoa (CBM Severo Ochoa), CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBER-NED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Zhang J, Yang S, Zhang Y, Liu F, Hao L, Han L. Clinical phenotype of a Kallmann syndrome patient with IL17RD and CPEB4 variants. Front Endocrinol (Lausanne) 2024; 15:1343977. [PMID: 38628584 PMCID: PMC11019388 DOI: 10.3389/fendo.2024.1343977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Background This study aimed to characterize the clinical phenotype and genetic variations in patients with Kallmann syndrome (KS). Methods This study involved the collection and analysis of clinical data from an individual with sporadic KS. Following this, peripheral blood samples were obtained from the patient and his parents. Genomic deoxyribonucleic acid was extracted and subjected to whole-exome sequencing and genomic copy number variation (CNV) detection. Finally, Sanger sequencing was performed to validate the suspected pathogenic variants. Results Whole-exome sequencing confirmed that the child carried both the IL17RD variant (c.2101G>A, p.Gly701Ser) inherited from the mother and the new CPEB4 variant (c.1414C>T, p.Arg472*). No pathogenic CNVs were identified in CNV testing. Conclusion Bioinformatics analysis shows that the IL17RD protein undergoing Gly701Ser mutation and is speculated to be phosphorylated and modified, thereby disrupting fibroblast growth factor signaling. This study also suggested that the CPEB4 might play a crucial role in the key signaling process affecting olfactory bulb morphogenesis. Overall, the findings of this study broaden the gene expression profile of KS-related pathogenic genes. This offers a new avenue for exploring the pathogenic mechanism of KS and provides valuable insights for precise clinical diagnosis and treatment strategies for this condition.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Suhong Yang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Pediatric Endocrinology and Genetics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhou S, Yang Y, Cheng Z, Wu M, Han Q, Zhao W, Liu H. Effects of early maternal separation on the expression levels of hippocampal and prefrontal cortex genes and pathways in lactating piglets. Front Mol Neurosci 2023; 16:1243296. [PMID: 37645701 PMCID: PMC10460909 DOI: 10.3389/fnmol.2023.1243296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction In actual production, due to increased litter size when raising pigs, the management of piglets by split-suckling leads to intermittent neonatal maternal separation (MS). Early lactation is a critical period for the cognitive development of the brain of newborn piglets, and we hypothesized that intermittent MS may affect piglets' neurodevelopment and cognitive ability. Methods To determine the effects of the MS, we selected hippocampal and prefrontal cortex (PFC) tissues from piglets for the detection of neurodevelopmental or cognitive related indicators, the control group (Con group, n = 6) was established with no MS and an experimental group (MS group, n = 6) was established with MS for 6 h/day. Piglets in the MS group were milk-supplemented during the separation period and all piglets in both treatment groups were weaned at postnatal day (PND) 35. On PND 35, three male piglets from each group were sacrificed for hippocampus and PFC samples used for reference transcriptome sequencing. Following bioinformatics analysis, Gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and candidate gene screening and pathway were performed for differentially expressed genes. Results The results showed that a total of 1,632 differential genes were identified in the hippocampus of the MS group, including 1,077 up-regulated differential genes, 555 down-regulated differential genes, and 655 significant GO entries. Analysis of the PFC of the MS group revealed 349 up-regulated genes, 151 down-regulated differential genes, and 584 significant GO entries. Genes associated with neurodevelopment were screened for large fold differences in the hippocampus, and genes associated with cognition were screened for large fold differences in the PFC. Quantitative real-time PCR (qRT-PCR) was used to verify the sequencing data. Western blot (WB) experiments revealed that MS inhibited the neurodevelopment-related WNT signaling pathway in the hippocampus and the cognitive-related PI3K-AKT signaling pathway in the PFC. Discussion Taken together, these findings suggest that intermittent MS may affect some cognitive functions in piglets by damaging hippocampal and PFC genes or pathways.
Collapse
Affiliation(s)
- Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zheng Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mengyao Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenzhong Zhao
- Institute of New Rural Development, Harbin, Heilongjiang, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
6
|
Nova A, Baldrighi GN, Fazia T, Graziano F, Saddi V, Piras M, Beecham A, McCauley JL, Bernardinelli L. Heritability Estimation of Multiple Sclerosis Related Plasma Protein Levels in Sardinian Families with Immunochip Genotyping Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071101. [PMID: 35888189 PMCID: PMC9317284 DOI: 10.3390/life12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels’ variability.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
- Correspondence:
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Francesca Graziano
- Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| |
Collapse
|
7
|
Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, Araki T, Okada Y, Kakita A, Mochizuki H. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac154. [PMID: 35770133 PMCID: PMC9218787 DOI: 10.1093/braincomms/fcac154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 is a multisystem genetic disorder involving the muscle, heart and CNS. It is caused by toxic RNA transcription from expanded CTG repeats in the 3′-untranslated region of DMPK, leading to dysregulated splicing of various genes and multisystemic symptoms. Although aberrant splicing of several genes has been identified as the cause of some muscular symptoms, the pathogenesis of CNS symptoms prevalent in patients with myotonic dystrophy type 1 remains unelucidated, possibly due to a limitation in studying a diverse mixture of different cell types, including neuronal cells and glial cells. Previous studies revealed neuronal loss in the cortex, myelin loss in the white matter and the presence of axonal neuropathy in patients with myotonic dystrophy type 1. To elucidate the CNS pathogenesis, we investigated cell type-specific abnormalities in cortical neurons, white matter glial cells and spinal motor neurons via laser-capture microdissection. We observed that the CTG repeat instability and cytosine–phosphate–guanine (CpG) methylation status varied among the CNS cell lineages; cortical neurons had more unstable and longer repeats with higher CpG methylation than white matter glial cells, and spinal motor neurons had more stable repeats with lower methylation status. We also identified splicing abnormalities in each CNS cell lineage, such as DLGAP1 in white matter glial cells and CAMKK2 in spinal motor neurons. Furthermore, we demonstrated that aberrant splicing of CAMKK2 is associated with abnormal neurite morphology in myotonic dystrophy type 1 motor neurons. Our laser-capture microdissection-based study revealed cell type-dependent genetic, epigenetic and splicing abnormalities in myotonic dystrophy type 1 CNS, indicating the significant potential of cell type-specific analysis in elucidating the CNS pathogenesis.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University , 1-1 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital , 3-52 Akasakamachi, Kashiwazaki, Niigata 945-8585 , Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University , 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8502 , Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| |
Collapse
|
8
|
Dickson ZW, Golding GB. Low complexity regions in mammalian proteins are associated with low protein abundance and high transcript abundance. Mol Biol Evol 2022; 39:6575407. [PMID: 35482425 PMCID: PMC9070799 DOI: 10.1093/molbev/msac087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low Complexity Regions (LCRs) are present in a surprisingly large number of eukaryotic proteins. These highly repetitive and compositionally biased sequences are often structurally disordered, bind promiscuously, and evolve rapidly. Frequently studied in terms of evolutionary dynamics, little is known about how LCRs affect the expression of the proteins which contain them. It would be expected that rapidly evolving LCRs are unlikely to be tolerated in strongly conserved, highly abundant proteins, leading to lower overall abundance in proteins which contain LCRs. To test this hypothesis and examine the associations of protein abundance and transcript abundance with the presence of LCRs, we have integrated high-throughput data from across mammals. We have found that LCRs are indeed associated with reduced protein abundance, but are also associated with elevated transcript abundance. These associations are qualitatively consistent across 12 human tissues and nine mammalian species. The differential impacts of LCRs on abundance at the protein and transcript level are not explained by differences in either protein degradation rates or the inefficiency of translation for LCR containing proteins. We suggest that rapidly evolving LCRs are a source of selective pressure on the regulatory mechanisms which maintain steady-state protein abundance levels.
Collapse
Affiliation(s)
- Zachery W Dickson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Seal M, Jash C, Jacob RS, Feintuch A, Harel YS, Albeck S, Unger T, Goldfarb D. Evolution of CPEB4 Dynamics Across its Liquid-Liquid Phase Separation Transition. J Phys Chem B 2021; 125:12947-12957. [PMID: 34787433 PMCID: PMC8647080 DOI: 10.1021/acs.jpcb.1c06696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Indexed: 12/31/2022]
Abstract
Knowledge about the structural and dynamic properties of proteins that form membrane-less organelles in cells via liquid-liquid phase separation (LLPS) is required for understanding the process at a molecular level. We used spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the dynamic properties (rotational diffusion) of the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein (CPEB4NTD) across its LLPS transition, which takes place with increasing temperature. We report the coexistence of three spin labeled CPEB4NTD (CPEB4*) populations with distinct dynamic properties representing different conformational spaces, both before and within the LLPS state. Monomeric CPEB4* exhibiting fast motion defines population I and shows low abundance prior to and following LLPS. Populations II and III are part of CPEB4* assemblies where II corresponds to loose conformations with intermediate range motions and population III represents compact conformations with strongly attenuated motions. As the temperature increased the population of component II increased reversibly at the expense of component III, indicating the existence of an III ⇌ II equilibrium. We correlated the macroscopic LLPS properties with the III ⇌ II exchange process upon varying temperature and CPEB4* and salt concentrations. We hypothesized that weak transient intermolecular interactions facilitated by component II lead to LLPS, with the small assemblies integrated within the droplets. The LLPS transition, however, was not associated with a clear discontinuity in the correlation times and populations of the three components. Importantly, CPEB4NTD exhibits LLPS properties where droplet formation occurs from a preformed microscopic assembly rather than the monomeric protein molecules.
Collapse
Affiliation(s)
- Manas Seal
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Chandrima Jash
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Reeba Susan Jacob
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yair Shalom Harel
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shira Albeck
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tamar Unger
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
10
|
The Novel Regulatory Role of lncRNA-miRNA-mRNA Axis in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5526179. [PMID: 33953791 PMCID: PMC8067776 DOI: 10.1155/2021/5526179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that primarily affects motor neurons, causing muscle atrophy, bulbar palsy, and pyramidal tract signs. However, the aetiology and pathogenesis of ALS have not been elucidated to date. In this study, a competitive endogenous RNA (ceRNA) network was constructed by analyzing the expression profiles of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) that were matched by 7 ALS samples and 4 control samples, and then a protein-protein interaction (PPI) network was constructed to identify the genes related to ALS. Gene Ontology (GO) was used to study the potential functions of differentially expressed mRNAs (DEmRNAs) in the ceRNA network. For the ALS and control groups, 247177 potential lncRNA-mRNA ceRNA relationship pairs were screened. Analysis of significant relationship pairs demonstrated that the PPI modules formed by the MALAT1-regulated SYNRG, ITSN2, PICALM, AP3B1, and AAK1 genes may play important roles in the pathogenesis of ALS, and these results may help to characterize the pathogenesis of ALS.
Collapse
|
11
|
Kozlov E, Shidlovskii YV, Gilmutdinov R, Schedl P, Zhukova M. The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell Biosci 2021; 11:64. [PMID: 33789753 PMCID: PMC8011179 DOI: 10.1186/s13578-021-00577-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Posttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3′-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.
Collapse
Affiliation(s)
- Eugene Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119992
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544-1014, USA
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
12
|
Wan B, Feng P, Guan Z, Sheng L, Liu Z, Hua Y. A severe mouse model of spinal muscular atrophy develops early systemic inflammation. Hum Mol Genet 2019; 27:4061-4076. [PMID: 30137324 DOI: 10.1093/hmg/ddy300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 01/17/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a fatal genetic disease, mainly affecting children. A number of recent studies show, aside from lower motor neuron degeneration and atrophy of skeletal muscles, widespread defects present in the central nervous system (CNS) and peripheral non-neuronal cell types of SMA patients and mouse models, particularly of severe forms. However, molecular mechanisms underlying the multi-organ manifestations of SMA were hardly understood. Here, using histology, flow cytometry and gene expression analysis in both messenger RNA and protein levels in various tissues, we found that a severe SMA mouse model develops systemic inflammation in early symptomatic stages. SMA mice had an enhanced intestinal permeability, resulting in microbial invasion into the circulatory system. Expression of proinflammatory cytokines was increased in all tissues and the acute phase response in the liver was activated. Systemic inflammation further mobilized glucocorticoid signaling and in turn led to dysregulation of a large set of genes, including robust upregulation of FAM107A in the spinal cord, increased expression of which has been implicated in neurodegeneration. Moreover, we show that lipopolysaccharide challenge markedly suppressed survival of motor neuron 2 exon 7 splicing in all examined peripheral and CNS tissues, resulting in global survival of motor neuron level reduction. Therefore, we identified a novel pathological mechanism in a severe SMA mouse model, which affects phenotypic severity through multiple paths and should contribute to progression of broad neuronal and non-neuronal defects.
Collapse
Affiliation(s)
- Bo Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Pengchao Feng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Zeyuan Guan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Lei Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Zhiyong Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yimin Hua
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Hospital of Soochow University, Suzhou, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936770 PMCID: PMC6436954 DOI: 10.31887/dcns.2018.20.4/jmsaudubray] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism (IEMs) are particularly frequent as diseases of the nervous system. In the pediatric neurologic presentations of IEMs neurodevelopment is constantly disturbed and in fact, as far as biochemistry is involved, any kind of monogenic disease can become an IEM. Clinical features are very diverse and may present as a neurodevelopmental disorder (antenatal or late-onset), as well as an intermittent, a fixed chronic, or a progressive and late-onset neurodegenerative disorder. This also occurs within the same disorder in which a continuum spectrum of severity is frequently observed. In general, the small molecule defects have screening metabolic markers and many are treatable. By contrast only a few complex molecules defects have metabolic markers and most of them are not treatable so far. Recent molecular techniques have considerably contributed in the description of many new diseases and unexpected phenotypes. This paper provides a comprehensive list of IEMs that affect neurodevelopment and may also present with neurodegeneration.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Department of Neurology, Neurometabolic Unit, Hopital Pitié Salpétrière, Paris, France
| | - Angela Garcia-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab (Department of Neurology), Institut Pediàtric de Recerca, Hospital Sant Joan de Déu and CIBERER (ISCIII), Barcelona, Spain
| |
Collapse
|
14
|
Kretzschmar A, Schülke JP, Masana M, Dürre K, Müller MB, Bausch AR, Rein T. The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics. Int J Mol Sci 2018; 19:ijms19123993. [PMID: 30545002 PMCID: PMC6321462 DOI: 10.3390/ijms19123993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in transfected HeLa cells with fluorescence recovery after photobleaching (FRAP) and confocal microscopy. Results: DRR1 features an actin binding site at each terminus, separated by a coiled coil domain. DRR1 enhances actin bundling, the cellular F-actin content, and serum response factor (SRF)-dependent transcription, while it diminishes actin filament elongation, cell spreading, and actin treadmilling. We also provide evidence for a nucleation effect of DRR1. Blocking of pointed end elongation by addition of profilin indicates DRR1 as a novel barbed end capping factor. Conclusions: DRR1 impacts actin dynamics in several ways with implications for cytoskeletal dynamics in stress physiology and pathophysiology.
Collapse
Affiliation(s)
- Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Jan-Philip Schülke
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Casanova, 143, 08036 Barcelona, Spain.
| | - Katharina Dürre
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neuroscience, Johannes Gutenberg Universität Medical Center, 55131 Mainz, Germany.
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80805 München, Germany.
| |
Collapse
|
15
|
Masana M, Westerholz S, Kretzschmar A, Treccani G, Liebl C, Santarelli S, Dournes C, Popoli M, Schmidt MV, Rein T, Müller MB. Expression and glucocorticoid-dependent regulation of the stress-inducible protein DRR1 in the mouse adult brain. Brain Struct Funct 2018; 223:4039-4052. [PMID: 30121783 PMCID: PMC6267262 DOI: 10.1007/s00429-018-1737-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022]
Abstract
Identifying molecular targets that are able to buffer the consequences of stress and therefore restore brain homeostasis is essential to develop treatments for stress-related disorders. Down-regulated in renal cell carcinoma 1 (DRR1) is a unique stress-induced protein in the brain and has been recently proposed to modulate stress resilience. Interestingly, DRR1 shows a prominent expression in the limbic system of the adult mouse. Here, we analyzed the neuroanatomical and cellular expression patterns of DRR1 in the adult mouse brain using in situ hybridization, immunofluorescence and Western blot. Abundant expression of DRR1 mRNA and protein was confirmed in the adult mouse brain with pronounced differences between distinct brain regions. The strongest DRR1 signal was detected in the neocortex, the CA3 region of the hippocampus, the lateral septum and the cerebellum. DRR1 was also present in circumventricular organs and its connecting regions. Additionally, DRR1 was present in non-neuronal tissues like the choroid plexus and ependyma. Within cells, DRR1 protein was distributed in a punctate pattern in several subcellular compartments including cytosol, nucleus as well as some pre- and postsynaptic specializations. Glucocorticoid receptor activation (dexamethasone 10 mg/kg s.c.) induced DRR1 expression throughout the brain, with particularly strong induction in white matter and fiber tracts and in membrane-rich structures. This specific expression pattern and stress modulation of DRR1 point to a role of DRR1 in regulating how cells sense and integrate signals from the environment and thus in restoring brain homeostasis after stressful challenges.
Collapse
Affiliation(s)
- Mercè Masana
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany. .,Translational Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany. .,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
| | - Sören Westerholz
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Anja Kretzschmar
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Giulia Treccani
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università di Milano, Milan, Italy.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Claudia Liebl
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Sara Santarelli
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Carine Dournes
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università di Milano, Milan, Italy
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Marianne B Müller
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Translational Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany.,Deutsches Resilienz-Zentrum, Mainz, Germany
| |
Collapse
|
16
|
Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-González JL, Picó S, Hernández IH, Díaz-Hernández JI, Belloc E, Rodolosse A, Parikshak NN, Peñagarikano O, Fernández-Chacón R, Irimia M, Navarro P, Geschwind DH, Méndez R, Lucas JJ. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature 2018; 560:441-446. [PMID: 30111840 PMCID: PMC6217926 DOI: 10.1038/s41586-018-0423-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Common genetic contributions to autism spectrum disorder (ASD) reside in risk gene variants that individually have minimal effect sizes. As environmental factors that perturb neurodevelopment also underlie idiopathic ASD, it is crucial to identify altered regulators that can orchestrate multiple ASD risk genes during neurodevelopment. Cytoplasmic polyadenylation element binding proteins 1-4 (CPEB1-4) regulate the translation of specific mRNAs by modulating their poly(A)-tails and thereby participate in embryonic development and synaptic plasticity. Here we find that CPEB4 binds transcripts of most high-confidence ASD risk genes. The brains of individuals with idiopathic ASD show imbalances in CPEB4 transcript isoforms that result from decreased inclusion of a neuron-specific microexon. In addition, 9% of the transcriptome shows reduced poly(A)-tail length. Notably, this percentage is much higher for high-confidence ASD risk genes, correlating with reduced expression of the protein products of ASD risk genes. An equivalent imbalance in CPEB4 transcript isoforms in mice mimics the changes in mRNA polyadenylation and protein expression of ASD risk genes and induces ASD-like neuroanatomical, electrophysiological and behavioural phenotypes. Together, these data identify CPEB4 as a regulator of ASD risk genes.
Collapse
Affiliation(s)
- Alberto Parras
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Héctor Anta
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Santos-Galindo
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Vivek Swarup
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ainara Elorza
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Nieto-González
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Seville, Spain
| | - Sara Picó
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivó H Hernández
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias, Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan I Díaz-Hernández
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annie Rodolosse
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Neelroop N Parikshak
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olga Peñagarikano
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Rafael Fernández-Chacón
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Seville, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|