1
|
Alsamhary KE. The effect of quaternary ammonium compounds (QACs) on quorum sensing and resistance of P. aeruginosa in clinical settings. Microb Pathog 2025; 202:107378. [PMID: 40024542 DOI: 10.1016/j.micpath.2025.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
Pseudomonas aeruginosa, a formidable opportunistic pathogen, is notorious for its ability to form biofilms and produce virulence factors that favor chronic infections, especially in cystic fibrosis patients. The misuse of disinfectants, combined with environmental leakage and biodegradation, has led to widespread exposure of microorganisms to sub-lethal concentrations of disinfectants, particularly quaternary ammonium compounds (QACs). This study investigates the interaction between QACs, specifically ethylbenzalkyl dimethyl ammonium chloride (EBAC), and the quorum sensing (QS) mechanisms governing P. aeruginosa behavior. The results demonstrate that exposure to sub-minimum inhibitory concentrations (sub-MICs) of EBAC not only enhances the biofilm-forming capability of P. aeruginosa isolates but also modulates the expression of crucial QS-regulated genes. Notably, the bacteria exhibit increased production of biofilm-associated virulence factors such as pyocyanin and elastase, and altered antibiotic susceptibility profiles, indicating a shift towards persistent infection phenotypes. These findings reveal that QAC exposure can significantly increase resistance to antibiotics and external stressors like hydrogen peroxide. These results emphasize the need to reassess the efficacy of QACs in clinical disinfection settings, particularly against P. aeruginosa infections, and highlight the potential for unintended consequences of their use regarding bacterial behavior and virulence. This study provides novel insights into the role of QACs in modulating QS-mediated virulence and antibiotic resistance, offering a new perspective on the risks associated with sub-lethal disinfectant exposure.
Collapse
Affiliation(s)
- Khawla E Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
2
|
Attiq A. Early-life antibiotic exposures: Paving the pathway for dysbiosis-induced disorders. Eur J Pharmacol 2025; 991:177298. [PMID: 39864578 DOI: 10.1016/j.ejphar.2025.177298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
Lomri N, Hulen C. Effects of Several Bile Acids on the Production of Virulence Factors by Pseudomonas aeruginosa. Life (Basel) 2024; 14:1676. [PMID: 39768382 PMCID: PMC11728048 DOI: 10.3390/life14121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of Pseudomonas aeruginosa to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM. However, a slight decrease in the adhesion index as well as a reduction in the virulence of the bacteria on the HT29 cell line could be observed. In this model, exposure of P. aeruginosa to bile acids showed a significant decrease in the production of LasB and AprA proteases due to the reduction in the expression of their genes. A decrease in pyocyanin production was also observed in relation to the effects of bile acids on the quorum sensing regulators. In order to have an effect on gene expression, it is necessary for bile acids to enter the bacteria. P. aeruginosa harbors two potential homologs of the eukaryotic genes encoding the bile acid transporters NTCP1 and NTCP2 that are expressed in hepatocytes and enterocytes, respectively. By carrying out a comparative BLAST-P between the amino acid sequences of the PAO1 proteins and those of NTCP1 and NTCP2, we identified the products of the PA1650 and PA3264 genes as the unique homologs of the two eukaryotic genes. Exposure of the mutant in the PA1650 gene to chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) showed a less significant effect on pyocyanin production than with the isogenic PAO1 strain. Also, no effect of CDCA on the PA3264 gene mutant was observed. This result indicated that CDCA should enter the bacteria by the transporter produced by this gene. The entry of LCA into bacteria seemed more complex and rather responded to a multifactorial system involving the product of the PA1650 gene but also the products of other genes encoding potential transporters.
Collapse
Affiliation(s)
- Noureddine Lomri
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France;
| | | |
Collapse
|
4
|
Caparros-Martin JA, Saladié M, Agudelo-Romero SP, Nichol KS, Reen FJ, Moodley YP, Mulrennan S, Stick S, Wark PAB, O’Gara F. Bile acids in the lower airways is associated with airway microbiota changes in chronic obstructive pulmonary disease: an observational study. BMJ Open Respir Res 2024; 11:e002552. [PMID: 39694676 PMCID: PMC11667286 DOI: 10.1136/bmjresp-2024-002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex disorder with a high degree of interindividual variability. Gastrointestinal dysfunction is common in patients with COPD and has been proposed to influence the clinical progression of the disease. Using the presence of bile acid(s) (BA) in bronchoalveolar lavage (BAL) fluid as a marker of gastric aspiration, we evaluated the relationships between BAs, clinical outcomes and bacterial lung colonisation. METHODS We used BAL specimens from a cohort of patients with COPD and healthy controls. BAs were profiled and quantified in BAL supernatants using mass spectrometry. Microbial DNA was extracted from BAL pellets and quantified using quantitative PCR. We profiled the BAL microbiota using an amplicon sequencing approach targeting the V3-V4 region of the 16S rRNA gene. RESULTS Detection of BAs in BAL was more likely at the earliest clinical stages of COPD and was independent of the degree of airway obstruction. BAL specimens with BAs demonstrated higher bacterial biomass and lower diversity. Likewise, the odds of recovering bacterial cultures from BAL were higher if BAs were also detected. Detection of BAs in BAL was not associated with either inflammatory markers or clinical outcomes. We also observed different bacterial community types in BAL, which were associated with different clinical groups, levels of inflammatory markers and the degree of airway obstruction. CONCLUSION Detection of BAs in BAL was associated with alterations in the airway bacterial communities. Further studies are needed to evaluate whether BAs in BAL can be used to stratify patients and predict disease progression trajectories.
Collapse
Affiliation(s)
- Jose A Caparros-Martin
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- The University of Western Australia, Perth, Western Australia, Australia
| | - Montserrat Saladié
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - S Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- The University of Western Australia, Perth, Western Australia, Australia
- European Virus Bioinformatics Centre, Jena, TH, Germany
| | - Kristy S Nichol
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Yuben P Moodley
- Centre for Respiratory Health, School of Biomedical Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Cell Biology Group, Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Institute of Respiratory Health and Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Siobhain Mulrennan
- Institute of Respiratory Health and Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Stephen Stick
- The University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Peter A B Wark
- Faculty of Medicine Nursing and Health Sciences, Monash University, Prahran, Victoria, Australia
| | - Fergal O’Gara
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Omecene NE, Wilcox N, Cox AL, Ham P, Ong R, Barber AT, Zimmerman KM. A review of proton pump inhibitor use in cystic fibrosis and considerations for deprescribing. Pediatr Pulmonol 2024; 59:3148-3158. [PMID: 39193889 DOI: 10.1002/ppul.27229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Use of proton-pump inhibitors (PPIs) is common among people with cystic fibrosis (pwCF) both for the management of suspected GERD, as well as pancreatic enzyme replacement therapy augmentation. Despite their use, limited data exist to demonstrate a clinically significant impact of PPIs on key endpoints in pwCF. Furthermore, the advent of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy may modify the need for use. These notions, coupled with the potential for adverse outcomes associated with long-term PPI use in pwCF, should facilitate re-evaluation of long-term PPI use in pwCF and promote potential deprescribing. Despite limited data on PPI deprescribing in pwCF, it intuitively mirrors the existing guidance in adults in the general population, but with added consideration given to tapering strategy, and monitoring for CF-specific outcomes such as nutritional and respiratory status. The development of a monitoring and re-initiation plan is key to reducing deprescribing inertia. This review aims to summarize the evidence that details the concern for long-term use of PPIs and provide CF clinicians with rationale and guidance on how to approach deprescribing in their practice.
Collapse
Affiliation(s)
- Nicole E Omecene
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Nicole Wilcox
- Department of Pharmacy, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alexandra L Cox
- Department of Pharmacy, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Pearl Ham
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Ryan Ong
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Andrew T Barber
- Division of Pediatric Pulmonary and Sleep Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristin M Zimmerman
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| |
Collapse
|
6
|
Saadh MJ, Ahmed HH, Al-Hussainy AF, Kaur I, Kumar A, Chahar M, Saini S, Taher WM, Alwan M, Jawad MJ, Darvishi M, Alsaikhan F. Bile's Hidden Weapon: Modulating the Microbiome and Tumor Microenvironment. Curr Microbiol 2024; 82:25. [PMID: 39614901 DOI: 10.1007/s00284-024-04004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The human gut microbiome is a dynamic and intricate ecosystem, composed of trillions of microorganisms that play a pivotal role in maintaining overall health and well-being. However, the gut microbiome is constantly exposed to various environmental factors, including the bile produced by the liver, which can significantly impact its composition and function. Bile acids, secreted by the liver and stored in the gallbladder, modulate the gut microbiome, influencing its composition and function. This altered microbiome profile can, in turn, impact the tumor microenvironment (TME), promoting an immunosuppressive environment that favors tumor growth and metastasis. Furthermore, changes in the gut microbiome can also influence the production of bile acids and other metabolites that directly affect cancer cells and their behavior. Moreover, bile acids have been shown to shape the microbiome and increase antibiotic resistance, underscoring the need for targeted interventions. This review provides a comprehensive overview of the intricate relationships between bile, the gut microbiome, and the TME, highlighting the mechanisms by which this interplay drives cancer progression and resistance to therapy. Understanding these complex interactions is crucial for developing novel therapeutic strategies that target the gut-bile-TME axis and improve patient outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Rajasthan, Jaipur, India
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Dey S, Seyfert CE, Fink-Straube C, Kany AM, Müller R, Sankaran S. Thermo-amplifier circuit in probiotic E. coli for stringently temperature-controlled release of a novel antibiotic. J Biol Eng 2024; 18:66. [PMID: 39533331 PMCID: PMC11559228 DOI: 10.1186/s13036-024-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Peptide drugs have seen rapid advancement in biopharmaceutical development, with over 80 candidates approved globally. Despite their therapeutic potential, the clinical translation of peptide drugs is hampered by challenges in production yields and stability. Engineered bacterial therapeutics is a unique approach being explored to overcome these issues by using bacteria to produce and deliver therapeutic compounds at the body site of use. A key advantage of this technology is the possibility to control drug delivery within the body in real time using genetic switches. However, the performance of such genetic switches suffers when used to control drugs that require post-translational modifications or are toxic to the host. In this study, these challenges were experienced when attempting to establish a thermal switch for the production of a ribosomally synthesized and post-translationally modified peptide antibiotic, darobactin, in probiotic E. coli. These challenges were overcome by developing a thermo-amplifier circuit that combined the thermal switch with a T7 RNA Polymerase. Due to the orthogonality of the Polymerase, this strategy overcame limitations imposed by the host transcriptional machinery. This circuit enabled production of pathogen-inhibitory levels of darobactin at 40 °C while maintaining leakiness below the detection limit at 37 °C. Furthermore, the thermo-amplifier circuit sustained gene expression beyond the thermal induction duration such that with only 2 h of induction, the bacteria were able to produce pathogen-inhibitory levels of darobactin. This performance was maintained even in physiologically relevant simulated conditions of the intestines that include bile salts and low nutrient levels.
Collapse
Affiliation(s)
- Sourik Dey
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Carsten E Seyfert
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Claudia Fink-Straube
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Shrikrishnan Sankaran
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
8
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
10
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Mac Aogáin M, Narayana JK, Chotirmall SH. Reply to Ward et al.. Am J Respir Crit Care Med 2023; 208:631-632. [PMID: 37348125 PMCID: PMC10492252 DOI: 10.1164/rccm.202305-0872le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
13
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
14
|
Hashemi-Bajgani SM, Samareh-Fekri M, Paghaleh AJ, Yazdani R, Zarandi MA, Shafahi A. Prevalence of Micro-Aspiration of Bile Acids in Patients with Primary Lung Cancer: A Cross-Sectional Study. Ethiop J Health Sci 2022; 32:715-722. [PMID: 35950065 PMCID: PMC9341028 DOI: 10.4314/ejhs.v32i4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Lung cancer remains a serious public health problem and is the first cause of cancer-related death worldwide. There is some evidence suggests that bile acid micro-aspiration may contribute to the development of lung diseases. This study aimed to assess the prevalence of micro-aspiration of bile acids in patients with primary lung cancer. Methods In a cross-sectional study, 52 patients with primary lung cancer referred to a teaching hospital affiliated with Kerman University of Medical Sciences, Kerman, Iran were enrolled. Patients with pathology-confirmed lung cancer who did not receive specific treatment were included in the present study. All patients underwent bronchoscopy and the levels of bile acid was assessed in their Broncho-Alveolar Lavage (BAL) samples. Results According to the results, 53.85% of patients were in the age group of 40 to 59 years. Of the participants, 88.46% were male, 82.69% were smokers, and 69.23% were opium addicted. The most common presenting clinical symptoms of patients were heartburn (61.55%), hoarseness (17.31%), and epigastric pain (9.61%), respectively. Ninety-two point thirty-two percent of patients had endobronchial lesions in bronchoscopy. Squamous cell carcinoma, small-cell lung carcinoma and adenocarcinoma accounts for 48.08%, 34.61% and 17.31% of all cases of lung cancer, respectively. Bile acids were found in the BAL sample of all patients with primary lung cancer. The mean Bile acids levels in patients were 63.42 (SD=7.03) µmol/Lit. Conclusion According to the results of present study, there was a micro-aspiration of bile acids in all patients with primary lung cancer that may participate in shaping early events in the etiology of primary lung cancer. It seems that developing clinical strategies preventing the micro-aspiration of bile acids into the lungs could remove a key potential trigger in this process.
Collapse
Affiliation(s)
| | - Mitra Samareh-Fekri
- Cardiovascular Research Center, Basic and Clinical Institute of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arshia Jamali Paghaleh
- Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Rostam Yazdani
- Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobe Asadi Zarandi
- Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Shafahi
- Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Al-Momani H, Perry A, Nelson A, Stewart CJ, Jones R, Krishnan A, Robertson A, Bourke S, Doe S, Cummings S, Anderson A, Forrest T, Forrest I, Griffin M, Wilcox M, Brodlie M, Pearson J, Ward C. Exposure to bile and gastric juice can impact the aerodigestive microbiome in people with cystic fibrosis. Sci Rep 2022; 12:11114. [PMID: 35773410 PMCID: PMC9247099 DOI: 10.1038/s41598-022-15375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Studies of microbiota reveal inter-relationships between the microbiomes of the gut and lungs. This relationship may influence the progression of lung disease, particularly in patients with cystic fibrosis (CF), who often experience extraoesophageal reflux (EOR). Despite identifying this relationship, it is not well characterised. Our hypothesis is that the gastric and lung microbiomes in CF are related, with the potential for aerodigestive pathophysiology. We evaluated gastric and sputum bacterial communities by culture and 16S rRNA gene sequencing in 13 CF patients. Impacts of varying levels of bile acids, pepsin and pH on patient isolates of Pseudomonas aeruginosa (Pa) were evaluated. Clonally related strains of Pa and NTM were identified in gastric and sputum samples from patients with symptoms of EOR. Bacterial diversity was more pronounced in sputa compared to gastric juice. Gastric and lung bile and pepsin levels were associated with Pa biofilm formation. Analysis of the aerodigestive microbiomes of CF patients with negative sputa indicates that the gut can be a reservoir of Pa and NTM. This combined with the CF patient's symptoms of reflux and potential aspiration, highlights the possibility of communication between microorganisms of the gut and the lungs. This phenomenon merits further research.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Basic Medical Science Department, School of Medicine, The Hashemite University, Zarqa, Jordan
| | - Audrey Perry
- Department of Microbiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rhys Jones
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amaran Krishnan
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Robertson
- NHS Fife and Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephen Bourke
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Simon Doe
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Stephen Cummings
- School of Science and Engineering, Teesside University, Middlesbrough, TS1 3BA, UK
| | - Alan Anderson
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Tara Forrest
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Ian Forrest
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Michael Griffin
- Adult Cystic Fibrosis Centre and Northern Oesophago-Gastric Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Malcolm Brodlie
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, UK
| | - Jeffrey Pearson
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
16
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
17
|
De Luca D, Alonso A, Autilio C. Bile acids-induced lung injury: update of reverse translational biology. Am J Physiol Lung Cell Mol Physiol 2022; 323:L93-L106. [DOI: 10.1152/ajplung.00523.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of bile acids in lung tissue is associated with some clinical features observed in various medical specialties, but it took time to understand that these are due to a "bile acid-induced lung injury" since specific translational studies and cross-disciplinary awareness were lacking. We used a reverse translational approach to update and summarize the current knowledge about the mechanisms of bile acid-induced lung injury. This has been done in a cross-disciplinary fashion since these conditions may occur in patients of various age and in different medical fields. We here define these clinical conditions, then we review the physiopathology of these conditions and the animal models used to mimic them and, finally, their pathobiology. Mechanisms of bile acid-induced lung injury have been partially clarified overtime and are represented by: 1) the interaction with secretory phospholipase A2 pathway, 2) the effect on surfactant function and structure, 3) the biological effects on inflammation and local immunity, 4) the direct cellular toxicity. These mechanisms are schematically illustrated and histological comparisons between ARDS induced by bile acids and other triggers are also provided. Based on these mechanisms we propose possible direct therapeutic applications and, finally, we discuss further research steps to improve the understanding of processes that generate pathological clinical conditions.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Paris Saclay University Hospital, Clamart, Paris, France
- Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Le Plessis Robinson, France
| | - Alejandro Alonso
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research, Institut-Hospital, Complutense University, Madrid, Spain
| |
Collapse
|
18
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
19
|
Behroozian S, Sampedro I, Dhodary B, Her S, Yu Q, Stanton BA, Hill JE. Pseudomonas aeruginosa PAO1 Is Attracted to Bovine Bile in a Novel, Cystic Fibrosis-Derived Bronchial Epithelial Cell Model. Microorganisms 2022; 10:716. [PMID: 35456767 PMCID: PMC9032244 DOI: 10.3390/microorganisms10040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is a life-threatening, inherited, multi-organ disease that renders patients susceptible throughout their lives to chronic and ultimately deteriorating protracted pulmonary infections. Those infections are dominated in adulthood by the opportunistic pathogen, Pseudomonas aeruginosa (Pa). As with other advancing respiratory illnesses, people with CF (pwCF) also frequently suffer from gastroesophageal reflux disease (GERD), including bile aspiration into the lung. GERD is a major co-morbidity factor in pwCF, with a reported prevalence of 35-81% in affected individuals. Bile is associated with the early acquisition of Pa in CF patients and in vitro studies show that it causes Pa to adopt a chronic lifestyle. We hypothesized that Pa is chemoattracted to bile in the lung environment. To evaluate, we developed a novel chemotaxis experimental system mimicking the lung environment using CF-derived bronchial epithelial (CFBE) cells which allowed for the evaluation of Pa (strain PAO1) chemotaxis in a physiological scenario superior to the standard in vitro systems. We performed qualitative and quantitative chemotaxis tests using this new experimental system, and microcapillary assays to demonstrate that bovine bile is a chemoattractant for Pa and is positively correlated with bile concentration. These results further buttress the hypothesis that bile likely contributes to the colonization and pathogenesis of Pa in the lung, particularly in pwCF.
Collapse
Affiliation(s)
- Shekooh Behroozian
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, GR, Spain;
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, GR, Spain
| | - Basanta Dhodary
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Stephanie Her
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Qianru Yu
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Bruce A. Stanton
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Jane E. Hill
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| |
Collapse
|
20
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics (Basel) 2021; 10:antibiotics10070766. [PMID: 34202495 PMCID: PMC8300688 DOI: 10.3390/antibiotics10070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.
Collapse
|
22
|
Kumar Y, Yadav R, Bhatia A. Can natural detergent properties of bile acids be used beneficially in tackling coronavirus disease-19? Future Virol 2020. [PMCID: PMC7737566 DOI: 10.2217/fvl-2020-0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
23
|
Flynn S, Reen FJ, Caparrós-Martín JA, Woods DF, Peplies J, Ranganathan SC, Stick SM, O’Gara F. Bile Acid Signal Molecules Associate Temporally with Respiratory Inflammation and Microbiome Signatures in Clinically Stable Cystic Fibrosis Patients. Microorganisms 2020; 8:microorganisms8111741. [PMID: 33172004 PMCID: PMC7694639 DOI: 10.3390/microorganisms8111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is a congenital disorder resulting in a multisystemic impairment in ion homeostasis. The subsequent alteration of electrochemical gradients severely compromises the function of the airway epithelia. These functional changes are accompanied by recurrent cycles of inflammation–infection that progressively lead to pulmonary insufficiency. Recent developments have pointed to the existence of a gut–lung axis connection, which may modulate the progression of lung disease. Molecular signals governing the interplay between these two organs are therefore candidate molecules requiring further clinical evaluation as potential biomarkers. We demonstrate a temporal association between bile acid (BA) metabolites and inflammatory markers in bronchoalveolar lavage fluid (BALF) from clinically stable children with CF. By modelling the BALF-associated microbial communities, we demonstrate that profiles enriched in operational taxonomic units assigned to supraglottic taxa and opportunistic pathogens are closely associated with inflammatory biomarkers. Applying regression analyses, we also confirmed a linear link between BA concentration and pathogen abundance in BALF. Analysis of the time series data suggests that the continuous detection of BAs in BALF is linked to differential ecological succession trajectories of the lung microbiota. Our data provide further evidence supporting a role for BAs in the early pathogenesis and progression of CF lung disease.
Collapse
Affiliation(s)
- Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jose A. Caparrós-Martín
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
| | - David F. Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jörg Peplies
- Ribocon GmbH, Fahrenheitstraße. 1, 28359 Bremen, Germany;
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, The Royal Children’s Hospital, 3052 Melbourne, Australia;
- Infection and Immunity, Murdoch Children’s Research Institute, 3052 Melbourne, Australia
- Department of Paediatrics, University of Melbourne, 3010 Melbourne, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Telethon Kids Institute, The University of Western Australia, 6009 Perth, Western Australia, Australia
- Department of Respiratory Medicine and Sleep Medicine, Perth Children’s Hospital, 6009 Perth, Western Australia, Australia
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
- Correspondence:
| |
Collapse
|
24
|
Fluorinated benzylidene indanone exhibits antiproliferative activity through modulation of microtubule dynamics and antiangiogenic activity. Eur J Pharm Sci 2020; 154:105513. [PMID: 32805425 DOI: 10.1016/j.ejps.2020.105513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The application of fluorine in drug design has been understood significantly by the medicinal chemists in recent years. Modulation of tubulin-microtubule dynamics is one of the most effective targets for cancer chemotherapeutics. A logically designed and identified lead compound, fluorinated benzylidene indanone 1 has been extensively evaluated for cancer pharmacology. It occupied colchicine binding pocket acting as microtubule destabilizer and induced a G2/M phase arrest in MCF-7 cells. Compound 1 exerted an antiangiogenic effect in MCF-7 cells by down-regulating Vascular Endothelial Growth Factor (VEGF) and Hypoxia Inducible Factor-α (HIF-α). In in-vivo efficacy in C3H/Jax mice mammary carcinoma model, benzylidene indanone 1 reduced tumour volumes by 48.2%. Further in acute oral toxicity studies compound 1 was well tolerated and safe up to 1000 mg/kg dose in Swiss albino mice. The fluorinated benzylidene indanone 1, a new chemical entity (NCE) can further be optimized for better efficacy against breast adenocarcinoma.1.
Collapse
|
25
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
26
|
Kelly SM, Lanigan N, O'Neill IJ, Bottacini F, Lugli GA, Viappiani A, Turroni F, Ventura M, van Sinderen D. Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep 2020; 10:11598. [PMID: 32665665 PMCID: PMC7360559 DOI: 10.1038/s41598-020-68179-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Ian J O'Neill
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
27
|
The Detection of Bile Acids in the Lungs of Paediatric Cystic Fibrosis Patients Is Associated with Altered Inflammatory Patterns. Diagnostics (Basel) 2020; 10:diagnostics10050282. [PMID: 32384684 PMCID: PMC7277992 DOI: 10.3390/diagnostics10050282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Cystic fibrosis (CF) is a hereditary disorder in which persistent unresolved inflammation and recurrent airway infections play major roles in the initiation and progression of the disease. Little is known about triggering factors modulating the transition to chronic microbial infection and inflammation particularly in young children. Cystic fibrosis respiratory disease starts early in life, with the detection of inflammatory markers and infection evident even before respiratory symptoms arise. Thus, identifying factors that dysregulate immune responsiveness at the earliest stages of the disease will provide novel targets for early therapeutic intervention. Methods: We evaluated the clinical significance of bile acid detection in the bronchoalveolar lavage fluid of clinically stable preschool-aged children diagnosed with CF. Results: We applied an unbiased classification strategy to categorize these specimens based on bile acid profiles. We provide clear associations linking the presence of bile acids in the lungs with alterations in the expression of inflammatory markers. Using multiple regression analysis, we also demonstrate that clustering based on bile acid profiles is a meaningful predictor of the progression of structural lung disease. Conclusions: Altogether, our work has identified a clinically relevant host-derived factor that may participate in shaping early events in the aetiology of CF respiratory disease.
Collapse
|
28
|
Wall LA, Wisner EL, Gipson KS, Sorensen RU. Bronchiectasis in Primary Antibody Deficiencies: A Multidisciplinary Approach. Front Immunol 2020; 11:522. [PMID: 32296433 PMCID: PMC7138103 DOI: 10.3389/fimmu.2020.00522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Bronchiectasis, the presence of bronchial wall thickening with airway dilatation, is a particularly challenging complication of primary antibody deficiencies. While susceptibility to infections may be the primary factor leading to the development of bronchiectasis in these patients, the condition may develop in the absence of known infections. Once bronchiectasis is present, the lungs are subject to a progressive cycle involving both infectious and non-infectious factors. If bronchiectasis is not identified or not managed appropriately, the cycle proceeds unchecked and yields advanced and permanent lung damage. Severe symptoms may limit exercise tolerance, require frequent hospitalizations, profoundly impair quality of life (QOL), and lead to early death. This review article focuses on the appropriate identification and management of bronchiectasis in patients with primary antibody deficiencies. The underlying immune deficiency and the bronchiectasis need to be treated from combined immunology and pulmonary perspectives, reflected in this review by experts from both fields. An aggressive multidisciplinary approach may reduce exacerbations and slow the progression of permanent lung damage.
Collapse
Affiliation(s)
- Luke A Wall
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Children's Hospital of New Orleans, New Orleans, LA, United States
| | - Elizabeth L Wisner
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Children's Hospital of New Orleans, New Orleans, LA, United States
| | - Kevin S Gipson
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ricardo U Sorensen
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
29
|
Early Cystic Fibrosis Lung Disease. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
31
|
Flynn S, Reen FJ, O'Gara F. Exposure to Bile Leads to the Emergence of Adaptive Signaling Variants in the Opportunistic Pathogen Pseudomonas aeruginosa. Front Microbiol 2019; 10:2013. [PMID: 31555243 PMCID: PMC6727882 DOI: 10.3389/fmicb.2019.02013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
The chronic colonization of the respiratory tract by the opportunistic pathogen Pseudomonas aeruginosa is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa has been shown to undergo extensive genomic adaptation facilitating its persistence within the CF lung allowing it to evade the host immune response and outcompete co-colonizing residents of the lung microbiota. However, whilst several studies have described the various mutations that frequently arise in clinical isolates of P. aeruginosa, the environmental factors governing the emergence of these genetic variants is less well characterized. Gastro-oesophageal reflux has recently emerged as a major co-morbidity in CF and is often associated with the presence of bile acids in the lungs most likely by (micro) aspiration. In order to investigate whether bile may select for genetic variants, P. aeruginosa was experimentally evolved in artificial sputum medium, a synthetic media resembling environmental conditions found within the CF lung. Pigmented derivatives of P. aeruginosa emerged exclusively in the presence of bile. Genome sequencing analysis identified single nucleotide polymorphisms (SNPs) in quorum sensing (lasR) and both the pyocyanin (phzS) and pyomelanin (hmgA) biosynthetic pathways. Phenotypic analysis revealed an altered bile response when compared to the ancestral P. aeruginosa progenitor strain. While the recovered pigmented derivatives retained the bile mediated suppression of swarming motility and enhanced antibiotic tolerance, the biofilm, and redox responses to bile were abolished in the adapted mutants. Though loss of pseudomonas quinolone signal (PQS) production in the pigmented isolates was not linked to the altered biofilm response, the loss of redox repression could be explained by defective alkyl-quinolone (AQ) production in the presence of bile. Collectively, these findings suggest that the adaptive variants of P. aeruginosa that arise following long term bile exposure enables the emergence of ecologically competitive sub-populations. Altered pigmentation and AQ signaling may contribute to an enhancement in fitness facilitating population survival within a bile positive environment.
Collapse
Affiliation(s)
- Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland.,Telethon Kids Institute, Perth, WA, Australia.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
32
|
The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect Immun 2019; 87:IAI.00861-18. [PMID: 30988059 DOI: 10.1128/iai.00861-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.
Collapse
|
33
|
Kopp BT, Joseloff E, Goetz D, Ingram B, Heltshe SL, Leung DH, Ramsey BW, McCoy K, Borowitz D. Urinary metabolomics reveals unique metabolic signatures in infants with cystic fibrosis. J Cyst Fibros 2018; 18:507-515. [PMID: 30477895 DOI: 10.1016/j.jcf.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Biologic pathways and metabolic mechanisms underpinning early systemic disease in cystic fibrosis (CF) are poorly understood. The Baby Observational and Nutrition Study (BONUS) was a prospective multi-center study of infants with CF with a primary aim to examine the current state of nutrition in the first year of life. Its secondary aim was to prospectively explore concurrent nutritional, metabolic, respiratory, infectious, and inflammatory characteristics associated with early CF anthropometric measurements. We report here metabolomics differences within the urine of these infants as compared to infants without CF. METHODS Urine metabolomics was performed for 85 infants with predefined clinical phenotypes at approximately one year of age enrolled in BONUS via Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Samples were stratified by disease status (non-CF controls (n = 22); CF (n = 63, All-CF)) and CF clinical phenotype: respiratory hospitalization (CF Resp, n = 22), low length (CF LL, n = 23), and low weight (CF LW, n = 15). RESULTS Global urine metabolomics profiles in CF were heterogeneous, however there were distinct metabolic differences between the CF and non-CF groups. Top pathways altered in CF included tRNA charging and methionine degradation. ADCYAP1 and huntingtin were identified as predicted unique regulators of altered metabolic pathways in CF compared to non-CF. Infants with CF displayed alterations in metabolites associated with bile acid homeostasis, pentose sugars, and vitamins. CONCLUSIONS Predicted metabolic pathways and regulators were identified in CF infants compared to non-CF, but metabolic profiles were unable to discriminate between CF phenotypes. Targeted metabolomics provides an opportunity for further understanding of early CF disease. TRIAL REGISTRATION United States ClinicalTrials.Gov registry NCT01424696 (clinicaltrials.gov).
Collapse
Affiliation(s)
- B T Kopp
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA.
| | - E Joseloff
- Cystic Fibrosis Foundation, Bethesda, MD, USA
| | - D Goetz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - S L Heltshe
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle, WA, USA
| | - D H Leung
- Department of Pediatrics, Baylor College of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - B W Ramsey
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle, WA, USA
| | - K McCoy
- Division of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - D Borowitz
- Cystic Fibrosis Foundation, Bethesda, MD, USA; Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
34
|
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018; 15:109-125. [PMID: 29204955 PMCID: PMC5794701 DOI: 10.1007/s13311-017-0588-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.
Collapse
Affiliation(s)
- Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
35
|
Frayman KB, Armstrong DS, Grimwood K, Ranganathan SC. The airway microbiota in early cystic fibrosis lung disease. Pediatr Pulmonol 2017; 52:1384-1404. [PMID: 28815937 DOI: 10.1002/ppul.23782] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie.
Collapse
Affiliation(s)
- Katherine B Frayman
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David S Armstrong
- Department of Respiratory Medicine, Monash Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Gold Coast, Queensland, Australia
| | - Sarath C Ranganathan
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Ko HHT, Lareu RR, Dix BR, Hughes JD. Statins: antimicrobial resistance breakers or makers? PeerJ 2017; 5:e3952. [PMID: 29085751 PMCID: PMC5659212 DOI: 10.7717/peerj.3952] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR). Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis. Methods A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC) was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included. Results Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC) compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin. Discussion Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It is probable that statins’ mechanism of antibacterial activity involves interference of bacterial cell regulatory functions via binding and disrupting cell surface structures such as wall teichoic acids, lipoteichoic acids, lipopolysaccharides, and/or surface proteins. The widespread use of statins for cardiovascular protection may favor selective pressures or co-selection for resistance, including dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and statin persistence in the environment, all possibly culminating in AMR. Conclusion Simvastatin appears to be the most suitable statin for repurposing as a novel adjuvant antibiotic. Current evidence better supports statins as potential AMR breakers, but their role as plausible AMR makers cannot be excluded. Elucidating the mechanism of statins’ antibacterial activity is perhaps the most important knowledge gap to address as this will likely clarify statins’ role as AMR breakers or makers.
Collapse
Affiliation(s)
- Humphrey H T Ko
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Ricky R Lareu
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute (CHIRI) Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
| | - Brett R Dix
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Jeffery D Hughes
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Reshaping antibiotics through hydrophobic drug-bile acid ionic complexation enhances activity against Staphylococcus aureus biofilms. Int J Pharm 2017; 528:144-162. [DOI: 10.1016/j.ijpharm.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022]
|
38
|
Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol 2017; 8:1205. [PMID: 28706513 PMCID: PMC5489601 DOI: 10.3389/fmicb.2017.01205] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The continuing emergence of multi-drug resistant pathogens has sparked an interest in seeking alternative therapeutic options. Antimicrobial combinatorial therapy is one such avenue. A number of studies have been conducted, involving combinations of bacteriocins with other antimicrobials, to circumvent the development of antimicrobial resistance and/or increase antimicrobial potency. Such bacteriocin-antimicrobial combinations could have tremendous value, in terms of reducing the likelihood of resistance development due to the involvement of two distinct mechanisms of antimicrobial action. Furthermore, antimicrobial synergistic interactions may also have potential financial implications in terms of decreasing the costs of treatment by reducing the concentration of an expensive antimicrobial and utilizing it in combination with an inexpensive one. In addition, combinatorial therapies with bacteriocins can broaden antimicrobial spectra and/or result in a reduction in the concentration of an antibiotic required for effective treatments to the extent that potentially toxic or adverse side effects can be reduced or eliminated. Here, we review studies in which bacteriocins were found to be effective in combination with other antimicrobials, with a view to targeting clinical and/or food-borne pathogens. Furthermore, we discuss some of the bottlenecks which are currently hindering the development of bacteriocins as viable therapeutic options, as well as addressing the need to exercise caution when attempting to predict clinical outcomes of bacteriocin-antimicrobial combinations.
Collapse
Affiliation(s)
- Harsh Mathur
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Des Field
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland.,School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
39
|
Sullivan A, Hunt E, MacSharry J, Murphy DM. 'The Microbiome and the Pathophysiology of Asthma'. Respir Res 2016; 17:163. [PMID: 27919249 PMCID: PMC5139145 DOI: 10.1186/s12931-016-0479-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic respiratory disease whose prevalence is increasing in the western world. Recently research has begun to focus on the role the microbiome plays in asthma pathogenesis in the hope of further understanding this respiratory disorder. Considered sterile until recently, the lungs have revealed themselves to contain a unique microbiota. A shift towards molecular methods for the quantification and sequencing of microbial DNA has revealed that the airways harbour a unique microbiota with apparent, reproducible differences present between healthy and diseased lungs. There is a hope that in classifying the microbial load of the asthmatic airway an insight may be afforded as to the possible role pulmonary microbes may have in propagating an asthmatic airway response. This could potentially pave the way for new therapeutic strategies for the treatment of chronic lung conditions such as asthma.
Collapse
Affiliation(s)
- Ashley Sullivan
- APC Microbiome Institute, School of Medicine, University College Cork, Cork, Ireland
| | - Eoin Hunt
- The Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland.,Health Research Board Clinical Research Facility, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Institute, School of Medicine, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Desmond M Murphy
- The Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland. .,Health Research Board Clinical Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|