1
|
Zhou H, Dai J, Li D, Wang L, Ye M, Hu X, LoTurco J, Hu J, Sun W. Efficient gene delivery admitted by small metabolites specifically targeting astrocytes in the mouse brain. Mol Ther 2025; 33:1166-1179. [PMID: 39799395 PMCID: PMC11897751 DOI: 10.1016/j.ymthe.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene delivery approach admitted by small metabolites (gDAM) for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM uses a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells. Using gDAM, we successfully co-deliver the PiggyBac transposon and the CRISPR-Cas9 system to induce long-term overexpression of the oncogene EGFRvIII and knockout of tumor suppressor genes Nf1, Pten, and Trp53 in astrocytes, leading to the development of astrocyte-derived gliomas in immunocompetent mice. Furthermore, gDAM facilitates the delivery of naked DNA to peripheral glioma astrocytes. The overexpression of interferon-β and granulocyte-macrophage colony-stimulating factor in these peripheral glioma astrocytes significantly prolongs the overall survival of mice bearing 73C glioma cells. This approach offers a new perspective on developing gene delivery systems that specifically target astrocytes to meet the varied needs of both research and gene therapy. The innovative strategy behind gDAM is expected to provide fresh inspiration in the quest for DNA delivery to other tissues, such as skeletal muscle and skin.
Collapse
Affiliation(s)
- Haibin Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Jiajing Dai
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Luyao Wang
- Chinese Institute for Brain Research, Beijing 102206, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiaoling Hu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China.
| | - Wenzhi Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
2
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Balevičiūtė A, Szewczyk A, Želvys A, Lekešytė B, Malyško-Ptašinskė V, Mickevičiūtė E, Malakauskaitė P, Kulbacka J, Novickij V. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Front Bioeng Biotechnol 2024; 12:1430637. [PMID: 39050682 PMCID: PMC11266100 DOI: 10.3389/fbioe.2024.1430637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Anna Szewczyk
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
3
|
Ahmed O, Ekumi KM, Nardi FV, Maisumu G, Moussawi K, Lazartigues ED, Liang B, Yakoub AM. Stable, neuron-specific gene expression in the mouse brain. J Biol Eng 2024; 18:8. [PMID: 38229168 PMCID: PMC10790494 DOI: 10.1186/s13036-023-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Gene delivery to, and expression in, the mouse brain is important for understanding gene functions in brain development and disease, or testing gene therapies. Here, we describe an approach to express a transgene in the mouse brain in a cell-type-specific manner. We use stereotaxic injection of a transgene-expressing adeno-associated virus into the mouse brain via the intracerebroventricular route. We demonstrate stable and sustained expression of the transgene in neurons of adult mouse brain, using a reporter gene driven by a neuron-specific promoter. This approach represents a rapid, simple, and cost-effective method for global gene expression in the mouse brain, in a cell-type-specific manner, without major surgical interventions. The described method represents a helpful resource for genetically engineering mice to express a therapeutic gene, for gene therapy studies, or to deliver genetic material for genome editing and developing knockout animal models.
Collapse
Affiliation(s)
- Osama Ahmed
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Kingsley M Ekumi
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric D Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA, USA
| | - Bo Liang
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Giandomenico SL, Schuman EM. Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research. FEBS Open Bio 2023. [PMID: 36815235 DOI: 10.1002/2211-5463.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock-down, knock-out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR-Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA-based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in-depth information, we will provide specific references throughout.
Collapse
Affiliation(s)
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kim J, Zhao Y, Yang S, Feng Z, Wang A, Davalos RV, Jia X. Laser Machined Fiber-based Microprobe: Application in Microscale Electroporation. ADVANCED FIBER MATERIALS 2022; 4:859-872. [PMID: 37799114 PMCID: PMC10552288 DOI: 10.1007/s42765-022-00148-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/01/2022] [Indexed: 10/07/2023]
Abstract
Microscale electroporation devices are mostly restricted to in vitro experiments (i.e., microchannel and microcapillary). Novel fiber-based microprobes can enable in vivo microscale electroporation and arbitrarily select the cell groups of interest to electroporate. We developed a flexible, fiber-based microscale electroporation device through a thermal drawing process and femtosecond laser micromachining techniques. The fiber consists of four copper electrodes (80 μm), one microfluidic channel (30 μm), and has an overall diameter of 400 μm. The dimensions of the exposed electrodes and channel were customizable through a delicate femtosecond laser setup. The feasibility of the fiber probe was validated through numerical simulations and in vitro experiments. Successful reversible and irreversible microscale electroporation was observed in a 3D collagen scaffold (seeded with U251 human glioma cells) using fluorescent staining. The ablation regions were estimated by performing the covariance error ellipse method and compared with the numerical simulations. The computational and experimental results of the working fiber-based microprobe suggest the feasibility of in vivo microscale electroporation in space-sensitive areas, such as the deep brain.
Collapse
Affiliation(s)
- Jongwoon Kim
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061 USA
| | - Shuo Yang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ziang Feng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061 USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
8
|
Mollinari C, Merlo D. Direct Reprogramming of Somatic Cells to Neurons: Pros and Cons of Chemical Approach. Neurochem Res 2021; 46:1330-1336. [PMID: 33666839 PMCID: PMC8084785 DOI: 10.1007/s11064-021-03282-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Translating successful preclinical research in neurodegenerative diseases into clinical practice has been difficult. The preclinical disease models used for testing new drugs not always appear predictive of the effects of the agents in the human disease state. Human induced pluripotent stem cells, obtained by reprogramming of adult somatic cells, represent a powerful system to study the molecular mechanisms of the disease onset and pathogenesis. However, these cells require a long time to differentiate into functional neural cells and the resetting of epigenetic information during reprogramming, might miss the information imparted by age. On the contrary, the direct conversion of somatic cells to neuronal cells is much faster and more efficient, it is safer for cell therapy and allows to preserve the signatures of donors’ age. Direct reprogramming can be induced by lineage-specific transcription factors or chemical cocktails and represents a powerful tool for modeling neurological diseases and for regenerative medicine. In this Commentary we present and discuss strength and weakness of several strategies for the direct cellular reprogramming from somatic cells to generate human brain cells which maintain age‐related features. In particular, we describe and discuss chemical strategy for cellular reprogramming as it represents a valuable tool for many applications such as aged brain modeling, drug screening and personalized medicine.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133, Rome, Italy. .,Department of Neuroscience, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy.
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
9
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Novickij V, Balevičiūtė A, Ruzgys P, Šatkauskas S, Novickij J, Zinkevičienė A, Girkontaitė I. Sub-microsecond electrotransfection using new modality of high frequency electroporation. Bioelectrochemistry 2020; 136:107594. [PMID: 32679337 DOI: 10.1016/j.bioelechem.2020.107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022]
Abstract
Micro-millisecond range electric field pulses have been used for decades to facilitate DNA transfer into cells and tissues, while the growing number of clinical trials underline the strong potential of DNA electroporation. In this work, we present new sub-microsecond range protocols and methodology enabling successful electrotransfection in the sub-microsecond range. To facilitate DNA transfer, a 3 kV/60 A and high frequency (1 MHz) sub-microsecond range square wave generator was applied in the study. As a model, Chinese hamster ovary (CHO-K1) cells were used. Sub-microsecond range (300-700 ns) high frequency pulsed electric fields of 2-15 kV/cm were applied. The efficiency of electrotransfection was evaluated using two green fluorescent protein encoding plasmids of different size (3.5 kbp and 4.7 kbp). It was shown that transfection efficiency cannot be effectively improved with increase of the number of pulses after a certain threshold, however, independently on the plasmid size, the proposed sub-microsecond range pulsing methodology (2-5 kV/cm; n = 250) efficiency-wise was equivalent to 1.5 kV/cm × 100 μs × 4 electroporation procedure. The results of the study are useful for further development of in vitro and in vivo methods for effective electrotransfer of DNA using shorter pulses.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Paulius Ruzgys
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
11
|
Huang WC, Chi HS, Lee YC, Lo YC, Liu TC, Chiang MY, Chen HY, Li SJ, Chen YY, Chen SY. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11270-11282. [PMID: 30844235 DOI: 10.1021/acsami.9b03264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic-abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI-NT-pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG-PEI-NT-pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.
Collapse
Affiliation(s)
| | - Hui-Shang Chi
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | | | | | - Ta-Chung Liu
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | - Min-Yu Chiang
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
| | - Hsu-Yan Chen
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - Ssu-Ju Li
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - You-Yin Chen
- Department of Biomedical Engineering , National Yang Ming University , No. 155, Section 2, Linong Street , Taipei 11221 , Taiwan , R.O.C
| | - San-Yuan Chen
- Department of Materials Science and Engineering , National Chiao Tung University , No. 1001, Ta-Hsueh Road , Hsinchu 30010 , Taiwan , R.O.C
- Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , No. 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan , R.O.C
| |
Collapse
|
12
|
Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). Dis Model Mech 2018; 11:dmm.034561. [PMID: 30061297 PMCID: PMC6177007 DOI: 10.1242/dmm.034561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.
Collapse
Affiliation(s)
- Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Developmental Biology, New York, NY 10065, USA.,Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Stephanie Tepan
- Memorial Sloan Kettering Cancer Center, 2017 Summer Clinical Oncology Research Experience (SCORE) Program, New York, NY 10065, USA.,Hunter College, New York, NY 10065, USA
| | - Yan M Zhang
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Isabella S Kim
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA
| | - Travis J Hollmann
- Memorial Sloan Kettering Cancer Center, Pathology, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics and Department of Medicine, New York, NY 10065, USA .,Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
13
|
Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017; 11:663. [PMID: 29311765 PMCID: PMC5732983 DOI: 10.3389/fnins.2017.00663] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies.
Collapse
Affiliation(s)
- Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, Ghent, Belgium
| | | | - Katrien Mols
- Neuroscience Research Flanders, Leuven, Belgium.,Life Science and Imaging, Imec, Leuven, Belgium
| | | | - Dimiter Prodanov
- Neuroscience Research Flanders, Leuven, Belgium.,Environment, Health and Safety, Imec, Leuven, Belgium
| |
Collapse
|
14
|
Zhao X, Shang T, Zhang X, Ye T, Wang D, Rei L. Passage of Magnetic Tat-Conjugated Fe 3O 4@SiO 2 Nanoparticles Across In Vitro Blood-Brain Barrier. NANOSCALE RESEARCH LETTERS 2016; 11:451. [PMID: 27726119 PMCID: PMC5056918 DOI: 10.1186/s11671-016-1676-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 05/22/2023]
Abstract
Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4-Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.
Collapse
Affiliation(s)
- Xueqin Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Ting Shang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Xiaodan Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Dajin Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Lei Rei
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|