1
|
Chang YT, Bai R, Hsia YT, Karmakar I, Badsara SS, Lee S, Lee CF. Palladium-catalyzed reductive cross-coupling reaction of carboxylic acids with thiols: an alternative strategy to access thioesters. Org Biomol Chem 2025; 23:4487-4496. [PMID: 40223779 DOI: 10.1039/d5ob00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A practical and alternative approach to access thioesters is presented, utilizing readily available starting precursors such as carboxylic acids and thiols via direct reductive C-S cross-coupling reactions under palladium catalysis. The present protocol features good atom economy, excellent yields, wide functional group tolerance, broad substrate scope, operational simplicity, and mild reaction conditions with no additional steps.
Collapse
Affiliation(s)
- Yen-Ting Chang
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Yang-Ting Hsia
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Indrajit Karmakar
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, Republic of China.
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, Republic of China
| |
Collapse
|
2
|
Li H, Ou L, Zhang Y, Xiao W, Yi Z, Zhao Y, Fu H. N-Sulfonyl Imidazoliums as the Versatile Coupling Reagents and Sulfonating Reagents in Synthesis of Amides, Esters, Thioesters, Phosphoramides, Phosphoesters, Glycosides, Sulfonamides, and Sulfonates. Chemistry 2025:e202501206. [PMID: 40326681 DOI: 10.1002/chem.202501206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/07/2025]
Abstract
Here, we report a novel strategy for the first time: bench-stable N-sulfonyl imidazoliums were used as the robust and versatile coupling reagents and sulfonating reagents. Fast reactions of N-sulfonyl imidazoliums with carboxylic acids or phosphodiesters formed carboxylic acid-sulfonic acid mixed anhydrides and phospho-sulfonic acid mixed anhydrides, respectively, and the subsequent treatments of the highly active intermediates with the corresponding nucleophilic partners in the presence of imidazoles at room temperature provided amides, dipeptides, carboxylic esters, carboxylic thioesters (almost without racemization during the formation of amides, dipeptides, esters, thioesters), phosphamides, and phosphoesters in high to excellent yields. This kind of N-sulfonyl imidazolium as the coupling reagent was successfully applied in solid phase synthesis of a polypeptide containing 32 amino acid residues. This strategy was effectively extended to the construction of glycosides, and high steroselectivity and good yields were provided. In addition, reactions of N-sulfonyl imidazoliums with amines or alcohols afforded the corresponding sulfonamides and sulfonates in excellent yields. This study should provide a highly efficient, economical, and practical strategy for construction of diverse molecules.
Collapse
Affiliation(s)
- Hongyun Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weixin Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhengyi Yi
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Kent A, Robins JG, Knudson IJ, Vance JT, Solivan AC, Hamlish NX, Fitzgerald KA, Schepartz A, Miller SJ, Cate JHD. Thioesters Support Efficient Protein Biosynthesis by the Ribosome. ACS CENTRAL SCIENCE 2025; 11:404-412. [PMID: 40161951 PMCID: PMC11950863 DOI: 10.1021/acscentsci.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 04/02/2025]
Abstract
Thioesters are critical chemical intermediates in numerous extant biochemical reactions and are invoked as key reagents during prebiotic peptide synthesis on an evolving Earth. Here we asked if a thioester could replace the native oxo-ester in acyl-tRNA substrates during protein biosynthesis by the ribosome. We prepared 3'-thio-3'-deoxyadenosine triphosphate in 10 steps from xylose and demonstrated that it is an effective substrate for the Escherichia coli CCA-adding enzyme, which appends 3'-thio-3'-deoxyadenosine to truncated tRNAs ending with 3'-CC. Using a variety of aminoacyl-tRNA synthetases, flexizymes, or a direct thioester exchange reaction, we prepared a suite of 3'-thio-tRNAs acylated with α- and non-α-amino acids. All were recognized and utilized by wild-type E. coli ribosomes during in vitro translation reactions to generate oligopeptides in yields commensurate with native oxo-ester tRNAs. These results indicate that thioester intermediates widely used in Nature can be co-opted to support the incorporation of natural α-amino acids as well as noncanonical monomers by the extant translational machinery for sequence-defined polymer synthesis.
Collapse
Affiliation(s)
- Alexandra
D. Kent
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jacob G. Robins
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Isaac J. Knudson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jessica T. Vance
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Alexander C. Solivan
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Noah X. Hamlish
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Katelyn A. Fitzgerald
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jamie H. D. Cate
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
El Qami A, Hilari JI, Blandin V, Gayraud O, Milet A, Vallée Y. Prebiotic formation of thioesters via cyclic anhydrides as a key step in the emergence of metabolism. Sci Rep 2025; 15:7039. [PMID: 40016351 PMCID: PMC11868630 DOI: 10.1038/s41598-025-91547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Thioesters are high-energy derivatives of carboxylic acids that are essential in the functioning of today's living cells. Their central role argues in favor of their early introduction in the abiotic reaction network which led to the emergence of life on Earth. We propose that the first thioesters appeared during the establishment of the reverse tricarboxylic acid (rTCA) cycle, an effective metabolic cycle for the synthesis of organic molecules from CO2. Most of the acids in this cycle are 1,4-diacids. We show that the formation of a cyclic anhydride from aqueous solutions of succinic or citric acid is possible using drying conditions over silica, as it could happen in an evaporating pond. When these 1,4-diacids are dried in the presence of thiols, thioesters are obtained. Our experimental and theoretical results demonstrate that analogs of succinyl-CoA and citryl-CoA, thioesters from the rTCA cycle, can be produced. Such a process highlights the importance of 1,4-diacids, which would have been introduced in the metabolism then under construction because of their ability to form anhydrides and to be activated in the absence of triphosphates or of any other activating agent. At its beginning, the rTCA cycle should therefore be interpreted mainly as a "1,4-diacid cycle".
Collapse
Affiliation(s)
| | | | | | - Oscar Gayraud
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Anne Milet
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Yannick Vallée
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France.
| |
Collapse
|
5
|
Sanden SA, Butch CJ, Bartlett S, Virgo N, Sekine Y, McGlynn SE. Rapid hydrolysis rates of thio- and phosphate esters constrain the origin of metabolism to cool, acidic to neutral environments. iScience 2024; 27:111088. [PMID: 39493872 PMCID: PMC11530844 DOI: 10.1016/j.isci.2024.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Universal to all life is a reliance on energy carriers such as adenosine triphosphate (ATP) which connect energy-releasing reactions to energy-consuming processes. While ATP is ubiquitously used today, simpler molecules such as thioesters and polyphosphates are hypothesized to be primordial energy carriers. Investigating environmental constraints on the non-enzymatic emergence of metabolism, we find that hydrolysis rates-not hydrolysis energies-differentiate phosphate esters and thioesters. At temperatures consistent with thermophilic microbes, thioesters are favored at acidic pH and phosphate esters at basic pH. Thioacids have a high stability across pH 5-10. The planetary availability of sulfur and phosphate is coincident with these calculations, with phosphate being abundant in alkaline and sulfur in acidic environments. Since both sulfur esters and phosphate esters are uniquely required in metabolism, our results point to a non-thermophilic origin of early metabolism at cool, acidic to neutral environments.
Collapse
Affiliation(s)
- Sebastian A. Sanden
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Inorganic Chemistry I, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Christopher J. Butch
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Stuart Bartlett
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathaniel Virgo
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhito Sekine
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
- Planetary Plasma and Atmospheric Research Center, Tohoku University, Miyagi, Japan
| | - Shawn Erin McGlynn
- Earth Life Science Institute, Tokyo Institute of Technology, 2-12-1 I7E Ookayama, Meguro, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
6
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
7
|
Wu S, Melchiorre P. Photochemical Synthesis of Thioesters from Aryl Halides and Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202407520. [PMID: 38887166 DOI: 10.1002/anie.202407520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Thioesters are important in synthesis, materials science, and biology, and their preparation traditionally relies on the use of disagreeable thiols. Here, we report a thiol-free protocol that stitches together widespread carboxylic acids and aryl halides, producing a diverse array of thioesters. Crucial to this strategy is the discovery that tetramethylthiourea can serve as both a sulfur source and, upon direct excitation by purple light, as a strong reductant, suitable for activating aryl halides via single-electron transfer. Coupling of the resulting aryl radicals provides an isothiouronium ion intermediate, which can be attacked by carboxylic acids via a polar pathway, affording the thioester products under mild conditions.
Collapse
Affiliation(s)
- Shuo Wu
- ICIQ - Institute of Chemical Research of Catalonia, the Barcelona Institute of Science and Technology, Avenida Països Catalans 16-, 43007, Tarragona, Spain
| | - Paolo Melchiorre
- University of Bologna, Department of Industrial Chemistry 'Toso Montanari', via Piero Gobetti, 85-, 40129, Bologna, Italy
| |
Collapse
|
8
|
Wang R, Yuan JL, Liang KL, Hu JY, Fu Q, Liang FS. Ambient-Light-Promoted Stereospecific Synthesis of ( Z)-Vinyl Thioesters under Solvent- and Catalyst-Free Conditions. J Org Chem 2024; 89:9597-9608. [PMID: 38885461 DOI: 10.1021/acs.joc.4c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- College of Chemical Engineering, Tianjin University, Tianjin 300072, China
- YASUA Chemical Co., Ltd., Zhejiang 314200, China
| | - Jia-Long Yuan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun-Long Liang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ji-Yun Hu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
9
|
Kolliyedath G, Sahana T, Johnson SM, Kundu S. Synergistic Activation of Nitrite and Thiocarbonyl Compounds Affords NO and Sulfane Sulfur via (Per)thionitrite (SNO - /SSNO - ). Angew Chem Int Ed Engl 2023; 62:e202313187. [PMID: 37856704 DOI: 10.1002/anie.202313187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
(Per)thionitrite (SNO- /SSNO- ) intermediates play vital roles in modulating nitric oxide (NO) and hydrogen sulfide (H2 S) dependent bio-signalling processes. Whilst the previous preparations of such intermediates involved reactive H2 S/HS- or sulfane sulfur (S0 ) species, the present report reveals that relatively stable thiocarbonyl compounds (such as carbon disulfide (CS2 ), thiocarbamate, thioacetic acid, and thioacetate) react with nitrite anion to yield SNO- /SSNO- . For instance, the reaction of CS2 and nitrite anion (NO2 - ) under ambient condition affords CO2 and SNO- /SSNO- . A detailed investigation involving UV/Vis, FTIR, HRMS, and multinuclear NMR studies confirm the formation of SNO- /SSNO- , which are proposed to form through an initial nucleophilic attack by nitrite anion followed by a transnitrosation step. Notably, reactions of CS2 and nitrite in the presence of thiol RSH show the formation of organic polysulfides R-Sn -R, thereby illustrating that the thiocarbonyls are capable of influencing the pool of bioavailable sulfane sulfurs. Furthermore, the availability of both NO2 - and thiocarbonyl motifs in the biological context hints at their synergistic metal-free activations leading to the generation of NO gas and various reactive sulfur species via SNO- /SSNO- .
Collapse
Affiliation(s)
- Gayathri Kolliyedath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Tuhin Sahana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Silpa Mary Johnson
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
10
|
Ismaeel N, Imran S, Zhu X, Chen J, Yuan D, Yao Y. Rare Earth Amide-Catalyzed Direct Thioesterification of Aldehydes with Thiols under Mild Conditions. Org Lett 2023. [PMID: 37991481 DOI: 10.1021/acs.orglett.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Direct thioesterification of aldehydes with thiols catalyzed by readily accessible rare earth/lithium amide RE[N(SiMe3)2]3(μ-Cl)Li(THF)3 is developed, which enables the preparation of a range of thioesters (31 examples) under room temperature and solvent-free conditions, without using any additive or external oxidant. This method provides a straightforward and atom-efficient approach for the thioester synthesis.
Collapse
Affiliation(s)
- Nadia Ismaeel
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Sajid Imran
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Xuehua Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Jue Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
11
|
Su J, Chen A, Zhang G, Jiang Z, Zhao J. Photocatalytic Phosphine-Mediated Thioesterification of Carboxylic Acids with Disulfides. Org Lett 2023; 25:8033-8037. [PMID: 37889086 DOI: 10.1021/acs.orglett.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, a practical and effective synthesis of thioesters from readily available carboxylic acids and odorless disulfides was developed under photocatalytic conditions. This approach involves phosphoranyl radical-mediated fragmentation to generate acyl radicals and allows for incorporation of both S atoms of the disulfides into the desired products. In addition to batch reactions, a continuous-flow reactor was employed, enabling rapid thioester synthesis on a gram scale. Preliminary experimental mechanistic studies and the rapid synthesis of dalcetrapib are also demonstrated.
Collapse
Affiliation(s)
- Junqi Su
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Aobo Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Guofeng Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
12
|
Crmarić D, Bura-Nakić E. Interaction between Cu and Thiols of Biological and Environmental Importance: Case Study Using Combined Spectrophotometric/Bathocuproine Sulfonate Disodium Salt Hydrate (BCS) Assay. Molecules 2023; 28:5065. [PMID: 37446731 DOI: 10.3390/molecules28135065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Considering the biological and ecological importance of Cu-thiol interactions and the discrepancies in previous research, this study focuses on Cu interactions with biologically and ecologically relevant thiols: glutathione (GSH), L-cysteine (L-cys), 3-mercaptopropionic acid (MPA), and thioacetic acid (TAA) in aqueous solution. The addition of Cu(II) to a thiol-containing solution led to a rapid reduction of Cu(II) and the formation of a Cu(I)-thiol complex. The mechanism of Cu(II) reduction and Cu(I) complex formation as well as the kinetics of Cu(I) oxidation strongly depend on the structural properties of the individual thiols investigated. The reducing power of the investigated thiols can be summarized as follows: L-cys ≅ GSH > MPA > TAA. The reaction order, with respect to Cu(I) oxidation, also changes over the time of the reaction course. The deviation of the reaction kinetics from the first order with respect to Cu(I) in the later stages of the reaction course can be attributed to a Fenton-like reaction occurring under low thiol concentration conditions. At high Cu:thiol ratios, in the case of GSH, L-cys, and MPA, the early stage of the reaction course is characterized by high Cu(I) stability, most likely as a result of Cu(I) complexation by the thiols present in excess in the reaction mixture.
Collapse
Affiliation(s)
- Dora Crmarić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Elvira Bura-Nakić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Tang H, Zhang M, Zhang Y, Luo P, Ravelli D, Wu J. Direct Synthesis of Thioesters from Feedstock Chemicals and Elemental Sulfur. J Am Chem Soc 2023; 145:5846-5854. [PMID: 36854068 DOI: 10.1021/jacs.2c13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of a mild, atom- and step-economical catalytic strategy that effectively generates value-added molecules directly from readily available commodity chemicals is a central goal of organic synthesis. In this context, the thiol-ene click chemistry for carbon-sulfur (C-S) bond construction has found widespread applications in the synthesis of pharmaceuticals and functional materials. In contrast, the selective carbonyl thiyl radical addition to carbon-carbon multiple bonds remains underdeveloped. Herein, we report a carbonyl thiyl radical-based thioester synthesis through three-component coupling from feedstock aldehydes, alkenes, or alkynes and elemental sulfur by direct photocatalyzed hydrogen atom transfer. This method represents an orthogonal strategy to the conventional thiol-based nucleophilic substitution and exhibits a remarkably broad substrate scope ranging from simple commodity chemicals such as ethylene and acetylene to complex pharmaceutical molecules. This protocol can be easily extended to the synthesis of thiolactones, oligomer/polymers, and thioacids. Its synthetic utility has been demonstrated by a two-step synthesis of the drug esonarimod. Mechanistic studies indicate that the use of elemental sulfur to trap acyl radicals is both thermodynamically and kinetically favored, illustrating its great potential for the synthesis of sulfur-containing molecules.
Collapse
Affiliation(s)
- Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
14
|
Bartlett S, Louapre D. Provenance of life: Chemical autonomous agents surviving through associative learning. Phys Rev E 2022; 106:034401. [PMID: 36266823 DOI: 10.1103/physreve.106.034401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
We present a benchmark study of autonomous, chemical agents exhibiting associative learning of an environmental feature. Associative learning systems have been widely studied in cognitive science and artificial intelligence but are most commonly implemented in highly complex or carefully engineered systems, such as animal brains, artificial neural networks, DNA computing systems, and gene regulatory networks, among others. The ability to encode environmental information and use it to make simple predictions is a benchmark of biological resilience and underpins a plethora of adaptive responses in the living hierarchy, spanning prey animal species anticipating the arrival of predators to epigenetic systems in microorganisms learning environmental correlations. Given the ubiquitous and essential presence of learning behaviors in the biosphere, we aimed to explore whether simple, nonliving dissipative structures could also exhibit associative learning. Inspired by previous modeling of associative learning in chemical networks, we simulated simple systems composed of long- and short-term memory chemical species that could encode the presence or absence of temporal correlations between two external species. The ability to learn this association was implemented in Gray-Scott reaction-diffusion spots, emergent chemical patterns that exhibit self-replication and homeostasis. With the novel ability of associative learning, we demonstrate that simple chemical patterns can exhibit a broad repertoire of lifelike behavior, paving the way for in vitro studies of autonomous chemical learning systems, with potential relevance to artificial life, origins of life, and systems chemistry. The experimental realization of these learning behaviors in protocell or coacervate systems could advance a new research direction in astrobiology, since our system significantly reduces the lower bound on the required complexity for autonomous chemical learning.
Collapse
Affiliation(s)
- Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA and Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - David Louapre
- Ubisoft Entertainment, 94160 Saint-Mandé, France and Science Étonnante, 75014 Paris, France†
| |
Collapse
|
15
|
Villamil V, Saiz C, Mahler G. Thioester deprotection using a biomimetic NCL approach. Front Chem 2022; 10:934376. [PMID: 36072700 PMCID: PMC9441695 DOI: 10.3389/fchem.2022.934376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The reversibility of the thiol-thioester linkage has been broadly employed in many fields of biochemistry (lipid synthesis) and chemistry (dynamic combinatorial chemistry and material science). When the transthioesterification is followed by a S-to-N acyl transfer to give an amide bond, it is called Native Chemical Ligation (NCL), a high-yield chemoselective process used for peptide synthesis. Recently, we described thioglycolic acid (TGA) as a useful reagent for thioester deprotection both in solution and anchored to a solid-support under mild conditions. Inspired by NCL, in this work, we extended this approach and explored the use of 2-aminothiols for the deprotection of thiols bearing an acyl group. The best results were obtained using cysteamine or L-cysteine in an aqueous buffer pH 8 at room temperature for 30 min. The described approach was useful for S-acetyl, S-butyryl, and S-benzoyl heterocycles deprotection with yields up to 84%. Employing this methodology, we prepared six new analogs 2 of mercaptomethyl bisthiazolidine 1, a useful inhibitor of a wide-range of Metallo-β-Lactamases (MBLs). Compared with the previous methodologies (TGA polymer supported and TGA in solution), the biomimetic deprotection herein described presents better performance with higher yields, shorter reaction times, less time-consuming operations, easier setup, and lower costs.
Collapse
Affiliation(s)
- Valentina Villamil
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Frenkel-Pinter M, Bouza M, Fernández FM, Leman LJ, Williams LD, Hud NV, Guzman-Martinez A. Thioesters provide a plausible prebiotic path to proto-peptides. Nat Commun 2022; 13:2569. [PMID: 35562173 PMCID: PMC9095695 DOI: 10.1038/s41467-022-30191-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
It is widely assumed that the condensation of building blocks into oligomers and polymers was important in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic peptide formation. All abiotic reactions reported thus far for peptide bond formation via thioester intermediates have relied on high energy molecules, which usually suffer from short half-life in aqueous conditions and therefore require constant replenishment. Here we report plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of thiodepsipeptides, which contain both peptide and thioester bonds. Thiodepsipeptide formation was achieved under a wide range of pH and temperature by simply drying and heating mercaptoacids with amino acids. Our results offer a robust one-pot prebiotically-plausible pathway for proto-peptide formation. These results support the hypothesis that thiodepsipeptides and thiol-terminated peptides formed readily on prebiotic Earth and were possible contributors to early chemical evolution. One of the early processes enabling the origins of life is thought to be the condensation of building blocks into oligomers and polymers. In this article, the authors report the synthesis of thiodepsipeptides and HS-peptides under mild temperatures and various pH, suggesting they could have formed on early prebiotic Earth.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Marcos Bouza
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Facundo M Fernández
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luke J Leman
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Loren Dean Williams
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nicholas V Hud
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Aikomari Guzman-Martinez
- NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Department of Chemistry, University of Puerto Rico, Mayagüez, Mayagüez, PR, 00681, USA.
| |
Collapse
|
17
|
Ziyaei Halimehjani A, Breit B. Rhodium-catalyzed regioselective addition of thioacids to terminal allenes: enantioselective access to branched allylic thioesters. Chem Commun (Camb) 2022; 58:1704-1707. [PMID: 35023518 DOI: 10.1039/d1cc06470c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-catalyzed regio- and enantioselective hydrothiolation of terminal allenes with thioacids is reported for the atom-economic synthesis of chiral branched allylic thioesters. By using a rhodium(I) catalyst system, diversities of terminal allenes and thioacids afforded the corresponding branched thioesters in excellent regioselectivity, high yield, and good enantioselectivity. This method was also explored for Fmoc-protected aminothioacids for diastereoselective synthesis of the corresponding thioesters.
Collapse
Affiliation(s)
- A Ziyaei Halimehjani
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran. .,Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| | - B Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
18
|
Goncharova IK, Ulianova EA, Novikov RA, Volodin AD, Korlyukov AA, Arzumanyan AV. Siloxane-containing derivatives of benzoic acid: chemical transformation of the carboxyl group. NEW J CHEM 2022. [DOI: 10.1039/d2nj03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research presents a scalable method for chemical transformation of Si-containing derivatives of benzoic acid to a wide range of corresponding esters, thioesters, amides, etc. Some of them form HOF-like structures in the crystalline state.
Collapse
Affiliation(s)
- Irina K. Goncharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Eva A. Ulianova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- HZ University of Applied Sciences, 4382 NW Middelburg, The Netherlands
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Alexander D. Volodin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Ashot V. Arzumanyan
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
19
|
Liu C, Szostak M. Decarbonylative Sulfide Synthesis from Carboxylic Acids and Thioesters via Cross-Over C-S Activation and Acyl Capture. Org Chem Front 2021; 8:4805-4813. [PMID: 34745635 DOI: 10.1039/d1qo00824b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the synthesis of sulfides from carboxylic acids via thioester C-S activation and acyl capture has been accomplished, wherein thioesters serve as dual electrophilic activators to carboxylic acids as well as S-nucleophiles through the merger of decarbonylative palladium catalysis and sulfur coupling. This new concept engages readily available carboxylic acids as coupling partners to directly intercept sulfur reagents via redox-neutral thioester-enabled cross-over thioetherification. The scope of this platform is demonstrated in the highly selective decarbonylative thioetherification of a variety of carboxylic acids and thioesters, including late-stage derivatization of pharmaceuticals and natural products. This method operates under mild, external base-free, operationally-practical conditions, providing a powerful new framework to unlock aryl electrophiles from carboxylic acids and bolster the reactivity by employing common building blocks in organic synthesis.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
20
|
Rodríguez-Almeida LF, Jimenéz-Serra I, Rivilla VM, Martín-Pintado J, Zeng S, Tercero B, de Vicente P, Colzi L, Rico-Villas F, Martín S, Requena-Torres MA. Thiols in the ISM: first detection of HC(O)SH and confirmation of C 2H 5SH. THE ASTROPHYSICAL JOURNAL. LETTERS 2021; 912:L11. [PMID: 34257894 PMCID: PMC7611195 DOI: 10.3847/2041-8213/abf7cb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.693-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of ~ 1 × 10-10. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C2H5SH) with an abundance of ~ 3 × 10-10, and we also detect methyl mercaptan (CH3SH) with an abundance of ~ 5 × 10-9. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH3SH and C2H5SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.
Collapse
Affiliation(s)
| | - Izaskun Jimenéz-Serra
- Centro de Astrobiolog’a (CSIC-INTA), Ctra Ajalvir km 4, 28850, Torrejon de Ardoz, Madrid, Spain
| | - Víctor M. Rivilla
- Centro de Astrobiolog’a (CSIC-INTA), Ctra Ajalvir km 4, 28850, Torrejon de Ardoz, Madrid, Spain
- INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125, Florence, Italy
| | - Jesús Martín-Pintado
- Centro de Astrobiolog’a (CSIC-INTA), Ctra Ajalvir km 4, 28850, Torrejon de Ardoz, Madrid, Spain
| | - Shaoshan Zeng
- Star and Planet Formation Laboratory, Cluster for Pioneering Research, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Belén Tercero
- Observatorio de Yebes (IGN), Cerro de la Palera s/n, 19141, Guadalajara, Spain
| | - Pablo de Vicente
- Observatorio de Yebes (IGN), Cerro de la Palera s/n, 19141, Guadalajara, Spain
| | - Laura Colzi
- Centro de Astrobiolog’a (CSIC-INTA), Ctra Ajalvir km 4, 28850, Torrejon de Ardoz, Madrid, Spain
- INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125, Florence, Italy
| | - Fernando Rico-Villas
- Centro de Astrobiolog’a (CSIC-INTA), Ctra Ajalvir km 4, 28850, Torrejon de Ardoz, Madrid, Spain
| | - Sergio Martín
- Eureopean Southern Observatory, Alonso de Cordova 3107, Vitacura 763 0355, Santiago, Chile
- Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763 0355, Santiago, Chile
| | - Miguel A. Requena-Torres
- University of Maryland, College Park, ND 20742-2421, USA
- Department of Physics, Astronomy and Geosciences, Towson University, MD 21252, USA
| |
Collapse
|
21
|
Kitadai N, Nakamura R, Yamamoto M, Okada S, Takahagi W, Nakano Y, Takahashi Y, Takai K, Oono Y. Thioester synthesis through geoelectrochemical CO 2 fixation on Ni sulfides. Commun Chem 2021; 4:37. [PMID: 36697522 PMCID: PMC9814748 DOI: 10.1038/s42004-021-00475-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
A prevailing scenario of the origin of life postulates thioesters as key intermediates in protometabolism, but there is no experimental support for the prebiotic CO2 fixation routes to thioesters. Here we demonstrate that, under a simulated geoelectrochemical condition in primordial ocean hydrothermal systems (-0.6 to -1.0 V versus the standard hydrogen electrode), nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound carbon monoxide (CO) due to CO2 electroreduction. The resultant partially reduced NiS realizes thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH with the yield up to 35% based on CO. This thioester formation is not inhibited, or even improved, by 50:50 coprecipitation of NiS with FeS or CoS (the maximum yields; 27 or 56%, respectively). Such a simple thioester synthesis likely occurred in Hadean deep-sea vent environments, setting a stage for the autotrophic origin of life.
Collapse
Affiliation(s)
- Norio Kitadai
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan ,grid.32197.3e0000 0001 2179 2105Earth-Life Science Institute, Tokyo Institute of Technology, Meguroku, Tokyo Japan
| | - Ryuhei Nakamura
- grid.32197.3e0000 0001 2179 2105Earth-Life Science Institute, Tokyo Institute of Technology, Meguroku, Tokyo Japan ,grid.7597.c0000000094465255Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama Japan
| | - Masahiro Yamamoto
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Okada
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Wataru Takahagi
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Yuko Nakano
- grid.32197.3e0000 0001 2179 2105Earth-Life Science Institute, Tokyo Institute of Technology, Meguroku, Tokyo Japan
| | - Yoshio Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo Japan
| | - Ken Takai
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshi Oono
- grid.35403.310000 0004 1936 9991Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
22
|
Luo J, Rauch M, Avram L, Ben-David Y, Milstein D. Catalytic Hydrogenation of Thioesters, Thiocarbamates, and Thioamides. J Am Chem Soc 2020; 142:21628-21633. [PMID: 33332968 PMCID: PMC7775745 DOI: 10.1021/jacs.0c10884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Direct hydrogenation of thioesters with H2 provides a facile and waste-free method to access alcohols and thiols. However, no report of this reaction is documented, possibly because of the incompatibility of the generated thiol with typical hydrogenation catalysts. Here, we report an efficient and selective hydrogenation of thioesters. The reaction is catalyzed by an acridine-based ruthenium complex without additives. Various thioesters were fully hydrogenated to the corresponding alcohols and thiols with excellent tolerance for amide, ester, and carboxylic acid groups. Thiocarbamates and thioamides also undergo hydrogenation under similar conditions, substantially extending the application of hydrogenation of organosulfur compounds.
Collapse
|
23
|
Luo J, Rauch M, Avram L, Diskin-Posner Y, Shmul G, Ben-David Y, Milstein D. Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-00514-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
A way to thioacetate esters compatible with non-oxidative prebiotic conditions. Sci Rep 2020; 10:14488. [PMID: 32879403 PMCID: PMC7467925 DOI: 10.1038/s41598-020-71524-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
The centrality of pyruvate oxidative decarboxylation into acetyl-CoA in current biochemistry is a strong argument for proposing that a similar reaction have been necessary for the development of an effective protometabolism on the primitive Earth. However, such a decarboxylation requires the use of an oxidant and a catalyst, today enzymatic. Based on the mechanisms of the pyruvate dehydrogenase complex and pyruvate-ferredoxin oxidoreductase, we propose that the initial mechanism involved disulfides and occurred via radicals. A first disulfide is obtained by reacting glyoxylate with hydrogen sulfide. It is then possible to produce a wide variety of other disulfides by exchange reactions. When reacted with pyruvate under UV light they give thioesters. This process requires no oxidant and is therefore compatible with what is known of the redox conditions of the early Earth. Neither does it require any catalyst. It could be the first way to acetyl thioesters, a way that was later improved by the introduction of catalysts, first minerals, then enzymes.
Collapse
|
25
|
Muchowska KB, Varma SJ, Moran J. Nonenzymatic Metabolic Reactions and Life's Origins. Chem Rev 2020; 120:7708-7744. [PMID: 32687326 DOI: 10.1021/acs.chemrev.0c00191] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prebiotic chemistry aims to explain how the biochemistry of life as we know it came to be. Most efforts in this area have focused on provisioning compounds of importance to life by multistep synthetic routes that do not resemble biochemistry. However, gaining insight into why core metabolism uses the molecules, reactions, pathways, and overall organization that it does requires us to consider molecules not only as synthetic end goals. Equally important are the dynamic processes that build them up and break them down. This perspective has led many researchers to the hypothesis that the first stage of the origin of life began with the onset of a primitive nonenzymatic version of metabolism, initially catalyzed by naturally occurring minerals and metal ions. This view of life's origins has come to be known as "metabolism first". Continuity with modern metabolism would require a primitive version of metabolism to build and break down ketoacids, sugars, amino acids, and ribonucleotides in much the same way as the pathways that do it today. This review discusses metabolic pathways of relevance to the origin of life in a manner accessible to chemists, and summarizes experiments suggesting several pathways might have their roots in prebiotic chemistry. Finally, key remaining milestones for the protometabolic hypothesis are highlighted.
Collapse
Affiliation(s)
| | - Sreejith J Varma
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France
| |
Collapse
|
26
|
do Nascimento Vieira A, Kleinermanns K, Martin WF, Preiner M. The ambivalent role of water at the origins of life. FEBS Lett 2020; 594:2717-2733. [PMID: 32416624 DOI: 10.1002/1873-3468.13815] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Life as we know it would not exist without water. However, water molecules not only serve as a solvent and reactant but can also promote hydrolysis, which counteracts the formation of essential organic molecules. This conundrum constitutes one of the central issues in origin of life. Hydrolysis is an important part of energy metabolism for all living organisms but only because, inside cells, it is a controlled reaction. How could hydrolysis have been regulated under prebiotic settings? Lower water activities possibly provide an answer: geochemical sites with less free and more bound water can supply the necessary conditions for protometabolic reactions. Such conditions occur in serpentinising systems, hydrothermal sites that synthesise hydrogen gas via rock-water interactions. Here, we summarise the parallels between biotic and abiotic means of controlling hydrolysis in order to narrow the gap between biochemical and geochemical reactions and briefly outline how hydrolysis could even have played a constructive role at the origin of molecular self-organisation.
Collapse
Affiliation(s)
| | | | - William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| | - Martina Preiner
- Institute for Molecular Evolution, University of Düsseldorf, Germany
| |
Collapse
|
27
|
Bartlett S, Wong ML. Defining Lyfe in the Universe: From Three Privileged Functions to Four Pillars. Life (Basel) 2020; 10:E42. [PMID: 32316364 PMCID: PMC7235751 DOI: 10.3390/life10040042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Motivated by the need to paint a more general picture of what life is-and could be-with respect to the rest of the phenomena of the universe, we propose a new vocabulary for astrobiological research. Lyfe is defined as any system that fulfills all four processes of the living state, namely: dissipation, autocatalysis, homeostasis, and learning. Life is defined as the instance of lyfe that we are familiar with on Earth, one that uses a specific organometallic molecular toolbox to record information about its environment and achieve dynamical order by dissipating certain planetary disequilibria. This new classification system allows the astrobiological community to more clearly define the questions that propel their research-e.g., whether they are developing a historical narrative to explain the origin of life (on Earth), or a universal narrative for the emergence of lyfe, or whether they are seeking signs of life specifically, or lyfe at large across the universe. While the concept of "life as we don't know it" is not new, the four pillars of lyfe offer a novel perspective on the living state that is indifferent to the particular components that might produce it.
Collapse
Affiliation(s)
- Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Michael L. Wong
- Department of Astronomy and Astrobiology Program, University of Washington, Seattle, WA 98195, USA;
- NASA Nexus for Exoplanet System Science’s Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
29
|
Sanden SA, Yi R, Hara M, McGlynn SE. Simultaneous synthesis of thioesters and iron–sulfur clusters in water: two universal components of energy metabolism. Chem Commun (Camb) 2020; 56:11989-11992. [DOI: 10.1039/d0cc04078a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thioesters and peptide ligated [Fe–S] clusters can be synthesized simultaneously from thioacetic acid in an aqueous one-pot reaction.
Collapse
Affiliation(s)
- Sebastian A. Sanden
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- School of Materials and Chemical Technology
| | - Ruiqin Yi
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
| | - Masahiko Hara
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- School of Materials and Chemical Technology
| | - Shawn E. McGlynn
- Earth Life Science Institute
- Tokyo Institute of Technology
- Meguro
- Japan
- Center for Sustainable Resource Science
| |
Collapse
|
30
|
Chakraborty J, Nemeria NS, Zhang X, Nareddy PR, Szostak M, Farinas E, Jordan F. Engineering 2‐
oxoglutarate
dehydrogenase to a 2‐oxo
aliphatic
dehydrogenase complex by optimizing consecutive components. AIChE J 2019. [DOI: 10.1002/aic.16769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | | | - Xu Zhang
- Department of Chemistry Rutgers University Newark New Jersey
| | | | - Michal Szostak
- Department of Chemistry Rutgers University Newark New Jersey
| | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark New Jersey
| |
Collapse
|
31
|
Mariscal C, Barahona A, Aubert-Kato N, Aydinoglu AU, Bartlett S, Cárdenas ML, Chandru K, Cleland C, Cocanougher BT, Comfort N, Cornish-Bowden A, Deacon T, Froese T, Giovannelli D, Hernlund J, Hut P, Kimura J, Maurel MC, Merino N, Moreno A, Nakagawa M, Peretó J, Virgo N, Witkowski O, James Cleaves H. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. ORIGINS LIFE EVOL B 2019; 49:111-145. [PMID: 31399826 DOI: 10.1007/s11084-019-09580-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.
Collapse
Affiliation(s)
- Carlos Mariscal
- Department of Philosophy, Ecology, Evolution, and Conservation Biology (EECB) Program, and Integrative Neuroscience Program, University of Nevada, Reno (UNR), Reno, Nevada, USA
| | - Ana Barahona
- Department of Evolutionary Biology, School of Sciences, UNAM, 04510, CDMX, Coyoacán, Mexico
| | - Nathanael Aubert-Kato
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Information Sciences, Ochanomizu University, Bunkyoku, Otsuka, 2-1-1, Tokyo, 112-0012, Japan
| | - Arsev Umur Aydinoglu
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA
- Science and Technology Policies Department, Middle East Technical University (METU), 06800, Ankara, Turkey
| | - Stuart Bartlett
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | | | - Kuhan Chandru
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Space Science Centre (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague, 6, Dejvice, Czech Republic
| | - Carol Cleland
- Department of Philosophy, University of Colorado, Boulder, Colorado, USA
| | - Benjamin T Cocanougher
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Nathaniel Comfort
- Department of the History of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Terrence Deacon
- Department of Anthropology & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tom Froese
- Institute for Applied Mathematics and Systems Research (IIMAS), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
- Centre for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Department of Marine and Coastal Science, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
- YHouse, Inc., NY, 10159, New York, USA
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80156, Naples, Italy
| | - John Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Piet Hut
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Jun Kimura
- Department of Earth and Space Science, Osaka University, Machikaneyama-Chou 1-1, Toyonaka City, Osaka, 560-0043, Japan
| | | | - Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Earth Sciences, University of Southern California, California, Los Angeles, 90089, USA
| | - Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country, Avenida de Tolosa 70, 20018, Donostia-San Sebastian, Spain
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology, University of Valéncia and Institute for Integrative Systems Biology I2SysBio (University of Valéncia-CSIC), València, Spain
| | - Nathaniel Virgo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- European Centre for Living Technology, Venice, Italy
| | - Olaf Witkowski
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA.
- Institute for Advanced Study, Princeton, NJ, 08540, USA.
- European Centre for Living Technology, Venice, Italy.
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
32
|
Prebiotic Soup Components Trapped in Montmorillonite Nanoclay Form New Molecules: Car-Parrinello Ab Initio Simulations. Life (Basel) 2019; 9:life9020046. [PMID: 31167366 PMCID: PMC6617125 DOI: 10.3390/life9020046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The catalytic effects of complex minerals or meteorites are often mentioned as important factors for the origins of life. To assess the possible role of nanoconfinement within a catalyst consisting of montmorillonite (MMT) and the impact of local electric field on the formation efficiency of the simple hypothetical precursors of nucleic acid bases or amino acids, we performed ab initio Car–Parrinello molecular dynamics simulations. We prepared four condensed-phase systems corresponding to previously suggested prototypes of a primordial soup. We monitored possible chemical reactions occurring within gas-like bulk and MMT-confined four simulation boxes on a 20-ps time scale at 1 atm and 300 K, 400 K, and 600 K. Elevated temperatures did not affect the reactivity of the elementary components of the gas-like boxes considerably; however, the presence of the MMT nanoclay substantially increased the formation probability of new molecules. Approximately 20 different new compounds were found in boxes containing carbon monoxide or formaldehyde molecules. This observation and an analysis of the atom–atom radial distribution functions indicated that the presence of Ca2+ ions at the surface of the internal MMT cavities may be an important factor in the initial steps of the formation of complex molecules at the early stages of the Earth’s history.
Collapse
|
33
|
Chemistry of Homocysteine Thiolactone in A Prebiotic Perspective. Life (Basel) 2019; 9:life9020040. [PMID: 31100840 PMCID: PMC6616635 DOI: 10.3390/life9020040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/29/2023] Open
Abstract
Homocysteine is a non-proteinogenic sulfur-containing amino acid. Like cysteine, it can form disulfide bridges and complex metallic cations. It is also closely related to methionine, the first amino acid in the synthesis of all contemporary proteins. Furthermore, its cyclized form, a five-membered ring thiolactone, is stable in acidic and neutral water. Here, we demonstrate that this thiolactone may have been formed in the primitive ocean directly from the Strecker precursor of homocysteine, an aminonitrile. Even though it is poorly reactive, this thiolactone may be open by some amines, yielding amides which, in turn, could be the precursors of longer peptides.
Collapse
|
34
|
Varma SJ, Muchowska KB, Chatelain P, Moran J. Native iron reduces CO 2 to intermediates and end-products of the acetyl-CoA pathway. Nat Ecol Evol 2018; 2:1019-1024. [PMID: 29686234 PMCID: PMC5969571 DOI: 10.1038/s41559-018-0542-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 11/11/2022]
Abstract
Autotrophic theories for the origin of life propose that CO2 was the carbon source for primordial biosynthesis. Among the six known CO2 fixation pathways in nature, the acetyl CoA (or Wood-Ljungdahl) pathway is the most ancient, and relies on transition metals for catalysis. Modern microbes that use the acetyl CoA pathway typically fix CO2 with electrons from H2, which requires complex flavin-based electron bifurcation. This presents a paradox: How could primitive metabolic systems have fixed CO2 before the origin of proteins? Here we show that native transition metals (Fe0, Ni0, Co0) selectively reduce CO2 to acetate and pyruvate, the intermediates and end-products of the AcCoA pathway, in near mM levels in water over hours to days using 1-40 bar CO2 and at temperatures from 30-100 °C. Geochemical CO2 fixation from native metals could have supplied critical C2 and C3 metabolites before the emergence of enzymes.
Collapse
Affiliation(s)
- Sreejith J Varma
- Institute of Supramolecular Science and Engineering (UMR 7006), University of Strasbourg, National Center for Scientific Research , Strasbourg, France
| | - Kamila B Muchowska
- Institute of Supramolecular Science and Engineering (UMR 7006), University of Strasbourg, National Center for Scientific Research , Strasbourg, France
| | - Paul Chatelain
- Institute of Supramolecular Science and Engineering (UMR 7006), University of Strasbourg, National Center for Scientific Research , Strasbourg, France
| | - Joseph Moran
- Institute of Supramolecular Science and Engineering (UMR 7006), University of Strasbourg, National Center for Scientific Research , Strasbourg, France.
| |
Collapse
|
35
|
|
36
|
Whicher A, Camprubi E, Pinna S, Herschy B, Lane N. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life. ORIGINS LIFE EVOL B 2018; 48:159-179. [PMID: 29502283 PMCID: PMC6061221 DOI: 10.1007/s11084-018-9555-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/24/2018] [Indexed: 11/30/2022]
Abstract
Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest (~2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.
Collapse
Affiliation(s)
- Alexandra Whicher
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Eloi Camprubi
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Silvana Pinna
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Barry Herschy
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
37
|
Abstract
The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.
Collapse
|
38
|
Burke HM, McSweeney L, Scanlan EM. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology. Nat Commun 2017; 8:15655. [PMID: 28537277 PMCID: PMC5458133 DOI: 10.1038/ncomms15655] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/13/2017] [Indexed: 12/16/2022] Open
Abstract
S -to-N acyl transfer is a high-yielding chemoselective process for amide bond formation. It is widely utilized by chemists for synthetic applications, including peptide and protein synthesis, chemical modification of proteins, protein-protein ligation and the development of probes and molecular machines. Recent advances in our understanding of S -to-N acyl transfer processes in biology and innovations in methodology for thioester formation and desulfurization, together with an extension of the size of cyclic transition states, have expanded the boundaries of this process well beyond peptide ligation. As the field develops, this chemistry will play a central role in our molecular understanding of Biology. The conversion of thioesters to amides via acyl transfer has become one of the most important synthetic techniques for the chemical synthesis and modification of proteins. This review discusses this S-to-N acyl transfer process, and highlights some of the key applications across chemistry and biology.
Collapse
Affiliation(s)
- Helen M. Burke
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| | | | - Eoin M. Scanlan
- School of Chemistry, Trinity College Dublin, Dublin D2, Ireland
| |
Collapse
|