1
|
Jin L, Yang Z, Wang X, Wan S, Zhao H, Zhang Y, Jin J, Tian J. Free gas micro-/nano-bubble water: a novel dispersion system to prepare ultrasound imaging vehicles. BIOMED ENG-BIOMED TE 2025:bmt-2024-0280. [PMID: 40147980 DOI: 10.1515/bmt-2024-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Free gas micro-/nano-bubbles (MNBs) in water have demonstrated significant potential in various industrial applications, including water treatment, enhanced transport processes, and disinfection. However, the feasibility of utilizing MNBs water as a dispersed system for preparing ultrasound imaging vehicles is seldom explored. This study aims to investigate the potential of MNBs water for this purpose. METHODS Initially, MNBs water containing sulfur hexafluoride (SF6) was prepared and characterized. Subsequently, the potential of SF6 MNBs water to form lipid-shelled bubbles for ultrasound imaging was evaluated. This involved the incubation of lyophilized phospholipids with SF6 MNBs water. RESULTS The study confirmed the presence of SF6 MNBs in water. Through the incubation process, it was possible to obtain lipid-shelled bubbles with a nano-sized and narrow size distribution. These bubbles exhibited comparable echogenicity to those produced by conventional mechanical agitation methods during the initial 5 min of in vitro observation. CONCLUSIONS SF6 MNBs water represents a novel dispersion medium for generating nano-sized lipid-shelled bubbles. This approach offers a promising new method for extravascular ultrasound imaging and drug delivery, potentially expanding the applications of MNBs in medical imaging and therapeutic delivery systems.
Collapse
Affiliation(s)
- Lu Jin
- The First Clinical Medical College, 66478 Nanjing University of Chinese Medicine , Nanjing, Jiangsu, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
- Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, PR China
| | - Xu Wang
- College of Pharmacy, Nanjing University of Chinese Medicine Taizhou Campus, Taizhou, Jiangsu, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Huanhuan Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Towel Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, P. R. China
| | - Juan Jin
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
2
|
Theme 7 Pre-Clinical Therapeutic Strategies. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:197-217. [PMID: 39508670 DOI: 10.1080/21678421.2024.2403304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
3
|
Baena-Caldas GP, Li J, Pedraza L, Ghosh S, Kalmes A, Barone FC, Moreno H, Hernández AI. Neuroprotective effect of the RNS60 in a mouse model of transient focal cerebral ischemia. PLoS One 2024; 19:e0295504. [PMID: 38166102 PMCID: PMC10760892 DOI: 10.1371/journal.pone.0295504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/22/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Stroke is a major cause of death, disability, and public health problems. Its intervention is limited to early treatment with thrombolytics and/or endovascular clot removal with mechanical thrombectomy without any available subacute or chronic neuroprotective treatments. RNS60 has reduced neuroinflammation and increased neuronal survival in several animal models of neurodegeneration and trauma. The aim here was to evaluate whether RNS60 protects the brain and cognitive function in a mouse stroke model. METHODS Male C57BL/6J mice were subjected to sham or ischemic stroke surgery using 60-minute transient middle cerebral artery occlusion (tMCAo). In each group, mice received blinded daily administrations of RNS60 or control fluids (PNS60 or normal saline [NS]), beginning 2 hours after surgery over 13 days. Multiple neurobehavioral tests were conducted (Neurological Severity Score [mNSS], Novel Object Recognition [NOR], Active Place Avoidance [APA], and the Conflict Variant of APA [APAc]). On day 14, cortical microvascular perfusion (MVP) was measured, then brains were removed and infarct volume, immunofluorescence of amyloid beta (Aβ), neuronal density, microglial activation, and white matter damage/myelination were measured. SPSS was used for analysis (e.g., ANOVA for parametric data; Kruskal Wallis for non-parametric data; with post-hoc analysis). RESULTS Thirteen days of treatment with RNS60 reduced brain infarction, amyloid pathology, neuronal death, microglial activation, white matter damage, and increased MVP. RNS60 reduced brain pathology and resulted in behavioral improvements in stroke compared to sham surgery mice (increased memory-learning in NOR and APA, improved cognitive flexibility in APAc). CONCLUSION RNS60-treated mice exhibit significant protection of brain tissue and improved neurobehavioral functioning after tMCAo-stroke. Additional work is required to determine mechanisms, time-window of dosing, and multiple dosing volumes durations to support clinical stroke research.
Collapse
Affiliation(s)
- Gloria Patricia Baena-Caldas
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Health Sciences Division, Department of Morphology, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Jie Li
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Lina Pedraza
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Supurna Ghosh
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Andreas Kalmes
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Frank C. Barone
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - Herman Moreno
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - A. Iván Hernández
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| |
Collapse
|
4
|
Pernin F, Kuhlmann T, Kennedy TE, Antel JP. Oligodendrocytes in multiple sclerosis. MECHANISMS OF DISEASE PATHOGENESIS IN MULTIPLE SCLEROSIS 2024:261-287. [DOI: 10.1016/b978-0-12-823848-6.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Jana M, Dasarathy S, Ghosh S, Pahan K. Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054652. [PMID: 36902085 PMCID: PMC10002578 DOI: 10.3390/ijms24054652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB-CBP pathway. It may be of benefit for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
6
|
Beghi E, Pupillo E, Bianchi E, Bonetto V, Luotti S, Pasetto L, Bendotti C, Tortarolo M, Sironi F, Camporeale L, Sherman AV, Paganoni S, Scognamiglio A, De Marchi F, Bongioanni P, Del Carratore R, Caponnetto C, Diamanti L, Martinelli D, Calvo A, Filosto M, Padovani A, Piccinelli SC, Ricci C, Dalla Giacoma S, De Angelis N, Inghilleri M, Spataro R, La Bella V, Logroscino G, Lunetta C, Tarlarini C, Mandrioli J, Martinelli I, Simonini C, Zucchi E, Monsurrò MR, Ricciardi D, Trojsi F, Riva N, Filippi M, Simone IL, Sorarù G, Spera C, Florio L, Messina S, Russo M, Siciliano G, Conte A, Saddi MV, Carboni N, Mazzini L. Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Eur J Neurol 2023; 30:69-86. [PMID: 36148821 PMCID: PMC10092300 DOI: 10.1111/ene.15573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. METHODS This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. RESULTS Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. CONCLUSIONS The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation.
Collapse
Affiliation(s)
- Ettore Beghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Elisa Bianchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Caterina Bendotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Tortarolo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Francesca Sironi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Laura Camporeale
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alexander V Sherman
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS at Mass General Hospital, Department of Neurology, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Department of PM&R, Harvard Medical School, Boston, Massachusetts, USA
| | - Ada Scognamiglio
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | - Paolo Bongioanni
- Spinal Cord Injuries Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | | | | | - Andrea Calvo
- Centro Regionale Esperto per la Sclerosi Laterale Amiotrofica, Dipartimento di Neuroscienze 'Rita Levi Montalcini', Università degli Studi di Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, Gussago Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Gussago Brescia, Italy
| | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Stefania Dalla Giacoma
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Nicoletta De Angelis
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Maurizio Inghilleri
- Università di Roma 'Sapienza' UOSD Malattie Neurodegenerative, Centro Malattie Rare Neuromuscolari Policlinico Universitario Umberto I, Roma, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, AOUP 'P Giaccone' - University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, AOUP 'P Giaccone' - University of Palermo, Palermo, Italy
| | - Giancarlo Logroscino
- Center for neurodegenerative diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari at 'Pia Fondazione Card G. Panico 'Hospital Tricase, Tricase, Italy.,Department of Basic Medicine Neuroscience and Sense Organs, University Aldo Moro Bari, Bari, Italy
| | | | | | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy.,Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dario Ricciardi
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nilo Riva
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Gianni Sorarù
- Motor Neuton Disease Center, Department of Neurosciences, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Lucia Florio
- Neurology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriele Siciliano
- Department of clinical and experimental medicine, University of Pisa, Pisa, Italy
| | - Amelia Conte
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Nicola Carboni
- Neurology Department, San Francesco Hospital, Nuoro, Italy
| | - Letizia Mazzini
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
7
|
Beneficial Effects of RNS60 in Cardiac Ischemic Injury. Curr Issues Mol Biol 2022; 44:4877-4887. [PMID: 36286046 PMCID: PMC9600597 DOI: 10.3390/cimb44100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
RNS60 is a physically modified saline solution hypothesized to contain oxygen nanobubbles. It has been reported to reduce ischemia/reperfusion injury in a pig model of acute myocardial infarction. We investigated the effects of RNS60 during cardiac hypoxia in mice and as an additive to cardioplegic solution in rat hearts. ApoE−/−LDLr−/− mice were treated by intravenous injection of RNS60 or saline as a control while monitoring the ECG and post-hypoxic serum release of troponin T and creatine kinase activity. Hearts infused with Custodiol containing 10% RNS60 or saline as the control were subjected to 4 h of 4 °C preservation, followed by an assessment of myocardial metabolites, purine release, and mechanical function. RNS60 attenuated changes in the ECG STU area during hypoxia, while the troponin T concentration and creatine kinase activity were significantly higher in the serum of the controls. During reperfusion after 4 h of cold ischemia, the Custodiol/RNS60-treated hearts had about 30% lower LVEDP and better dp/dtmax and dp/dtmin together with a decreased release of purine catabolites vs. the controls. The myocardial ATP, total adenine nucleotides, and phosphocreatine concentrations were higher in the RNS60-treated hearts. This study indicates that RNS60 enhances cardioprotection in experimental myocardial hypoxia and under conditions of cardioplegic arrest. Improved cardiac energetics are involved in the protective effect, but complete elucidation of the mechanism requires further study.
Collapse
|
8
|
Afshari R, Akhavan O, Hamblin MR, Varma RS. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS APPLIED NANO MATERIALS 2021; 4:11386-11412. [PMID: 37556289 PMCID: PMC8565459 DOI: 10.1021/acsanm.1c01907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, which has spread around the world, caused the death of many affected patients, partly because of the lack of oxygen arising from impaired respiration or blood circulation. Thus, maintaining an appropriate level of oxygen in the patients' blood by devising alternatives to ventilator systems is a top priority goal for clinicians. The present review highlights the ever-increasing application of nanobubbles (NBs), miniature gaseous vesicles, for the oxygenation of hypoxic patients. Oxygen-containing NBs can exert a range of beneficial physiologic and pharmacologic effects that include tissue oxygenation, as well as tissue repair mechanisms, antiinflammatory properties, and antibacterial activity. In this review, we provide a comprehensive survey of the application of oxygen-containing NBs, with a primary focus on the development of intravenous platforms. The multimodal functions of oxygen-carrying NBs, including antimicrobial, antiinflammatory, drug carrying, and the promotion of wound healing are discussed, including the benefits and challenges of using NBs as a treatment for patients with acute hypoxemic respiratory failure, particularly due to COVID-19.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Omid Akhavan
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science,
University of Johannesburg, Doornfontein 2028, South
Africa
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials,
Czech Advanced Technology and Research Institute, Palacky
University, Šlechtitelů 27, Olomouc 78371, Czech
Republic
| |
Collapse
|
9
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
10
|
Cui QL, Lin YH, Xu YKT, Fernandes MGF, Rao VTS, Kennedy TE, Antel J. Effects of Biotin on survival, ensheathment, and ATP production by oligodendrocyte lineage cells in vitro. PLoS One 2020; 15:e0233859. [PMID: 32470040 PMCID: PMC7259710 DOI: 10.1371/journal.pone.0233859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanisms implicated in disease progression in multiple sclerosis include continued oligodendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include metabolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in ATP production that impact myelin production by promoting fatty acid synthesis. Here, we investigate the effects of high dose Biotin (MD1003) on the functional properties of post-natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or “stress media” (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 μg/ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death in the NG condition. In nanofiber myelination assays, biotin increased the percentage of ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed segments. In dispersed cell culture, Biotin also significantly increased ATP production, assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin were observed at the higher end of the dose-response analysis. We conclude that Biotin, in vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment, and is associated with increased ATP production.
Collapse
Affiliation(s)
- Qiao-Ling Cui
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yu Kang T. Xu
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | - Timothy E. Kennedy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C. Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opin Emerg Drugs 2020; 25:145-164. [PMID: 32456491 DOI: 10.1080/14728214.2020.1769067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving both upper and lower motor neurons and resulting in increasing disability and death 3-5 years after onset of symptoms. Over 40 large clinical trials for ALS have been negative, except for Riluzole that offers a modest survival benefit, and Edaravone that modestly reduces disease progression in patients with specific characteristics. Thus, the discovery of efficient disease modifying therapy is an urgent need. AREAS COVERED Although the cause of ALS remains unclear, many studies have demonstrated that neuroinflammation, proteinopathies, glutamate-induced excitotoxicity, microglial activation, oxidative stress, and mitochondrial dysfunction may play a key role in the pathogenesis. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of therapy. Ongoing phase 2 clinical trials aimed to interfere with these pathophysiological mechanisms are discussed. EXPERT OPINION This review describes the challenges that the discovery of an efficient drug therapy faces and how these issues may be addressed. With the continuous advances coming from basic research, we provided possible suggestions that may be considered to improve performance of clinical trials and turn ALS research into a 'fertile ground' for drug development for this devastating disease.
Collapse
Affiliation(s)
- Andrea Barp
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | |
Collapse
|
12
|
High Levels of ROS Impair Lysosomal Acidity and Autophagy Flux in Glucose-Deprived Fibroblasts by Activating ATM and Erk Pathways. Biomolecules 2020; 10:biom10050761. [PMID: 32414146 PMCID: PMC7277562 DOI: 10.3390/biom10050761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Under glucose deprivation, cells heavily mobilize oxidative phosphorylation to maintain energy homeostasis. This leads to the generation of high levels of ATP, as well as reactive oxygen species (ROS), from mitochondria. In nutrient starvation, autophagy is activated, likely to facilitate resource recycling, but recent studies suggest that autophagy flux is inhibited in cells undergoing glucose deprivation. In this study, we analyzed the status of autophagic flux in glucose-deprived human fibroblasts. Although lysosomes increased in quantity due in part to an increase of biogenesis, a large population of them suffered low acidity in the glucose-deprived cells. Autophagosomes also accumulated due to poor autolysis in these cells. A treatment of antioxidants not only restored lysosomal acidity but also released the flux blockade. The inhibition of ataxia telangiectasia mutated (ATM) serine/threonine kinase, which is activated by ROS, also attenuated the impairment of lysosomal acidity and autophagic flux, suggesting an effect of ROS that might be mediated through ATM activation. In addition, the activity of extracellular signal-regulated kinase (Erk) increased upon glucose deprivation, but this was also compromised by a treatment of antioxidants. Furthermore, the Erk inhibitor treatment also alleviated the failure in lysosomal acidity and autophagic flux. These together indicate that, upon glucose deprivation, cells undergo a failure of autophagy flux through an impairment of lysosomal acidity and that a high-level ROS-induced activation of Erk and ATM is involved in this impairment.
Collapse
|
13
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
14
|
Paganoni S, Alshikho MJ, Luppino S, Chan J, Pothier L, Schoenfeld D, Andres PL, Babu S, Zürcher NR, Loggia ML, Barry RL, Luotti S, Nardo G, Trolese MC, Pantalone S, Bendotti C, Bonetto V, De Marchi F, Rosen B, Hooker J, Cudkowicz M, Atassi N. A pilot trial of RNS60 in amyotrophic lateral sclerosis. Muscle Nerve 2018; 59:303-308. [PMID: 30458059 DOI: 10.1002/mus.26385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION RNS60 is a novel immune-modulatory agent that has shown neuroprotective effects in amytrophic lateral sclerosis (ALS) preclinical models. RNS60 is administered by weekly intravenous infusion and daily nebulization. The objective of this pilot open-label trial was to test the feasibility, safety, and tolerability of long-term RNS60 administration in ALS patients. METHODS The planned treatment duration was 23 weeks and the primary outcomes were safety and tolerability. Secondary outcomes included PBR28 positron emission tomography (PET) imaging and plasma biomarkers of inflammation. RESULTS Sixteen participants with ALS received RNS60 and 13 (81%) completed 23 weeks of RNS60 treatment. There were no serious adverse events and no participants withdrew from the trial due to drug-related adverse events. There were no significant changes in the biomarkers. DISCUSSION Long-term RNS60 administration was safe and well-tolerated. A large, multicenter, phase II trial of RNS60 is currently enrolling participants to test the effects of RNS60 on ALS biomarkers and disease progression. Muscle Nerve 59:303-308, 2019.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Mohamad J Alshikho
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Luppino
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - James Chan
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts, USA
| | - Lindsay Pothier
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - David Schoenfeld
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts, USA
| | - Patricia L Andres
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Suma Babu
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Luotti
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Giovanni Nardo
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | - Serena Pantalone
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Valentina Bonetto
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Fabiola De Marchi
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Nazem Atassi
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| |
Collapse
|
15
|
Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, De Paola M, Mariani A, Ghosh S, Watson R, Kalmes A, Bonetto V, Bendotti C. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J Neuroinflammation 2018; 15:65. [PMID: 29495962 PMCID: PMC5833072 DOI: 10.1186/s12974-018-1101-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 μl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.
Collapse
Affiliation(s)
- Antonio Vallarola
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Francesca Sironi
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Massimo Tortarolo
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Noemi Gatto
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Roberta De Gioia
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Laura Pasetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Massimiliano De Paola
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | - Alessandro Mariani
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | | | | | | | - Valentina Bonetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Caterina Bendotti
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy.
| |
Collapse
|
16
|
Jana M, Ghosh S, Pahan K. Upregulation of Myelin Gene Expression by a Physically-Modified Saline via Phosphatidylinositol 3-Kinase-Mediated Activation of CREB: Implications for Multiple Sclerosis. Neurochem Res 2017; 43:407-419. [PMID: 29143164 PMCID: PMC5799355 DOI: 10.1007/s11064-017-2435-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 11/09/2017] [Indexed: 12/29/2022]
Abstract
An increase in central nervous system (CNS) remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis (MS). RNS60 is a bioactive aqueous solution generated by subjecting normal saline to Taylor–Couette–Poiseuille flow under elevated oxygen pressure. Recently we have demonstrated that RNS60 exhibits anti-inflammatory properties. Here, we describe promyelinating property of RNS60. RNS60, but not normal saline (NS), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), stimulated the expression of myelin-specific genes and proteins (myelin basic protein, MBP; myelin oligodendrocyte glycoprotein, MOG and proteolipid protein, PLP) in primary mouse oligodendroglia and mixed glial cells. While investigating the mechanisms, we found that RNS60 treatment induced the activation of cAMP response element binding protein (CREB) in oligodendrocytes, ultimately leading to the recruitment of CREB to the promoters of myelin-specific genes. Furthermore, activation of type 1A p110β/α, but not type 1B p110γ, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated activation of CREB and upregulation of myelin genes by LY294002 (a specific inhibitor of PI-3 kinase) suggest that RNS60 upregulates the activation of CREB and the expression of myelin-specific molecules in oligodendrocytes via activation of PI3 kinase. These results highlight a novel promyelinating property of RNS60, which may be of benefit for MS and other demyelinating disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Supurna Ghosh
- Revalesio Corporation, 1200 East D Street, Tacoma, WA, 98421, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Rao VTS, Khan D, Cui QL, Fuh SC, Hossain S, Almazan G, Multhaup G, Healy LM, Kennedy TE, Antel JP. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions. PLoS One 2017; 12:e0182372. [PMID: 28792512 PMCID: PMC5549710 DOI: 10.1371/journal.pone.0182372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose) conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.
Collapse
Affiliation(s)
- Vijayaraghava T. S. Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Luke M. Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [PMID: 28455693 DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
19
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|