1
|
Ummalyma SB, Bhaskar T. Recent advances in the role of biocatalyst in biofuel cells and its application: An overview. Biotechnol Genet Eng Rev 2024; 40:2051-2089. [PMID: 37010302 DOI: 10.1080/02648725.2023.2197715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Biofuel cells have recently gained popularity as a green and renewable energy source. Biofuel cells are unique devices of energy and are capable of converting the stored chemical energy from waste materials such as pollutants, organics and wastewater into reliable, renewable, pollution-free energy sources through the action of biocatalysts such as various microorganisms and enzymes. It is a promising technological device to treat waste to compensate for global warming and the energy crisis through the green energy production process. Due to their unique properties, various potential biocatalysts are attracting researchers to apply them to various microbial biofuel cells for improving electricity and power. Recent research in biofuel cells is focusing on the exploitation of different biocatalysts and how they are enhancing power generation for various applications in the field of environmental technology, and biomedical fields such as implantable devices, testing kits, and biosensors. This review focusing the importance of microbial fuel cells (MFCs) and enzymatic fuel cells (ECFs) and role of different types of biocatalysts and their mechanisms for improving biofuel cell efficiency gathered from recent reports. Finally, its multifaceted applications with special emphasis on environmental technology and biomedical field will be described, along with future perspectives.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Department of Biotechnology, Govt. of India Takyelpat, Institute of Bioresources and Sustainable Development (IBSD)An Autonomous Institute, Imphal, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Chakraborty I, Olsson RT, Andersson RL, Pandey A. Glucose-based biofuel cells and their applications in medical implants: A review. Heliyon 2024; 10:e33615. [PMID: 39040310 PMCID: PMC11261083 DOI: 10.1016/j.heliyon.2024.e33615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5-10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article.
Collapse
Affiliation(s)
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Annu Pandey
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| |
Collapse
|
3
|
Montegiove N, Calzoni E, Pelosi D, Gammaitoni L, Barelli L, Emiliani C, Di Michele A, Cesaretti A. Optimizing Covalent Immobilization of Glucose Oxidase and Laccase on PV15 Fluoropolymer-Based Bioelectrodes. J Funct Biomater 2022; 13:jfb13040270. [PMID: 36547530 PMCID: PMC9785612 DOI: 10.3390/jfb13040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Enzymatic biofuel cells (EBCs) represent a promising technology for biosensors, biodevices, and sustainable green energy applications, thanks to enzymes' high specificity and catalytic efficiency. Nevertheless, drawbacks such as limited output power and short lifetime have to be solved. Nowadays, research is addressed to the use of 3D electrode structures, but the high cost and the industrialization difficulties of such electrodes represent a key issue. The purpose of the paper is thus to describe the use of a low-cost commercial conductive polymer (Sigracell® PV15) as support for the covalent immobilization of glucose oxidase and laccase, for bioanode and biocathode fabrication, respectively. Efficient immobilization protocols were determined for the immobilized enzymes in terms of employed linkers and enzyme concentrations, resulting in significant enzymatic activities for units of area. The analysis focuses specifically on the optimization of the challenging immobilization of laccase and assessing its stability over time. In particular, an optimum activity of 23 mU/cm2 was found by immobilizing 0.18 mg/cm2 of laccase, allowing better performances, as for voltage output and electrochemical stability, and a direct electron transfer mechanism to be revealed for the fabricated biocathode. This study thus poses the basis for the viable development of low-cost functional EBC devices for biomedical applications.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Dario Pelosi
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Luca Gammaitoni
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Linda Barelli
- Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence: ; Tel.: +39-075-5857436
| |
Collapse
|
4
|
Kausaite-Minkstimiene A, Kaminskas A, Ramanaviciene A. Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens Bioelectron 2022; 216:114657. [DOI: 10.1016/j.bios.2022.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
5
|
Kabir MH, Marquez E, Djokoto G, Parker M, Weinstein T, Ghann W, Uddin J, Ali MM, Alam MM, Thompson M, Poyraz AS, Msimanga HZ, Rahman MM, Rulison M, Cramer J. Energy Harvesting by Mesoporous Reduced Graphene Oxide Enhanced the Mediator-Free Glucose-Powered Enzymatic Biofuel Cell for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24229-24244. [PMID: 35594363 DOI: 10.1021/acsami.1c25211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Harnessing electrochemical energy in an engineered electrical circuit from biochemical substrates in the human body using biofuel cells is gaining increasing research attention in the current decade due to the wide range of biomedical possibilities it creates for electronic devices. In this report, we describe and characterize the construction of just such an enzymatic biofuel cell (EBFC). It is simple, mediator-free, and glucose-powered, employing only biocompatible materials. A novel feature is the two-dimensional mesoporous thermally reduced graphene oxide (rGO) host electrode. An additionally novelty is that we explored the potential of using biocompatible, low-cost filter paper (FP) instead of carbon paper, a conductive polymer, or gold as support for the host electrode. Using glucose (C6H12O6) and molecular oxygen (O2) as the power-generating fuel, the cell consists of a pair of bioelectrodes incorporating immobilized enzymes, the bioanode modified by rGO-glucose oxidase (GOx/rGO), and the biocathode modified by rGO-laccase (Lac/rGO). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy, and Raman spectroscopy techniques have been employed to investigate the surface morphology, defects, and chemical structure of rGO, GOx/rGO, and Lac/rGO. N2 sorption, SEM/EDX, and powder X-ray diffraction revealed a high Brunauer-Emmett-Teller surface area (179 m2 g-1) mesoporous rGO structure with the high C/O ratio of 80:1 as well. Results from the Fourier transform infrared spectroscopy, UV-visible spectroscopy, and electrochemical impedance spectroscopy studies indicated that GOx remained in its native biochemical functional form upon being embedded onto the rGO matrix. Cyclic voltammetry studies showed that the presence of mesoporous rGO greatly enhanced the direct electrochemistry and electrocatalytic properties of the GOx/rGO and Lac/rGO nanocomposites. The electron transfer rate constant between GOx and rGO was estimated to be 2.14 s-1. The fabricated EBFC (GOx/rGO/FP-Lac/rGO/FP) using a single GOx/rGO/FP bioanode and a single Lac/rGO/FP biocathode provides a maximum power density (Pmax) of 4.0 nW cm-2 with an open-circuit voltage (VOC) of 0.04 V and remains stable for more than 15 days with a power output of ∼9.0 nW cm-2 at a pH of 7.4 under ambient conditions.
Collapse
Affiliation(s)
- Md Humayun Kabir
- Department of Chemistry and Occupational Health Science, University of North Alabama, Florence, Alabama 35632, United States
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Erik Marquez
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Grace Djokoto
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Maurice Parker
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - Talia Weinstein
- Department of Chemistry, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - William Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland 21216, United States
| | - Meser M Ali
- Department of Neurosurgery, Cellular and Molecular Imaging Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, United States
| | | | - Max Thompson
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Altug S Poyraz
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Huggins Z Msimanga
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Michael Rulison
- Department of Physics, Oglethorpe University, Atlanta, Georgia 30319, United States
| | - John Cramer
- Department of Physics, Oglethorpe University, Atlanta, Georgia 30319, United States
| |
Collapse
|
6
|
Huang X, Li H, Li J, Huang L, Yao K, Yiu CK, Liu Y, Wong TH, Li D, Wu M, Huang Y, Gao Z, Zhou J, Gao Y, Li J, Jiao Y, Shi R, Zhang B, Hu B, Guo Q, Song E, Ye R, Yu X. Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. NANO LETTERS 2022; 22:3447-3456. [PMID: 35411774 DOI: 10.1021/acs.nanolett.2c00864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 μW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.
Collapse
Affiliation(s)
- Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Bofan Hu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
A Short Overview of Biological Fuel Cells. MEMBRANES 2022; 12:membranes12040427. [PMID: 35448397 PMCID: PMC9031071 DOI: 10.3390/membranes12040427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
This short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact. In comparison with classical FCs and given their lower electrochemical performances, BioFCs have, up to now, only found niche applications with low power needs, but they could become a green solution in the perspective of sustainable development and the circular economy. Ion exchange membranes for utilization in BioFCs are discussed in the final section of the review: they include perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion exchange groups.
Collapse
|
8
|
Hou YY, Xu J, Wang FT, Dong Z, Tan X, Huang KJ, Li JQ, Zuo CY, Zhang SQ. Construction of an Integrated Device of a Self-Powered Biosensor and Matching Capacitor Based on Graphdiyne and Multiple Signal Amplification: Ultrasensitive Method for MicroRNA Detection. Anal Chem 2021; 93:15225-15230. [PMID: 34752059 DOI: 10.1021/acs.analchem.1c03521] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The detection of microRNA (miRNA) in human serum has great significance for cancer prevention. Herein, a novel self-powered biosensing platform is developed, which effectively integrates an enzymatic biofuel cell (EBFC)-based self-powered biosensor with a matching capacitor for miRNA detection. A catalytic hairpin assembly and hybrid chain reaction are used to improve the analytical performance of EBFC. Furthermore, the matching capacitor is selected as an auxiliary signal amplifying device, and graphdiyne is applied as substrate material for EBFC. The results confirm that the developed method obviously increases the output current of EBFC, and the sensitivity can reach 2.75 μA/pM, which is 786% of pure EBFC. MiRNA can be detected in an expanded linear range of 0.1-100000 fM with a detection limit of 0.034 fM (S/N = 3). It can offer a selective and sensitive platform for nucleotide sequence detection with great potential in clinical diagnostics.
Collapse
Affiliation(s)
- Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhong Dong
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Jia-Qiang Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chun-Yang Zuo
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Si-Qi Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
9
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
12
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
13
|
Lee W, Park G, Chang D, Kwon Y. The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0669-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling. ENERGIES 2020. [DOI: 10.3390/en13215630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The demand for alternative sources of clean, sustainable, and renewable energy has been a focus of research around the world for the past few decades. Microbial/enzymatic biofuel cells are one of the popular technologies for generating electricity from organic substrates. Currently, one of the promising fuel options is based on glucose due to its multiple advantages: high energy intensity, environmental friendliness, low cost, etc. The effectiveness of biofuel cells is largely determined by the activity of biocatalytic systems applied to accelerate electrode reactions. For this work with aerobic granular sludge as a basis, a nitrogen-fixing community of microorganisms has been selected. The microorganisms were immobilized on a carbon material (graphite foam, carbon nanotubes). The bioanode was developed from a selected biological material. A membraneless biofuel cell glucose/oxygen, with abiotic metal catalysts and biocatalysts based on a microorganism community and enzymes, has been developed. Using methods of laboratory electrochemical studies and mathematical modeling, the physicochemical phenomena and processes occurring in the cell has been studied. The mathematical model includes equations for the kinetics of electrochemical reactions and the growth of microbiological population, the material balance of the components, and charge balance. The results of calculations of the distribution of component concentrations over the thickness of the active layer and over time are presented. The data obtained from the model calculations correspond to the experimental ones. Optimization for fuel concentration has been carried out.
Collapse
|
15
|
Flexible and optimized carbon paste electrodes for direct electron transfer-based glucose biofuel cell fed by various physiological fluids. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Ji J, Chung Y, Hyun K, Chung KY, Kwon Y. Effect of axial ligand on the performance of hemin based catalysts and their use for fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol oxidase-based electrochemical biosensors: A review. Anal Chim Acta 2020; 1139:198-221. [PMID: 33190704 DOI: 10.1016/j.aca.2020.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.
Collapse
Affiliation(s)
| | - Tiago A Silva
- Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 35180-008, Timóteo, MG, Brazil
| | - Fábio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Laís Ribovski
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Marcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Luiz H Marcolino
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Ji J, Ro S, Kwon Y. Membraneless biofuel cells using new cathodic catalyst including hemin bonded with amine functionalized carbon nanotube and glucose oxidase sandwiched by poly(dimethyl-diallylammonium chloride). J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Bocchetta P, Frattini D, Ghosh S, Mohan AMV, Kumar Y, Kwon Y. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2733. [PMID: 32560176 PMCID: PMC7345738 DOI: 10.3390/ma13122733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Next-generation wearable technology needs portable flexible energy storage, conversion, and biosensor devices that can be worn on soft and curved surfaces. The conformal integration of these devices requires the use of soft, flexible, light materials, and substrates with similar mechanical properties as well as high performances. In this review, we have collected and discussed the remarkable research contributions of recent years, focusing the attention on the development and arrangement of soft and flexible materials (electrodes, electrolytes, substrates) that allowed traditional power sources and sensors to become viable and compatible with wearable electronics, preserving or improving their conventional performances.
Collapse
Affiliation(s)
- Patrizia Bocchetta
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Domenico Frattini
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea;
| | - Srabanti Ghosh
- Department of Organic and Inorganic Chemistry, Universidad de Alcala (UAH), Alcalá de Henares, 28805 Madrid, Spain;
| | - Allibai Mohanan Vinu Mohan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India;
| | - Yogesh Kumar
- Department of Physics, ARSD College, University of Delhi, Delhi 110021, India;
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea;
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
| |
Collapse
|
20
|
Frattini D, Hyun K, Kwon Y. Direct electrochemistry of lactate dehydrogenase in aqueous solution system containing l(+)-lactic acid, β-nicotinamide adenine dinucleotide, and its reduced form. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Wang X, Kim JH, Choi YB, Kim HH, Kim CJ. Fabrication of optimally configured layers of SWCNTs, gold nanoparticles, and glucose oxidase on ITO electrodes for high-power enzymatic biofuel cells. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0278-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Christwardana M, Chung Y, Tannia DC, Kwon Y. Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0163-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Gholami F, Navaee A, Salimi A, Ahmadi R, Korani A, Hallaj R. Direct Enzymatic Glucose/O 2 Biofuel Cell based on Poly-Thiophene Carboxylic Acid alongside Gold Nanostructures Substrates Derived through Bipolar Electrochemistry. Sci Rep 2018; 8:15103. [PMID: 30305656 PMCID: PMC6180125 DOI: 10.1038/s41598-018-32893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Bipolar electrochemistry (BPE) has been lately explored as a simple, reliable and novel electrochemical technique for the adjustment of various conductive substrates. Herein, BPE is performed to derive both of cathode and anode electrodes for the development of mediatorless/membraneless biofuel cell (BFC). On one hand, a preferable substrate for immobilization of bilirubin oxidase enzyme is prepared based on the electropolymerization of thiophene-3-carboxcylic acid (TCA) on an Au microfilm as a bipolar electrode. The resulted biocathode as novel bioelectrocatalyst offers a high electrocatalytic activity toward direct oxygen reduction reaction (ORR) with onset potential and current density of 0.55 V (vs. Ag/AgCl) and 867 μA cm-2, respectively. On the other hand, another analogous Au bipolar electrode is electroplated through BPE to derive Au nanostructures (AuNSs). This modified Au electrode is utilized as an anodic platform for immobilization of flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) enzyme aimed at electrocatalytic glucose oxidation. The prepared bioanode displays a current density of 2.7 mA cm-2 with onset potential of -0.03 V. Finally, the proposed bioanode and biocacthode in an assembled membraneless glucose/O2 BFC offers a power output of 146 μW cm-2 with open circuit voltage of 0.54 V. This novel BPE method provides disposable electrochemical platforms for design of novel sensors, biosensors or other devices.
Collapse
Affiliation(s)
- Fereshte Gholami
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Aso Navaee
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rezgar Ahmadi
- Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Azam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Vice chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
24
|
Liu W, Gong Y, Wu W, Yang W, Liu C, Deng Y, Chao ZS. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation. CHEMSUSCHEM 2018; 11:2229-2238. [PMID: 29920986 DOI: 10.1002/cssc.201800719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm-2 .
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
- School of Chemical & Biomolecular Engineering and RBI, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332, USA
| | - Yutao Gong
- School of Chemical & Biomolecular Engineering and RBI, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332, USA
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Weisheng Yang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Congmin Liu
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332, USA
| | - Zi-Sheng Chao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, PR China
| |
Collapse
|
25
|
Kang S, Yoo KS, Chung Y, Kwon Y. Cathodic biocatalyst consisting of laccase and gold nanoparticle for improving oxygen reduction reaction rate and enzymatic biofuel cell performance. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Kumar A, Sharma S, Pandey LM, Chandra P. Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2018; 1:38-48. [DOI: 10.1016/j.mset.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
27
|
Gai P, Gu C, Hou T, Li F. Integration of Biofuel Cell-Based Self-Powered Biosensing and Homogeneous Electrochemical Strategy for Ultrasensitive and Easy-To-Use Bioassays of MicroRNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9325-9331. [PMID: 29498265 DOI: 10.1021/acsami.8b01001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofuel cell (BFC)-based self-powered biosensors have attracted substantial attentions because of their unique merits such as having no need for power sources (only two electrodes are needed). More importantly, in case it can also work in a homogeneous system, more efficient and easy-to-use bioassays could come true. Thus, herein, we proposed a novel homogeneous self-powered biosensing strategy via the integration of BFCs and a homogeneous electrochemical method, which was further utilized for ultrasensitive microRNA (miRNA) detection. To construct such an assay protocol, the cathodic electron acceptor [Fe(CN)6]3- was entrapped in the pores of positively charged mesoporous silica nanoparticles and capped by the biogate DNAs. Once the target miRNA existed, it would trigger the controlled release of [Fe(CN)6]3-, leading to the dramatic increase of the open circuit voltage. Consequently, the "signal-on" homogeneous self-powered biosensor for the ultrasensitive miRNA assay was realized. Encouragingly, the limit of detection for the miRNA-21 assay was down to 2.7 aM (S/N = 3), obviously superior to those of other analogous reported approaches. This work not only provides an ingenious idea to construct the ultrasensitive and easy-to-use bioassays of miRNA but also exhibits a successful prototype of a portable and on-site biomedical sensor.
Collapse
Affiliation(s)
- Panpan Gai
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , P. R. China
| | - Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , P. R. China
| |
Collapse
|
28
|
Gamella M, Koushanpour A, Katz E. Biofuel cells – Activation of micro- and macro-electronic devices. Bioelectrochemistry 2018; 119:33-42. [DOI: 10.1016/j.bioelechem.2017.09.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
|
29
|
Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance. Enzyme Microb Technol 2017; 106:1-10. [DOI: 10.1016/j.enzmictec.2017.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022]
|
30
|
Gu C, Gai P, Hou T, Li H, Xue C, Li F. Enzymatic Fuel Cell-Based Self-Powered Homogeneous Immunosensing Platform via Target-Induced Glucose Release: An Appealing Alternative Strategy for Turn-On Melamine Assay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35721-35728. [PMID: 28948777 DOI: 10.1021/acsami.7b07104] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzymatic fuel cell (EFC)-based self-powered biosensors have attracted considerable attention because of their unique feature of no need for extra power sources during the entire detection process, which endows them with the merits of simplicity, rapidness, low cost, anti-interference, and ease of use. Herein, we proposed, for the first time, an EFC-based self-powered homogeneous immunosensing platform by integrating the target-induced biofuel release and bioconjugate immunoassay for ultrasensitive melamine (ME) detection. In this design, the biofuel, i.e., glucose molecules, was entrapped in the pores of positively charged mesoporous silica nanoparticles and capped by the biogate AuNPs-labeled anti-ME antibody (AuNPs-Ab). The presence of the target ME triggered the entrapped glucose release due to the removal of the biogate via immunoreaction, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode, and thus, the open-circuit voltage of the EFC-based self-powered immunosensor dramatically increased, realizing the ultrasensitive turn-on assay for ME. The limit of detection for ME assay was down to 2.1 pM (S/N = 3), superior to those previously reported in the literature. Notably, real milk samples need no special sample pretreatment for the detection of ME because of the good anti-interference ability of EFC-based self-powered biosensors and the excellent selectivity of the homogeneous immunoassay. Therefore, this appealing self-powered homogeneous immunosensing platform holds great promise as a successful prototype of portable and on-site bioassay in the field of food safety.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Changhui Xue
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, P. R. China
| |
Collapse
|
31
|
Pakapongpan S, Tuantranont A, Poo-Arporn RP. Magnetic Nanoparticle-Reduced Graphene Oxide Nanocomposite as a Novel Bioelectrode for Mediatorless-Membraneless Glucose Enzymatic Biofuel Cells. Sci Rep 2017; 7:12882. [PMID: 29018210 PMCID: PMC5635112 DOI: 10.1038/s41598-017-12417-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
In this work, an enzymatic biofuel cell (EBC) based on a membraneless and mediatorless glucose enzymatic fuel cell system was constructed for operation in physiological conditions (pH 7.0 and temperature 37 °C). The new platform EBC made of nanocomposite, including magnetic nanoparticles (Fe3O4 NPs) and reduced graphene oxide (RGO), was used for the immobilization of glucose oxidase (GOD) as bioanode and bilirubin oxidase (BOD) as biocathode. The EBC bioelectrodes were fabricated without binder or adhesive agents for immobilized enzyme and the first EBC using superparamagnetic properties with Fe3O4 NPs has been reported. The performance of the EBC was evaluated with promising results. In EBC tests, the maximum power density of the EBC was 73.7 μW cm−2 and an open circuit voltage (OCV) as +0.63 V with 5 mM of glucose concentration for the physiological condition of humans. The Fe3O4-RGO nanocomposite offers remarkable enhancement in large surface areas, is a favorable environment for enzyme immobilization, and facilitates electron transfer between enzymes and electrode surfaces. Fe3O4 and RGO have been implied as new promising composite nanomaterials for immobilizing enzymes and efficient platforms due to their superparamagnetism properties. Thus, glucose EBCs could potentially be used as self-powered biosensors or electric power sources for biomedical device applications.
Collapse
Affiliation(s)
- Saithip Pakapongpan
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.,Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Adisorn Tuantranont
- Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
32
|
Christwardana M, Ji J, Chung Y, Kwon Y. Highly sensitive glucose biosensor using new glucose oxidase based biocatalyst. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0224-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Christwardana M, Chung Y, Kwon Y. A correlation of results measured by cyclic voltammogram and impedance spectroscopy in glucose oxidase based biocatalysts. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0213-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S, Shukla S, Upadhyay RS, Bueno-Mari R, Bajpai VK. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates. Front Microbiol 2017; 8:1032. [PMID: 28659876 PMCID: PMC5468390 DOI: 10.3389/fmicb.2017.01032] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.
Collapse
Affiliation(s)
- Manish K. Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Laxmi Ahirwal
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Siddhartha Singh
- Laboratory of Molecular Biology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ruben Bueno-Mari
- Research and Development (R+D) Department, Laboratorios LokímicaValencia, Spain
| | - Vivek K. Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
35
|
Christwardana M, Chung Y, Kwon Y. Co-immobilization of glucose oxidase and catalase for enhancing the performance of a membraneless glucose biofuel cell operated under physiological conditions. NANOSCALE 2017; 9:1993-2002. [PMID: 28106225 DOI: 10.1039/c6nr09103b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucose oxidase (GOx)-catalase co-immobilized catalyst (CNT/PEI/(GOx-Cat)) was synthesized, and its catalytic activity and electrical performance were investigated and compared, whereas the amount of immobilized catalase was optochemically inspected by chemiluminescence (CL) assay. With the characterizations, it was confirmed that the catalase was well immobilized on the CNT/PEI surface, whereas both the GOx and catalase play their roles well in the catalyst. According to the measurements of the current density peak of the flavin adenine dinucleotide (FAD) redox reaction, electron transfer rate, Michaelis-Menten constants and sensitivity, CNT/PEI/(GOx-Cat) shows the best values, and this is attributed to the excellent catalytic activity of GOx and the H2O2 decomposition capability of the catalase. To evaluate the electrical performance, a membraneless glucose biofuel cell (GBFC) adopting the catalyst was operated under physiological conditions and produced a maximum power density (MPD) of 180.8 ± 22.3 μW cm-2, which is the highest value compared to MPDs obtained by adoption of other catalysts. With such results, it was clarified that the CNT/PEI/(GOx-Cat) manufactured by co-immobilization of GOx and catalase leads to enhancements in the catalytic activity and GBFC performance due to the synergetic effects of (i) effective removal of harmful H2O2 moiety by catalase and (ii) superior activation of desirable reactions by GOx.
Collapse
Affiliation(s)
- Marcelinus Christwardana
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Yongjin Chung
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
36
|
Christwardana M, Kwon Y. Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell. BIORESOURCE TECHNOLOGY 2017; 225:175-182. [PMID: 27889476 DOI: 10.1016/j.biortech.2016.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/23/2023]
Abstract
Membraneless microbial fuel cell (MFC) employing new microbial catalyst formed as yeast cultivated from Saccharomyces cerevisiae and carbon nanotube (yeast/CNT) is suggested. To analyze its catalytic activity and performance and stability of MFC, several characterizations are performed. According to the characterizations, the catalyst shows excellent catalytic activities by facile transfer of electrons via reactions of NAD, FAD, cytochrome c and cytochrome a3, while it induces high maximum power density (MPD) (344mW·m-2). It implies that adoption of yeast induces increases in catalytic activity and MFC performance. Furthermore, MPD is maintained to 86% of initial value even after eight days, showing excellent MFC stability.
Collapse
Affiliation(s)
- Marcelinus Christwardana
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea.
| |
Collapse
|
37
|
Zhao CE, Gai P, Song R, Chen Y, Zhang J, Zhu JJ. Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 2017; 46:1545-1564. [DOI: 10.1039/c6cs00044d] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The review provides comprehensive discussions about electrode materials of BFCs and prospects of this technology for real-word applications.
Collapse
Affiliation(s)
- Cui-e Zhao
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Panpan Gai
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Rongbin Song
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Ying Chen
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Jianrong Zhang
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Jun-Jie Zhu
- State key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation of Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
38
|
Koushanpour A, Gamella M, Guz N, Katz E. A Biofuel Cell Based on Biocatalytic Reactions of Glucose on Both Anode and Cathode Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ashkan Koushanpour
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|