1
|
Zimmermann S, Roomp K, Meyer H, Mathew A, Struck MF, Blüher M, Martin HNG, Keller M, Landgraf K, Körner A, Hoffmann A, Böttcher Y, Biemann K, Ghosh A, Wolfrum C, Noé F, Isermann B, Schneider JG, Biemann R. Association of Lifestyle-Induced Weight Loss With Gene Expression in Subcutaneous Adipose Tissue in Metabolic Syndrome. J Diabetes 2025; 17:e70083. [PMID: 40229590 PMCID: PMC11996622 DOI: 10.1111/1753-0407.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
AIMS Lifestyle-induced weight loss (LIWL) is considered an effective therapy for the treatment of metabolic syndrome (MetS). The role of differentially expressed genes (DEGs) in adipose tissue function and in the success of LIWL in MetS is still unclear. We investigated the effect of 6 months of LIWL on transcriptional regulation in subcutaneous adipose tissue (SAT). Aiming to identify a LIWL-associated "gene signature" in SAT, DEGs were fitted into a linear regression model. MATERIALS AND METHODS The study is embedded in a prospective, two-arm, controlled, monocentric, randomized, 6-month interventional trial in individuals with MetS following LIWL. The trial included 43 nonsmoking, nondiabetic men aged 45-55 years with MetS. RESULTS In total, we identified 642 DEGs in SAT after 6 months of LIWL. The identified DEGs were validated in two cross-sectional cohorts analyzing SAT from individuals with and without obesity. Gene enrichment analysis of the DEGs revealed the strongest association with cholesterol metabolic processes. Accordingly, DEGs were correlated with the lipid parameters HDL cholesterol, LDL cholesterol, and triglycerides in corresponding serum samples. We identified 3 genes with an AUC of 0.963 (95% CI: 0.906-1.0) associated with a loss of more than 10% of initial body weight that was maintained for at least 12 months after LIWL, namely SUMO3 (Small ubiquitin-related modifier 3), PRKG2 (Protein Kinase CGMP-Dependent 2), and ADAP2 (ArfGAP with Dual PH Domains 2). CONCLUSION In summary, we have identified DEGs in SAT after LIWL, which may play an important role in metabolic functions. In particular, altered gene expression in SAT may predict sustained weight loss.
Collapse
Affiliation(s)
- Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity of LeipzigLeipzigGermany
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgLuxembourgLuxembourg
| | - Hans‐Jonas Meyer
- Diagnostic and Interventional RadiologyUniversity of Leipzig Faculty of MedicineLeipzigGermany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity of LeipzigLeipzigGermany
| | - Manuel Florian Struck
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III—Endocrinology, Nephrology, and RheumatologyLeipzig University Medical CenterLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ)Leipzig/Dresden Partner SiteLeipzigGermany
| | - Hugo N. G. Martin
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Maria Keller
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III—Endocrinology, Nephrology, and RheumatologyLeipzig University Medical CenterLeipzigGermany
| | - Kathrin Landgraf
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & AdolescentsUniversity of LeipzigLeipzigGermany
| | - Antje Körner
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
- German Center for Child and Adolescent Health (DZKJ)Leipzig/Dresden Partner SiteLeipzigGermany
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & AdolescentsUniversity of LeipzigLeipzigGermany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital LeipzigLeipzigGermany
| | - Yvonne Böttcher
- University of OsloInstitute of Clinical Medicine, Department of Clinical Molecular Biology, EpiGenOsloNorway
- Medical Division, EpiGenAkershus University HospitalLørenskogNorway
| | - Kathleen Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity of LeipzigLeipzigGermany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Falko Noé
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity of LeipzigLeipzigGermany
| | - Jochen G. Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgLuxembourgLuxembourg
- Department of Internal Medicine IISaarland University Medical Center at Homburg/SaarHomburgGermany
- Centre Hospitalier Emile MayrischEsch sur AlzetteLuxembourg
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular DiagnosticsUniversity of LeipzigLeipzigGermany
| |
Collapse
|
2
|
Ng CM, Cheong WL, Chong CW, Teoh SL, Yap WS, Lee SWH. Digital technologies for prediabetes: A systematic review and meta-analysis. Diabetes Metab Syndr 2025; 19:103206. [PMID: 39954567 DOI: 10.1016/j.dsx.2025.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Affiliation(s)
- Choon Ming Ng
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Wing Loong Cheong
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Chun Wie Chong
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Siew Li Teoh
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Wuan Shuen Yap
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shaun Wen Huey Lee
- Monash University Malaysia, School of Pharmacy, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Lei S, Liu G, Wang S, Zong G, Zhang X, Pan L, Han J. Intermittent Fasting Improves Insulin Resistance by Modulating the Gut Microbiota and Bile Acid Metabolism in Diet-Induced Obesity. Mol Nutr Food Res 2024; 68:e2400451. [PMID: 39520336 PMCID: PMC11605789 DOI: 10.1002/mnfr.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
SCOPE Adipose tissue macrophages (ATMs) are crucial in the pathogenesis of insulin resistance (IR). Intermittent fasting (IF) is an effective intervention for obesity. However, the underlying mechanism by which IF improves IR remains unclear. METHODS AND RESULTS Male C57BL/6J mice are fed chow-diet and high-fat diet (HFD) for 12 weeks, then is randomized into ad libitum feeding or every other day fasting for 8 weeks. Markers of ATMs and expression of uncoupling protein 1 (UCP-1) are determined. Gut microbiota and bile acids (BAs) are profiled using 16S rRNA sequencing and targeted metabolomics analysis. Results indicate that IF improves IR in HFD-induced obesity. IF decreases ATM infiltration, pro-inflammatory M1 gene expression, and promotes white adipose tissue (WAT) browning by elevating UCP-1 expression. IF restructures microbiota composition, significantly expanding the abundance of Verrucomicrobia particularly Akkermansia muciniphila, with the decrease of that of Firmicutes. IF increases the level of total BAs and alters the composition of BAs with higher proportion of 12α-hydroxylated (12α-OH) BAs. The changes in these BAs are correlated with differential bacteria. CONCLUSION The findings indicate that IF improves IR partially mediated by the interplay between restructured gut microbiota and BAs metabolism, which has implications for the dietary management in obesity.
Collapse
Affiliation(s)
- Sha Lei
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| | - Guanghui Liu
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| | - Shouli Wang
- Department of Hematology, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200233China
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| | - Xiaoya Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| | - Lingling Pan
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Tongji Hospital, School of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
4
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
5
|
McLeod A, Wolf P, Chapkin RS, Davidson LA, Ivanov I, Berbaum M, Williams LR, Gaskins HR, Ridlon J, Sanchez-Flack J, Blumstein L, Schiffer L, Hamm A, Cares K, Antonic M, Bernabe BP, Fitzgibbon M, Tussing-Humphreys L. Design of the Building Research in CRC prevention (BRIDGE-CRC) trial: a 6-month, parallel group Mediterranean diet and weight loss randomized controlled lifestyle intervention targeting the bile acid-gut microbiome axis to reduce colorectal cancer risk among African American/Black adults with obesity. Trials 2023; 24:113. [PMID: 36793105 PMCID: PMC9930092 DOI: 10.1186/s13063-023-07115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.
Collapse
Affiliation(s)
- Andrew McLeod
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Patricia Wolf
- grid.169077.e0000 0004 1937 2197Department of Nutrition Science, Purdue University, West Lafayette, IN USA
| | - Robert S. Chapkin
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Laurie A. Davidson
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Ivan Ivanov
- grid.264756.40000 0004 4687 2082Department of Nutrition, Program in Integrative Nutrition & Complex Diseases, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA ,grid.264756.40000 0004 4687 2082Department of Veterinary Physiology & Pharmacology, and Center for Environmental Health Research, Texas A&M University, College Station, TX USA
| | - Michael Berbaum
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Lauren R. Williams
- grid.185648.60000 0001 2175 0319Mile Square Health Center, University of Illinois Chicago, Chicago, IL USA
| | - H. Rex Gaskins
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jason Ridlon
- grid.35403.310000 0004 1936 9991Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Jen Sanchez-Flack
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA ,grid.185648.60000 0001 2175 0319Department of Pediatrics, University of Illinois Chicago, Chicago, IL USA ,grid.185648.60000 0001 2175 0319University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL USA
| | - Lara Blumstein
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Linda Schiffer
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Alyshia Hamm
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Kate Cares
- grid.185648.60000 0001 2175 0319Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL USA
| | - Mirjana Antonic
- grid.185648.60000 0001 2175 0319Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL USA
| | - Beatriz Penalver Bernabe
- grid.185648.60000 0001 2175 0319Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL USA
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,Department of Pediatrics, University of Illinois Chicago, Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA.
| | - Lisa Tussing-Humphreys
- Institute for Health Research and Policy, University of Illinois Chicago (UIC), Chicago, IL, USA. .,University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA. .,Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Heianza Y, Wang X, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in circulating bile acid subtypes in response to weight-loss diets are associated with improvements in glycemic status and insulin resistance: The POUNDS Lost trial. Metabolism 2022; 136:155312. [PMID: 36122763 DOI: 10.1016/j.metabol.2022.155312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Various primary and secondary bile acids (BAs) may play pivotal roles in glucose/insulin metabolism. We investigated whether changes in specific BA subtypes were associated with long-term changes in glucose and insulin sensitivity. METHODS This study included 515 adults with overweight or obesity who participated in a 2-year intervention study of weight-loss diets with different macronutrient intakes. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 months after the interventions. We analyzed associations of changes in BA subtypes with two-year changes in fasting glucose, insulin, and insulin resistance (HOMA-IR). RESULTS Greater decreases in primary and secondary BA subtypes induced by the interventions were significantly associated with greater reductions of fasting insulin and HOMA-IR at 6 months, showing various effects across the BA subtypes. The reductions of specific BA subtypes (chenodeoxycholate [CDCA], taurocholate [TCA], taurochenodeoxycholate [TCDCA], and taurodeoxycholate [TDCA]) were significantly related to improved glucose levels at 6 months. The initial (6-month) decreases in primary and secondary BA subtypes (glycochenodeoxycholate [GCDCA], TCDCA, and glycoursodeoxycholate [GUDCA]) were also significantly associated with long-term improvements in glucose and insulin metabolism over 2 years. We found significant interactions between dietary fat intake and changes in the BA subtypes for changes in glucose metabolism (Pinteraction < 0.05). CONCLUSIONS Weight-loss diet-induced changes in distinct subtypes of circulating BAs were associated with improved glucose metabolism and insulin sensitivity in adults with overweight or obesity. Dietary fat intake may modify the associations of changes in BA metabolism with glucose metabolism.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
7
|
Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites 2022; 12:metabo12100928. [PMID: 36295830 PMCID: PMC9609491 DOI: 10.3390/metabo12100928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects.
Collapse
|
8
|
The Extent of Lifestyle-Induced Weight Loss Determines the Risk of Prediabetes and Metabolic Syndrome Recurrence during a 5-Year Follow-Up. Nutrients 2022; 14:nu14153060. [PMID: 35893913 PMCID: PMC9331424 DOI: 10.3390/nu14153060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.
Collapse
|
9
|
Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat Commun 2022; 13:2060. [PMID: 35440584 PMCID: PMC9018700 DOI: 10.1038/s41467-022-29589-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota-bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain. Caloric restriction is a common approach to weight reduction, however, weight regain is common. Here the authors report that caloric restriction reduces the abundance of Parabacteroides distasonis in the gut and alters serum bile acid (BA) profile, which contribute to weight regain in mice.
Collapse
|
10
|
Transcriptome Analyses of Adipose Tissue Samples Identify EGFL6 as a Candidate Gene Involved in Obesity-Related Adipose Tissue Dysfunction in Children. Int J Mol Sci 2022; 23:ijms23084349. [PMID: 35457174 PMCID: PMC9033114 DOI: 10.3390/ijms23084349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity develops early in childhood and is accompanied by early signs of adipose tissue (AT) dysfunction and metabolic disease in children. In order to analyse the molecular processes during obesity-related AT accumulation in children, we investigated genome-wide expression profiles in AT samples, isolated adipocytes, and stromal vascular fraction (SVF) cells and assessed their relation to obesity as well as biological and functional AT parameters. We detected alterations in gene expression associated with obesity and related parameters, i.e., BMI SDS, adipocyte size, macrophage infiltration, adiponectin, and/or leptin. While differential gene expression in AT and adipocytes shared an enrichment in metabolic pathways and pathways related to extracellular structural organisation, SVF cells showed an overrepresentation in inflammatory pathways. In adipocytes, we found the strongest positive association for epidermal growth factor-like protein 6 (EGFL6) with adipocyte hypertrophy. EGFL6 was also upregulated during in vitro adipocyte differentiation. In children, EGFL6 expression was positively correlated to parameters of AT dysfunction and metabolic disease such as macrophage infiltration into AT, hs-CRP, leptin levels, and HOMA-IR. In conclusion, we provide evidence for early alterations in AT gene expression related to AT dysfunction in children and identified EGFL6 as potentially being involved in processes underlying the pathogenesis of metabolic disease.
Collapse
|
11
|
Heianza Y, Zhou T, He H, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver Int 2022; 42:363-373. [PMID: 34748263 DOI: 10.1111/liv.15098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Primary bile acids (BAs) are synthesized in the liver and secondary BAs result from intestinal microbial activity. Different subtypes of BAs may be involved in regulating adiposity and energy homeostasis. We examined how changes in circulating BA subtypes induced by weight-loss diets were associated with improvements in adiposity, regional fat deposition and energy metabolism among overweight and obese adults. METHODS The study included 551 subjects who participated in a 2-year weight-loss diet intervention trial. Circulating 14 BA subtypes (primary and secondary unconjugated BAs and their taurine-/glycine-conjugates) were measured at baseline and 6 months. Associations of changes in BAs with changes in weight, waist circumference, resting energy expenditure (REE), body fat composition and fat distribution were evaluated. RESULTS Greater decreases in primary BAs (cholate and chenodeoxycholate) and secondary BAs (deoxycholate and lithocholate) and their conjugates (except for glycolithocholate) were associated with more decreases in weight and waist circumference at 6 months (P-after-false-discovery-rate-correction [PFDR ] < .05). We found that changes in glycocholate and glycoursodeoxycholate were consistently associated with reductions of general and central adiposity, REE, whole-body fat and visceral adipose tissue (PFDR < .05). Further, the initial (6-month) changes in BA subtypes were differently predictive of successful weight loss over 2 years. CONCLUSIONS The decreases in primary and secondary BA subtypes after eating low-calorie weight-loss diets were significantly associated with improving adiposity, fat accumulation and energy metabolism, suggesting that specific BA subtypes would be predictive of long-term successful weight loss and individuals' response to the treatment of weight-loss diets.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev 2022; 43:19-34. [PMID: 34363458 PMCID: PMC8755990 DOI: 10.1210/endrev/bnab022] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.
Collapse
Affiliation(s)
- Elina Akalestou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore.,University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland.,Diabetes Research Group, School of Biomedical Science, Ulster University, Belfast, UK
| |
Collapse
|
13
|
Osteocalcin Is Independently Associated with C-Reactive Protein during Lifestyle-Induced Weight Loss in Metabolic Syndrome. Metabolites 2021; 11:metabo11080526. [PMID: 34436467 PMCID: PMC8400285 DOI: 10.3390/metabo11080526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-derived osteocalcin has been suggested to be a metabolic regulator. To scrutinize the relation between osteocalcin and peripheral insulin sensitivity, we analyzed changes in serum osteocalcin relative to changes in insulin sensitivity, low-grade inflammation, and bone mineral density following lifestyle-induced weight loss in individuals with metabolic syndrome (MetS). Participants with MetS were randomized to a weight loss program or to a control group. Before and after the 6-month intervention period, clinical and laboratory parameters and serum osteocalcin levels were determined. Changes in body composition were analyzed by dual-energy X-ray absorptiometry (DXA). In participants of the intervention group, weight loss resulted in improved insulin sensitivity and amelioration of inflammation. Increased serum levels of osteocalcin correlated inversely with BMI (r = −0.63; p< 0.001), total fat mass (r = −0.58, p < 0.001), total lean mass (r = −0.45, p < 0.001), C-reactive protein (CRP) (r = −0.37; p < 0.01), insulin (r = −0.4; p < 0.001), leptin (r = −0.53; p < 0.001), triglycerides (r = −0.42; p < 0.001), and alanine aminotransferase (ALAT) (r = −0.52; p < 0.001). Regression analysis revealed that osteocalcin was independently associated with changes in CRP but not with changes in insulin concentration, fat mass, or bone mineral density, suggesting that weight loss-induced higher serum osteocalcin is primarily associated with reduced inflammation.
Collapse
|
14
|
Jaagura M, Viiard E, Karu-Lavits K, Adamberg K. Low-carbohydrate high-fat weight reduction diet induces changes in human gut microbiota. Microbiologyopen 2021; 10:e1194. [PMID: 34180599 PMCID: PMC8123914 DOI: 10.1002/mbo3.1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a major public health problem in recent decades. More effective interventions may result from a better understanding of microbiota alterations caused by weight loss and diet. Our objectives were (a) to calculate the fiber composition of a specially designed low‐calorie weight loss diet (WLD), and (b) to evaluate changes in the composition of gut microbiota and improvements in health characteristics during WLD. A total of 19 overweight/obese participants were assigned to 20%–40% reduced calories low‐carbohydrate high‐fat diet for four weeks. Protein and fat content in the composed diet was 1.5 times higher compared to that in the average diet of the normal weight reference group, while carbohydrate content was 2 times lower. Food consumption data were obtained from the assigned meals. Microbial composition was analyzed before and after WLD intervention from two sequential samples by 16S rRNA gene sequencing. During WLD, body mass index (BMI) was reduced on average 2.5 ± 0.6 kg/m2 and stool frequency was normalized. The assigned diet induced significant changes in fecal microbiota. The abundance of bile‐resistant bacteria (Alistipes, Odoribacter splanchnicus), Ruminococcus bicirculans, Butyricimonas, and Enterobacteriaceae increased. Importantly, abundance of bacteria often associated with inflammation such as Collinsella and Dorea decreased in parallel with a decrease in BMI. Also, we observed a reduction in bifidobacteria, which can be attributed to the relatively low consumption of grains. In conclusion, weight loss results in significant alteration of the microbial community structure.
Collapse
Affiliation(s)
- Madis Jaagura
- Center of Food and Fermentation Technologies, Tallinn, 12618, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Ene Viiard
- Center of Food and Fermentation Technologies, Tallinn, 12618, Estonia
| | | | - Kaarel Adamberg
- Center of Food and Fermentation Technologies, Tallinn, 12618, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, 12618, Estonia
| |
Collapse
|
15
|
Biemann R, Buß E, Benndorf D, Lehmann T, Schallert K, Püttker S, Reichl U, Isermann B, Schneider JG, Saake G, Heyer R. Fecal Metaproteomics Reveals Reduced Gut Inflammation and Changed Microbial Metabolism Following Lifestyle-Induced Weight Loss. Biomolecules 2021; 11:biom11050726. [PMID: 34066026 PMCID: PMC8150863 DOI: 10.3390/biom11050726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota-mediated inflammation promotes obesity-associated low-grade inflammation, which represents a hallmark of metabolic syndrome. To investigate if lifestyle-induced weight loss (WL) may modulate the gut microbiome composition and its interaction with the host on a functional level, we analyzed the fecal metaproteome of 33 individuals with metabolic syndrome in a longitudinal study before and after lifestyle-induced WL in a well-defined cohort. The 6-month WL intervention resulted in reduced BMI (-13.7%), improved insulin sensitivity (HOMA-IR, -46.1%), and reduced levels of circulating hsCRP (-39.9%), indicating metabolic syndrome reversal. The metaprotein spectra revealed a decrease of human proteins associated with gut inflammation. Taxonomic analysis revealed only minor changes in the bacterial composition with an increase of the families Desulfovibrionaceae, Leptospiraceae, Syntrophomonadaceae, Thermotogaceae and Verrucomicrobiaceae. Yet we detected an increased abundance of microbial metaprotein spectra that suggest an enhanced hydrolysis of complex carbohydrates. Hence, lifestyle-induced WL was associated with reduced gut inflammation and functional changes of human and microbial enzymes for carbohydrate hydrolysis while the taxonomic composition of the gut microbiome remained almost stable. The metaproteomics workflow has proven to be a suitable method for monitoring inflammatory changes in the fecal metaproteome.
Collapse
Affiliation(s)
- Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Paul-List-Str. 13/15, 04103 Leipzig, Germany;
- Correspondence: (R.B.); (D.B.); (R.H.)
| | - Enrico Buß
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354 Köthen, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Correspondence: (R.B.); (D.B.); (R.H.)
| | - Theresa Lehmann
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
| | - Kay Schallert
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Paul-List-Str. 13/15, 04103 Leipzig, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Jochen G. Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg;
- Department of Internal Medicine II, Saarland University Medical Center, Kirrberger Str., 66424 Homburg Saar, Germany
| | - Gunter Saake
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany;
| | - Robert Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (E.B.); (T.L.); (K.S.); (S.P.); (U.R.)
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany;
- Correspondence: (R.B.); (D.B.); (R.H.)
| |
Collapse
|
16
|
Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021; 10:cells10020400. [PMID: 33669184 PMCID: PMC7919658 DOI: 10.3390/cells10020400] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Among the myriad of molecules produced by the liver, both bile acids and their precursors, the oxysterols are becoming pivotal bioactive lipids which have been underestimated for a long time. Their actions are ranging from regulation of energy homeostasis (i.e., glucose and lipid metabolism) to inflammation and immunity, thereby opening the avenue to new treatments to tackle metabolic disorders associated with obesity (e.g., type 2 diabetes and hepatic steatosis) and inflammatory diseases. Here, we review the biosynthesis of these endocrine factors including their interconnection with the gut microbiota and their impact on host homeostasis as well as their attractive potential for the development of therapeutic strategies for metabolic disorders.
Collapse
|
17
|
Gene expression profile of CD14 + blood monocytes following lifestyle-induced weight loss in individuals with metabolic syndrome. Sci Rep 2020; 10:17855. [PMID: 33082492 PMCID: PMC7576128 DOI: 10.1038/s41598-020-74973-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Lifestyle-induced weight loss is regarded as an efficient therapy to reverse metabolic syndrome (MetS) and to prevent disease progression. The objective of this study was to investigate whether lifestyle-induced weight loss modulates gene expression in circulating monocytes. We analyzed and compared gene expression in monocytes (CD14+ cells) and subcutaneous adipose tissue biopsies by unbiased mRNA profiling. Samples were obtained before and after diet-induced weight loss in well-defined male individuals in a prospective controlled clinical trial (ICTRP Trial Number: U1111-1158-3672). The BMI declined significantly (− 12.6%) in the treatment arm (N = 39) during the 6-month weight loss intervention. This was associated with a significant reduction in hsCRP (− 45.84%) and circulating CD14+ cells (− 21.0%). Four genes were differentially expressed (DEG’s) in CD14+ cells following weight loss (ZRANB1, RNF25, RB1CC1 and KMT2C). Comparative analyses of paired CD14+ monocytes and subcutaneous adipose tissue samples before and after weight loss did not identify common genes differentially regulated in both sample types. Lifestyle-induced weight loss is associated with specific changes in gene expression in circulating CD14+ monocytes, which may affect ubiquitination, histone methylation and autophagy.
Collapse
|
18
|
On the Role of Illness Duration and Nutrient Restriction in Cholestatic Alterations that Occur During Critical Illness. Shock 2019; 50:187-198. [PMID: 29076974 PMCID: PMC6039378 DOI: 10.1097/shk.0000000000001001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text Background and Aims: Elevated markers of cholestasis are common in response to critical illness, and associated with adverse outcome. The role of illness duration and of nutrient restriction on underlying molecular pathways of such cholestatic responses have not been thoroughly investigated. Methods: In a mouse model of surgery- and sepsis-induced critical illness, molecular pathways of cholestasis were investigated up to 7 days. To assess which changes are explained by illness-induced lack of feeding, nutrient-restricted healthy mice were studied and compared with ad libitum fed healthy mice. Furthermore, serum bile acid (BA) concentrations were quantified in 1,114 human patients with either short or long intensive care unit (ICU) stay, matched for type and severity of illness, up to ICU-day-7. Results: In critically ill mice, either evoked by surgery or sepsis, circulating and hepatic BA-levels progressively increased with time from day-3 onward, preceded by unsuppressed or upregulated CYP7A1 and CYP27A1 protein expression. From 30 h onward, nuclear farnesoid-X-receptor-retinoid-X-receptor staining was significantly suppressed in both critically ill groups, followed from day-3 onward by decreased gene expression of the apical exporter BA-specific export pump and increased expression of basolateral exporters multidrug resistance-associated protein 3 (MRP3) and MRP4. Nutrient restriction in healthy mice only partly mirrored illness-induced alterations in circulating BA and BA-transporters, without changing nuclear receptors or synthesis markers expression. Also in human critically ill patients, serum BA increased with time in long-stay patients only, similarly for patients with or without sepsis. Conclusions: Circulating BA concentrations rose days after onset of sepsis- and surgery-induced, critical illness, only partially explained by lack of feeding, preceded by suppressed nuclear feedback-sensors and ongoing BA synthesis. Expression of transporters suggested ongoing reversed BA-flow toward the blood.
Collapse
|
19
|
Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019; 20:414-427. [PMID: 31090267 PMCID: PMC6568232 DOI: 10.1631/jzus.b1900158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) are originally known as detergents essential for the digestion and absorption of lipids. In recent years, extensive research has unveiled new functions of BAs as gut hormones that modulate physiological and pathological processes, including glucose and lipid metabolism, energy expenditure, inflammation, tumorigenesis, cardiovascular disease, and even the central nervous system in addition to cholesterol homeostasis, enterohepatic protection and liver regeneration. BAs are closely linked with gut microbiota which might explain some of their crucial roles in organs. The signaling actions of BAs can also be mediated through specific nuclear receptors and membrane-bound G protein-coupled receptors. Several pharmacological agents or bariatric surgeries have demonstrated efficacious therapeutic effects on metabolic diseases through targeting BA signaling. In this mini-review, we summarize recent advances in bile-ology, focusing on its translational studies.
Collapse
Affiliation(s)
- Li-hua Jin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhi-peng Fang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Min-jie Fan
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-dong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
20
|
|
21
|
Concomitant PPARα and FXR Activation as a Putative Mechanism of NASH Improvement after Gastric Bypass Surgery: a GEO Datasets Analysis. J Gastrointest Surg 2019; 23:51-57. [PMID: 30206765 DOI: 10.1007/s11605-018-3938-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Compared to non-surgical weight loss (Diet), weight loss after Roux-en-Y gastric bypass (RYGB) results in greater rates of non-alcoholic steatohepatitis (NASH) resolution. Changes in bile acid physiology and farnesoid X receptor (FXR) signaling are suspected mediators of postoperative NASH improvement. Recent experimental evidence suggests that upregulation of hepatic peroxisome proliferator-activated receptor α (PPARα) activity might also impact NASH improvement. As FXR partly regulates PPARα, we compared resolution of NASH and changes in hepatic PPARα and FXR gene expression following Diet and RYGB. METHODS We searched the Gene Expression Omnibus database to identify human studies with liver biopsies containing genomic data and histologic NASH features, at baseline and after Diet or RYGB. Microarray data were extracted for PPARα and FXR gene expression analyses using GEOquery R package v.2.42.0. RESULTS We identified one study (GSE83452) where patients underwent either Diet (n = 29) or RYGB (n = 25). NASH prevalence was similar at baseline (Diet 76% versus RYGB 60%, P = ns). After 1 year, NASH resolved in 93.3% of RYGB but only in 27.3% of Diet (P < 0.001). Hepatic PPARα and FXR gene expression increased only after RYGB (P < 0.001). These changes were also found when analyzing only patients that resolved NASH (P < 0.01), and patients without NASH at baseline and follow-up (P < 0.05). CONCLUSIONS Compared to Diet, RYGB results in greater NASH resolution with concurrent upregulation of hepatic PPARα and FXR. Our findings point to concurrent PPARα and FXR activation, triggered by RYGB, as a potential mechanism to improve NASH.
Collapse
|
22
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
23
|
Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:606-624. [PMID: 30181611 DOI: 10.1038/s41575-018-0057-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic surgery is the best treatment for long-term weight loss maintenance and comorbidity control. Metabolic operations were originally intended to change anatomy to alter behaviour, but we now understand that the anatomical changes can modulate physiology to change behaviour. They are no longer considered only mechanically restrictive and/or malabsorptive procedures; rather, they are considered metabolic procedures involving complex physiological changes, whereby gut adaptation influences signalling pathways in several other organs, including the liver and the brain, regulating hunger, satiation, satiety, body weight, glucose metabolism and immune functions. The integrative physiology of gut adaptation after these operations consists of a complex mechanistic web of communication between gut hormones, bile acids, gut microbiota, the brain and both enteric and central nervous systems. The understanding of nutrient sensing via enteroendocrine cells, the enteric nervous system, hypothalamic peptides and adipose tissue and of the role of inflammation has advanced our knowledge of this integrative physiology. In this Review, we focus on the adaptation of gut physiology to the anatomical alterations from Roux-en-Y gastric bypass and vertical sleeve gastrectomy and the influence of these procedures on food intake, weight loss, nonalcoholic fatty liver disease (NAFLD) and cancer. We also aim to demonstrate the underlying mechanisms that could explain how metabolic surgery could be used as a therapeutic option in NAFLD and certain obesity-related cancers.
Collapse
|
24
|
Molinaro A, Wahlström A, Marschall HU. Role of Bile Acids in Metabolic Control. Trends Endocrinol Metab 2018; 29:31-41. [PMID: 29195686 DOI: 10.1016/j.tem.2017.11.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Bile acids are endocrine molecules that in addition to facilitating the absorption of fat-soluble nutrients regulate numerous metabolic processes, including glucose, lipid, and energy homeostasis. The signaling actions of bile acids are mediated through specific bile-acid-activated nuclear and membrane-bound receptors. These receptors are not only expressed by tissues within the enterohepatic circulation such as the liver and the intestine, but also in other organs where bile acids mediate their systemic actions. In this review, we discuss bile acid signaling and the interplay with the gut microbiota in the pathophysiology of obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and the role of surgical and pharmacological interventions on bile acid profiles and metabolism.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Annika Wahlström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
25
|
Ahmadi S, Mainali R, Nagpal R, Sheikh-Zeinoddin M, Soleimanian-Zad S, Wang S, Deep G, Kumar Mishra S, Yadav H. Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. OBESITY & CONTROL THERAPIES : OPEN ACCESS 2017; 4. [PMID: 30474051 DOI: 10.15226/2374-8354/4/2/00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of metabolic diseases including obesity, diabetes, cardiovascular diseases, hypertension and cancer has evolved into a global epidemic over the last century. The rate of these disorders is continuously rising due to the lack of effective preventative and therapeutic strategies. This warrants for the development of novel strategies that could help in the prevention, treatment and/ or better management of such disorders. Although the complex pathophysiology of these metabolic diseases is one of the major hurdles in the development of preventive and/or therapeutic strategies, there are some factors that are or can speculated to be more effective to target than others. Recently, gut microbiome has emerged as one of the major contributing factors in metabolic diseases, and developing positive modulators of gut microbiota is being considered to be of significant interest. Natural non-digestible polysaccharides from plants and food sources are considered potent modulators of gut microbiome that can feed certain beneficial microbes in the gut. This has led to an increased interest in the isolation of novel bioactive polysaccharides from different plants and food sources and their application as functional components to modulate the gut microbiome composition to improve host's health including metabolism. Therefore, polysaccharides, as prebiotics components, are being speculated to confer positive effects in managing metabolic diseases like obesity and diabetes. In this review article, we summarize some of the most common polysaccharides from plants and food that impact metabolic health and discuss why and how these could be helpful in preventing or ameliorating metabolic diseases such as obesity, type 2 diabetes, hypertension and dyslipidemia.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rabina Mainali
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran
| | - Shaohua Wang
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Gagan Deep
- Deparment of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Santosh Kumar Mishra
- Molecular Biomedical Sciences, School of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, USA.,Department of Internal Medicine- Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
26
|
Abstract
IN BRIEF Bariatric surgery is the most efficacious treatment for obesity, type 2 diabetes, and other obesity-related comorbidities. In this article, the authors review the current indications for bariatric surgery and discuss the most commonly performed procedures. They analyze medical outcomes of bariatric procedures by reviewing key prospective trials and discuss changes in physiology after these procedures. They conclude by discussing long-term management of bariatric patients by reviewing current guidelines for nutritional support and listing common complications related to these procedures.
Collapse
Affiliation(s)
- Scott Kizy
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Cyrus Jahansouz
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Daniel Leslie
- Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
27
|
Browning MG, Campos GM. Bile acid physiology as the potential driver for the sustained metabolic improvements with bariatric surgery. Surg Obes Relat Dis 2017; 13:1553-1554. [PMID: 28843986 DOI: 10.1016/j.soard.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Matthew G Browning
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA
| | - Guilherme M Campos
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|