1
|
Fiallo-Olivé E, Navas-Castillo J. Tissue Printing Hybridization Using Digoxigenin-Labeled DNA Probes for the Detection of Geminiviruses and Associated DNA Satellites. Methods Mol Biol 2025; 2912:165-172. [PMID: 40064780 DOI: 10.1007/978-1-0716-4454-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Nucleic acid hybridization is a fundamental technique in plant virus research, enabling precise detection of plant pathogens. Tissue printing hybridization exhibits high sensitivity and specificity in detecting viral genomes, providing particularly valuable for screening a large number of samples without the need for DNA purification. This method virtually eliminates contamination and false positives. This chapter presents a detailed and effective protocol for nucleic acid hybridization of geminiviruses using digoxigenin-labeled probes. Specifically, the tissue printing hybridization technique is outlined for a particular geminivirus and its associated deltasatellite. However, the methodology is adaptable to a diverse range of geminiviruses and host plants, rendering it versatile and applicable across various geminivirus research contexts.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
2
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Andreason SA, McKenzie-Reynolds P, Whitley KM, Coffey J, Simmons AM, Wadl PA. Tracking Sweet Potato Leaf Curl Virus through Field Production: Implications for Sustainable Sweetpotato Production and Breeding Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:1267. [PMID: 38732482 PMCID: PMC11085579 DOI: 10.3390/plants13091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% infection in storage roots of materials propagated for at least four years. Prior to the public release of new germplasm, viruses must be eliminated via laborious and time-consuming meristem-tip culture. The identification of virus-free seedlings early in the selection process can offer an alternative to meristem-tip culture. In this study, we investigated the transmission of SPLCV over two years of consecutive field plantings (early and late) of sweetpotato. While SPLCV is endemic at the USVL, virus transmission pressure over the typical cultivation season is unknown, and avoidance of virus transmission paired with the selection and maintenance of clean material may be a viable alternative to virus elimination. In 2022, the storage roots of 39 first-year seedling (FYS) selections were tested for SPLCV after early-season cultivation, revealing a single selection (2.6%) with a positive test. Similar testing was conducted in 2023 with no SPLCV-positive FYS selections detected. To further assess SPLCV acquisition in the field, replicated late-season plantings of each selected FYS (n = 37) were monitored from planting to harvest. Testing was conducted at 60 and 120 days after planting (DAP). Approximately 35% of the bulk samples were infected at 60 DAP, and infection increased to 52.3% by 120 DAP. Testing of individuals within selected positive bulked samples did not support 100% infection at harvest. Altogether, these results demonstrate that SPLCV transmission during early planting is sufficiently low to facilitate the maintenance of virus-free selections, offering an alternative to virus cleaning and a cultivation strategy that may be leveraged for production.
Collapse
Affiliation(s)
- Sharon A. Andreason
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Hwy., Charleston, SC 29414, USA; (P.M.-R.); (K.M.W.); (J.C.); (A.M.S.)
| | | | | | | | | | - Phillip A. Wadl
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Hwy., Charleston, SC 29414, USA; (P.M.-R.); (K.M.W.); (J.C.); (A.M.S.)
| |
Collapse
|
4
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
5
|
Rajabu CA, Dallas MM, Chiunga E, De León L, Ateka EM, Tairo F, Ndunguru J, Ascencio-Ibanez JT, Hanley-Bowdoin L. SEGS-1 a cassava genomic sequence increases the severity of African cassava mosaic virus infection in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1250105. [PMID: 37915512 PMCID: PMC10616593 DOI: 10.3389/fpls.2023.1250105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.
Collapse
Affiliation(s)
- Cyprian A. Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Evangelista Chiunga
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Elijah M. Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fred Tairo
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Joseph Ndunguru
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Jose T. Ascencio-Ibanez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
6
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
8
|
Fiallo-Olivé E, Navas-Castillo J. The Role of Extensive Recombination in the Evolution of Geminiviruses. Curr Top Microbiol Immunol 2023; 439:139-166. [PMID: 36592245 DOI: 10.1007/978-3-031-15640-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
9
|
Fiallo-Olivé E, García-Merenciano AC, Navas-Castillo J. Sweet Potato Symptomless Virus 1: First Detection in Europe and Generation of an Infectious Clone. Microorganisms 2022; 10:microorganisms10091736. [PMID: 36144338 PMCID: PMC9504438 DOI: 10.3390/microorganisms10091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Sweet potato (Ipomoea batatas), a staple food for people in many of the least developed countries, is affected by many viral diseases. In 2017, complete genome sequences of sweet potato symptomless virus 1 (SPSMV-1, genus Mastrevirus, family Geminiviridae) isolates were reported, although a partial SPSMV-1 genome sequence had previously been identified by deep sequencing. To assess the presence of this virus in Spain, sweet potato leaf samples collected in Málaga (southern continental Spain) and the Spanish Canary Islands of Tenerife and Gran Canaria were analyzed. SPSMV-1 was detected in samples from all the geographical areas studied, as well as in plants of several entries obtained from a germplasm collection supposed to be virus-free. Sequence analysis of full-length genomes of isolates from Spain showed novel molecular features, i.e., a novel nonanucleotide in the intergenic region, TCTTATTAC, and a 24-nucleotide deletion in the V2 open reading frame. Additionally, an agroinfectious clone was developed and infectivity assays showed that the virus was able to asymptomatically infect Nicotiana benthamiana, Ipomoea nil, I. setosa, and sweet potato, thus confirming previous suggestions derived from observational studies. To our knowledge, this is the first report of the presence of SPSMV-1 in Spain and Europe and the first agroinfectious clone developed for this virus.
Collapse
|
10
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
11
|
Aimone CD, De León L, Dallas MM, Ndunguru J, Ascencio-Ibáñez JT, Hanley-Bowdoin L. A New Type of Satellite Associated with Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0043221. [PMID: 34406866 PMCID: PMC8513466 DOI: 10.1128/jvi.00432-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Cassava mosaic disease (CMD), which is caused by single-stranded DNA begomoviruses, severely limits cassava production across Africa. A previous study showed that CMD symptom severity and viral DNA accumulation increase in cassava in the presence of a DNA sequence designated SEGS-2 (sequence enhancing geminivirus symptoms). We report here that when SEGS-2 is coinoculated with African cassava mosaic virus (ACMV) onto Arabidopsis thaliana, viral symptoms increase. Transgenic Arabidopsis with an integrated copy of SEGS-2 inoculated with ACMV also display increased symptom severity and viral DNA levels. Moreover, SEGS-2 enables Cabbage leaf curl virus (CaLCuV) to infect a geminivirus-resistant Arabidopsis thaliana accession. Although SEGS-2 is related to cassava genomic sequences, an earlier study showed that it occurs as episomes and is packaged into virions in CMD-infected cassava and viruliferous whiteflies. We identified SEGS-2 episomes in SEGS-2 transgenic Arabidopsis. The episomes occur as both double-stranded and single-stranded DNA, with the single-stranded form packaged into virions. In addition, SEGS-2 episomes replicate in tobacco protoplasts in the presence, but not the absence, of ACMV DNA-A. SEGS-2 episomes contain a SEGS-2 derived promoter and an open reading frame with the potential to encode a 75-amino acid protein. An ATG mutation at the beginning of the SEGS-2 coding region does not enhance ACMV infection in A. thaliana. Together, the results established that SEGS-2 is a new type of begomovirus satellite that enhances viral disease through the action of an SEGS-2-encoded protein that may also be encoded by the cassava genome. IMPORTANCE Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase. More than half of the world's cassava is produced in Africa, where it is primarily grown by smallholder farmers, many of whom are from the poorest villages. Although cassava can grow under high temperature, drought, and poor soil conditions, its production is severely limited by viral diseases. Cassava mosaic disease (CMD) is one of the most important viral diseases of cassava and can cause up to 100% yield losses. We provide evidence that SEGS-2, which was originally isolated from cassava crops displaying severe and atypical CMD symptoms in Tanzanian fields, is a novel begomovirus satellite that can compromise the development of durable CMD resistance.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | | | - José T. Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Revealing the Complexity of Sweepovirus-Deltasatellite-Plant Host Interactions: Expanded Natural and Experimental Helper Virus Range and Effect Dependence on Virus-Host Combination. Microorganisms 2021; 9:microorganisms9051018. [PMID: 34068583 PMCID: PMC8150397 DOI: 10.3390/microorganisms9051018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Sweepoviruses are begomoviruses (genus Begomovirus, family Geminiviridae) with ssDNA genomes infecting sweet potato and other species of the family Convolvulaceae. Deltasatellites (genus Deltasatellite, family Tolecusatellitidae) are small-size non-coding DNA satellites associated with begomoviruses. In this study, the genetic diversity of deltasatellites associated with sweepoviruses infecting Ipomoea indica plants was analyzed by further sampling the populations where the deltasatellite sweet potato leaf curl deltasatellite 1 (SPLCD1) was initially found, expanding the search to other geographical areas in southern continental Spain and the Canary Islands. The sweepoviruses present in the samples coinfected with deltasatellites were also fully characterized by sequencing in order to define the range of viruses that could act as helper viruses in nature. Additionally, experiments were performed to assess the ability of a number of geminivirids (the monopartite tomato leaf deformation virus and the bipartite NW begomovirus Sida golden yellow vein virus, the bipartite OW begomovirus tomato leaf curl New Delhi virus, and the curtovirus beet curly top virus) to transreplicate SPLCD1 in their natural plant hosts or the experimental host Nicotiana benthamiana. The results show that SPLCD1 can be transreplicated by all the geminivirids assayed in N. benthamiana and by tomato leaf curl New Delhi virus in zucchini. The presence of SPLCD1 did not affect the symptomatology caused by the helper viruses, and its effect on viral DNA accumulation depended on the helper virus-host plant combination.
Collapse
|
13
|
Andreason SA, Olaniyi OG, Gilliard AC, Wadl PA, Williams LH, Jackson DM, Simmons AM, Ling KS. Large-Scale Seedling Grow-Out Experiments Do Not Support Seed Transmission of Sweet Potato Leaf Curl Virus in Sweet Potato. PLANTS 2021; 10:plants10010139. [PMID: 33445460 PMCID: PMC7827154 DOI: 10.3390/plants10010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Sweet potato leaf curl virus (SPLCV) threatens global sweet potato production. SPLCV is transmitted by Bemisia tabaci or via infected vegetative planting materials; however, SPLCV was suggested to be seed transmissible, which is a characteristic that is disputed for geminiviruses. The objective of this study was to revisit the validity of seed transmission of SPLCV in sweet potato. Using large-scale grow-out of sweet potato seedlings from SPLCV-contaminated seeds over 4 consecutive years, approximately 23,034 sweet potato seedlings of 118 genotype entries were evaluated. All seedlings germinating in a greenhouse under insect-proof conditions or in a growth chamber were free of SPLCV; however, a few seedlings grown in an open bench greenhouse lacking insect exclusion tested positive for SPLCV. Inspection of these seedlings revealed that B. tabaci had infiltrated the greenhouse. Therefore, transmission experiments were conducted using B. tabaci MEAM1, demonstrating successful vector transmission of SPLCV to sweet potato. Additionally, tests on contaminated seed coats and germinating cotyledons demonstrated that SPLCV contaminated a high percentage of seed coats collected from infected maternal plants, but SPLCV was never detected in emerging cotyledons. Based on the results of grow-out experiments, seed coat and cotyledon tests, and vector transmission experiments, we conclude that SPLCV is not seed transmitted in sweet potato.
Collapse
|
14
|
Fiallo-Olivé E, Navas-Castillo J. Molecular and Biological Characterization of a New World Mono-/Bipartite Begomovirus/Deltasatellite Complex Infecting Corchorus siliquosus. Front Microbiol 2020; 11:1755. [PMID: 32793176 PMCID: PMC7390960 DOI: 10.3389/fmicb.2020.01755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
The genus Begomovirus (family Geminiviridae) is the largest genus in the entire virosphere, with more than 400 species recognized. Begomoviruses are single-stranded DNA plant viruses transmitted by whiteflies of the Bemisia tabaci complex and are considered one of the most important groups of emerging plant viruses in tropical and subtropical regions. Several types of DNA satellites have been described to be associated with begomoviruses: betasatellites, alphasatellites, and deltasatellites. Recently, a family of single-stranded DNA satellites associated with begomoviruses has been created, Tolecusatellitidae, including the genera Betasatellite and Deltasatellite. In this work, we analyzed the population of begomoviruses and associated DNA satellites present in Corchorus siliquosus, a malvaceous plant growing wild in Central America, southeastern North America and the Caribbean, collected in Cuba. The genomes of isolates of two New World begomoviruses [(Desmodium leaf distortion virus (DesLDV) and Corchorus yellow vein Cuba virus (CoYVCUV)] and two deltasatellites [tomato yellow leaf distortion deltasatellite 2 (TYLDD2) and Desmodium leaf distortion deltasatellite (DesLDD)] have been cloned and sequenced from plants showing yellow vein symptoms. Isolates of one of the begomoviruses, CoYVCUV, and one of the deltasatellites, DesLDD, represent novel species. Experiments with infectious clones showed the monopartite nature of CoYVCUV and that DesLDD utilizes the bipartite DesLDV as helper virus, but not the monopartite CoYVCUV. Also, CoYVCUV was shown to infect common bean in addition to Nicotiana benthamiana. This is the first time that (i) a monopartite New World begomovirus is found in a host other than tomato and (ii) deltasatellites have been found in C. siliquosus, thus extending the host and helper virus ranges of this recently recognized class of DNA satellites.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
15
|
Codiaeum variegatum in Pakistan harbours pedilanthus leaf curl virus and papaya leaf curl virus as well as a newly identified betasatellite. Arch Virol 2020; 165:1877-1881. [PMID: 32447620 DOI: 10.1007/s00705-020-04633-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Codiaeum variegatum (common name, garden croton) is an ornamental plant grown for its bright yellow variegated leaf morphology. Two C. variegatum plants with upward leaf curling and vein swelling symptoms were collected in Faisalabad, Pakistan. Sequencing of clones obtained by PCR amplification with specific primers showed one plant infected with the monopartite begomoviruses pedilanthus leaf curl virus (PeLCV) and papaya leaf curl virus (PaLCuV) and the other to be infected with only PeLCV. Both plants also harboured a betasatellite that was distinct from all previously identified betasatellites, for which the name "codiaeum leaf curl betasatellite" (CoLCuB) is proposed. This is the first identification of a begomovirus and an associated betasatellite infecting C. variegatum in Pakistan. Both PeLCV and PaLCuV cause problems in a number of crop plants, and C. variegatum may act as a reservoir for these agriculturally important viruses. The precise impact and geographical distribution of the newly identified CoLCuB will be investigated.
Collapse
|
16
|
Misaka BC, Wosula EN, Marchelo-d’Ragga PW, Hvoslef-Eide T, Legg JP. Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Colonizing Sweet Potato and Cassava in South Sudan. INSECTS 2020; 11:insects11010058. [PMID: 31963536 PMCID: PMC7022610 DOI: 10.3390/insects11010058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management.
Collapse
Affiliation(s)
- Beatrice C. Misaka
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| | - Philip W. Marchelo-d’Ragga
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
| | - Trine Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
- Correspondence: ; Tel.: +47-93433775
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| |
Collapse
|
17
|
de Villiers EM, Gunst K, Chakraborty D, Ernst C, Bund T, Zur Hausen H. A specific class of infectious agents isolated from bovine serum and dairy products and peritumoral colon cancer tissue. Emerg Microbes Infect 2019; 8:1205-1218. [PMID: 31409221 PMCID: PMC6713099 DOI: 10.1080/22221751.2019.1651620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in silico analyses of 109 replication-competent genomic DNA sequences isolated from cow milk and its products (97 in the bovine meat and milk factors 2 group – BMMF2, and additional 4 in BMMF1) seems to place these in a specific class of infectious agents spanning between bacterial plasmid and circular ssDNA viruses. Satellite-type small plasmids with partial homology to larger genomes, were also isolated in both groups. A member of the BMMF1 group H1MBS.1 was recovered in a distinctly modified form from colon tissue by laser microdissection. Although the evolutionary origin is unknown, it draws the attention to the existence of a hitherto unrecognized, broad spectrum of potential pathogens. Indirect hints to the origin and structure of our isolates, as well as to their replicative behaviour, result from parallels drawn to the Hepatitis deltavirus genome structure and replication.
Collapse
Affiliation(s)
- Ethel-Michele de Villiers
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Karin Gunst
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Deblina Chakraborty
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Claudia Ernst
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Timo Bund
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Harald Zur Hausen
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| |
Collapse
|
18
|
Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1019-1033. [PMID: 31210029 PMCID: PMC6589721 DOI: 10.1111/mpp.12800] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. βC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that βC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various βC1-host factor interactions and their effects on the suppression of defence responses of the plants.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Reddy KishoreKumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - R. Vinoth Kumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
19
|
Jeske H. Barcoding of Plant Viruses with Circular Single-Stranded DNA Based on Rolling Circle Amplification. Viruses 2018; 10:E469. [PMID: 30200312 PMCID: PMC6164888 DOI: 10.3390/v10090469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
The experience with a diagnostic technology based on rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analyses, and direct or deep sequencing (Circomics) over the past 15 years is surveyed for the plant infecting geminiviruses, nanoviruses and associated satellite DNAs, which have had increasing impact on agricultural and horticultural losses due to global transportation and recombination-aided diversification. Current state methods for quarantine measures are described to identify individual DNA components with great accuracy and to recognize the crucial role of the molecular viral population structure as an important factor for sustainable plant protection.
Collapse
Affiliation(s)
- Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| |
Collapse
|
20
|
Li P, Jing C, Wang R, Du J, Wu G, Li M, Sun X, Qing L. Complete nucleotide sequence of a novel monopartite begomovirus infecting Ageratum conyzoides in China. Arch Virol 2018; 163:3443-3446. [PMID: 30145682 DOI: 10.1007/s00705-018-4004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
Two isolates of a novel monopartite begomovirus were obtained from naturally infected Ageratum conyzoides plants showing typical leaf curling and enation symptoms in Sichuan Province, China. The complete DNA sequences of two isolates were determined to be 2749 nucleotides in length. Sequence analysis showed that the two isolates shared 99.5% identity, and the highest identity (89.5-89.6%) was with the DNA sequence of tomato leaf curl Hainan virus (ToLCHaiV). No other begomoviruses or satellite molecules were detected in the two samples. Based on the species demarcation criterion for the genus Begomovirus established by the Geminiviridae Study Group, the virus is a novel monopartite begomovirus, and the tentative name "ageratum leaf curl Sichuan virus" (ALCScV) is proposed. Phylogenetic analysis showed that it clustered with ToLCHaiV, and recombination analysis showed that ALCScV might have arisen by recombination between viruses related to ToLCHaiV, ageratum leaf curl virus (ALCuV), and sida leaf curl virus (SiLCuV).
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Chenchen Jing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Rui Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Jiang Du
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
21
|
Zhao L, Zhong J, Zhang X, Yin Y, Li T, Ding M. Two distinct begomoviruses associated with an alphasatellite coinfecting Emilia sonchifolia in Thailand. Arch Virol 2018; 163:1695-1699. [PMID: 29435710 DOI: 10.1007/s00705-018-3762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/20/2018] [Indexed: 11/24/2022]
Abstract
Emilia sonchifolia is a traditionally used medicinal plant that is widespread in tropical and subtropical regions of the world. Yellow vein symptoms were observed in E. sonchifolia plants in fields in the county of Koh Samui, Surat Thani Province, Thailand, in August 2015. Two distinct begomoviruses, designated TH4872-6 and TH4872-9, and an associated alphasatellite were obtained from an E. sonchifolia leaf sample (TH4872). Sequence analysis showed that the full-length sequence of TH4872-6 was most closely related to that of ageratum yellow vein China virus (AYVCNV), with 85.7% identity, suggesting that it is a novel begomovirus, while the TH4872-9 sequence closely resembled cotton leaf curl Multan virus (CLCuMuV) with 99.1% identity. The alphasatellite sequence showed the highest nucleotide sequence identity (92.8%) to an isolate of tobacco curly shoot alphasatellite (TbCSA) originating from China. Recombination analysis revealed that the isolate TH4872-6 is a potential recombinant begomovirus, derived from ageratum yellow vein virus (AYVV) and tobacco leaf curl Thailand virus (TbLCTHV). This study represents the first report of begomoviruses identified in E. sonchifolia in Thailand.
Collapse
Affiliation(s)
- Liling Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China
| | - Jing Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China
| | - Xiaoyun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China
| | - Yueyan Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China
| | - Tingting Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China
| | - Ming Ding
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, 9# Xueyun Rd, Wuhua Prefecture, Kunming, 650223, Yunnan, People's Republic of China.
| |
Collapse
|
22
|
Iqbal Z, Shafiq M, Ali I, Mansoor S, Briddon RW. Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus-Analysis by Mutation. FRONTIERS IN PLANT SCIENCE 2017; 8:2208. [PMID: 29312431 PMCID: PMC5744040 DOI: 10.3389/fpls.2017.02208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses of the genus Begomovirus (family Geminiviridae) are economically important phytopathogens that are transmitted plant-to-plant by the whitefly Bemisia tabaci. Most Old World (OW) begomoviruses are monopartite and many of these interact with symptoms and host range determining betasatellites. Tomato leaf curl New Delhi virus (ToLCNDV) is one of only a few OW begomoviruses with a bipartite genome (components known as DNA A and DNA B). Four genes [AV2, coat protein (CP), transcriptional-activator protein (TrAP), and AC4] of ToLCNDV were mutated and the effects of the mutations on infectivity, symptoms and the ability to maintain Cotton leaf curl Multan betasatellite (CLCuMuB) were investigated. Infectivity and virus/betasatellite DNA titer were assessed by Southern blot hybridization, PCR, and quantitative PCR. The results showed TrAP of ToLCNDV to be essential for maintenance of CLCuMuB and AV2 to be important only in the presence of the DNA B. AC4 was found to be important for the maintenance of CLCuMuB in the presence of, but indispensable in the absence of, the DNA B. Rather than being required for maintenance, the CP was shown to possibly interfere with maintenance of the betasatellite. The findings show that the interaction between a bipartite begomovirus and a betasatellite is more complex than just trans-replication. Clearly, multiple levels of interactions are present and such associations can cause additional significant losses to crops although the interaction may not be stable.
Collapse
Affiliation(s)
- Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Irfan Ali
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
23
|
Liu Q, Wang Y, Zhang Z, Lv H, Qiao Q, Qin Y, Zhang D, Tian Y, Wang S, Li J. Diversity of Sweepoviruses Infecting Sweet Potato in China. PLANT DISEASE 2017; 101:2098-2103. [PMID: 30677378 DOI: 10.1094/pdis-04-17-0524-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sweepoviruses (a group of begomoviruses that infect plants in the family Convolvulaceae) have monopartite genomes that consist of a circular, single-stranded DNA molecule. Seventy-three complete genomic sequences of sweepoviruses were characterized from the sweet potato samples collected in China. Eight sweepovirus species, including two novel species with proposed names of Sweet potato leaf curl China virus 2 and Sweet potato leaf curl Sichuan virus 2, were identified among these samples. One species, Sweet potato leaf curl Canary virus, was first identified in China. Among the 13 identified strains of Chinese sweepoviruses, 4 were newly discovered. Sweet potato leaf curl virus had the highest frequency (53.4%) of occurrence in the sweet potato samples from China. The similarities among the 73 sweepovirus genomic sequences were between 77.6 and 100.0%. Multiple recombination events were identified, and 16 recombinant sequences were determined. Recombination was observed between different species and between different strains of the same species. Recombination breakpoints were mainly localized on the intergenic region and in three open reading frames (AC1, AV1, and AV2). This study is the first comprehensive report on the genetic diversity of sweepoviruses in China.
Collapse
Affiliation(s)
- Qili Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P. R. China; College of Plant Protection, China Agricultural University, Beijing 100193; and College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang, P. R. China
| | - Yongjiang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Zhenchen Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Hui Lv
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Qi Qiao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yanhong Qin
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Desheng Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yuting Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Shuang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing
| |
Collapse
|
24
|
Mar TB, Mendes IR, Lau D, Fiallo-Olivé E, Navas-Castillo J, Alves MS, Murilo Zerbini F. Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. J Gen Virol 2017; 98:1552-1562. [PMID: 28590236 DOI: 10.1099/jgv.0.000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of Old World monopartite begomoviruses (family Geminiviridae) are associated with satellite DNAs. Alphasatellites are capable of autonomous replication, but depend on the helper virus for movement, encapsidation and transmission by the insect vector. Recently, Euphorbia yellow mosaic alphasatellite (EuYMA) was found in association with Euphorbia yellow mosaic virus (EuYMV) infecting Euphorbia heterophylla plants in Brazil. The geographical range of EuYMA was assessed in a representative sampling of E. heterophylla plants collected in several states of Brazil from 2009 to 2014. Infectious clones were generated and used to assess the phenotype of viral infection in the presence or absence of the alphasatellite in tomato, E. heterophylla, Nicotiana benthamiana, Arabidopsis thaliana and Crotalaria juncea. Phenotypic differences of EuYMV infection in the presence or absence of EuYMA were observed in A. thaliana, N. benthamiana and E. heterophylla. Symptoms were more severe when EuYMV was inoculated in combination with EuYMA in N. benthamiana and E. heterophylla, and the presence of the alphasatellite was determinant for symptom development in A. thaliana. Quantification of EuYMV and EuYMA indicated that EuYMA affects the accumulation of EuYMV during infection on a host-dependent basis. Transmission assays indicated that EuYMA negatively affects the transmission of EuYMV by Bemisia tabaci MEAM1. Together, these results indicate that EuYMA is capable of modulating symptoms, viral accumulation and whitefly transmission of EuYMV, potentially interfering with virus dissemination in the field.
Collapse
Affiliation(s)
- Talita Bernardon Mar
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Igor Rodrigues Mendes
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Douglas Lau
- Embrapa Trigo, Rodovia BR-285, CP 3081, Passo Fundo, RS, 99001-970, Brazil
| | - Elvira Fiallo-Olivé
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Murilo Siqueira Alves
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - F Murilo Zerbini
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|