1
|
Xia B, Zhu Q. Aptamer-ODN Chimeras: Enabling Cell-Specific ODN Targeting Therapy. Cells 2025; 14:697. [PMID: 40422200 DOI: 10.3390/cells14100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Oligonucleotides (ODNs) such as siRNA, saRNA, and miRNA regulate gene expression through a variety of molecular mechanisms and show unique potential in the treatment of genetic diseases and rare diseases, but their clinical application is still limited by the efficiency of the delivery system, especially the problem of the insufficient targeting of extrahepatic tissues. As homologous nucleic acid molecules, aptamers have become a key tool to improve the targeted delivery of ODNs. Aptamer-ODN chimeras can not only bind to multiple proteins on the cell surface with high specificity and selectivity, but they can also internalize into cells. Furthermore, they outperform traditional delivery systems in terms of cost-effectiveness and chemical modification flexibility. This review systematically summarizes the origin and progress of aptamer-ODN chimera therapy, discusses some innovative design strategies, and proposes views on the future direction of aptamer-ODN chimeras.
Collapse
Affiliation(s)
- Bei Xia
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
2
|
Xue L, Yu X, Zhao L, Garrett A, Wu D, Liu HY. Targeted Delivery of AR-V7 siRNA with Bivalent PSMA Aptamers Effectively Suppresses the Growth of Enzalutamide-Resistant Prostate Cancer. Mol Pharm 2024; 21:5749-5760. [PMID: 39388218 DOI: 10.1021/acs.molpharmaceut.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Androgen deprivation therapy has been the primary treatment strategy for advanced prostate cancer (PCa). But most patients develop castration resistance over time. For FDA-approved second-generation androgen receptor (AR) antagonists, including enzalutamide (ENZ) and abiraterone (AA), patients who initially respond to them eventually develop resistance. The key mechanism for resistance to ENZ/AA involves AR splice variants (AR-Vs) and specifically AR-V7. Current AR antagonists cannot target AR-V7 due to its lack of the C-terminal ligand-binding domain (LBD) but keeping the AR N-terminal domain (NTD) which still can activate androgen-responsive genes. Therefore, targeting the AR NTD and AR-V7 is critically important to overcome ENZ resistance. Unfortunately, AR NTD has been considered an "undruggable" target due to the difficulty in defining its three-dimensional (3D) structure. In this context, siRNA is highly suitable to address this undruggable target. However, siRNA cannot freely diffuse into cells, and a carrier is needed. In this regard, nucleic acid-based aptamers are highly suitable for cell type-specific delivery of siRNA in vivo. In this study, we have developed a serum-stable bivalent prostate-specific membrane antigen (PSMA) aptamer-AR-V7 siRNA chimera (PAP). The results show that PAP can knock down both AR-full length and AR-V7 in PSMA-expressing castration-resistant cells. It can resensitize ENZ in cell lines and PCa xenografts. ENZ combined with PAP can significantly inhibit 22Rv1 xenograft growth in mice without experiencing castration. Owing to the low toxicity, PAP has potential to offer a new antiandrogen treatment for current ENZ-resistant PCa.
Collapse
MESH Headings
- Male
- Phenylthiohydantoin
- Humans
- Animals
- Benzamides
- Nitriles
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Mice
- RNA, Small Interfering/administration & dosage
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Glutamate Carboxypeptidase II/antagonists & inhibitors
- Glutamate Carboxypeptidase II/genetics
- Glutamate Carboxypeptidase II/metabolism
- Xenograft Model Antitumor Assays
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Aptamers, Nucleotide
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Mice, Nude
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Androgen Receptor Antagonists/pharmacology
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Lu Xue
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
| | - Lijing Zhao
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Aria Garrett
- Dotquant, CoMotion at University of Washington, Seattle, Washington 98195, United States
| | - Daqing Wu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Hong Yan Liu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States
- Dotquant, CoMotion at University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Lee M, Lee M, Song Y, Kim S, Park N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024; 29:4737. [PMID: 39407665 PMCID: PMC11477775 DOI: 10.3390/molecules29194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
4
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
DeRosa M, Lin A, Mallikaratchy P, McConnell E, McKeague M, Patel R, Shigdar S. In vitro selection of aptamers and their applications. NATURE REVIEWS. METHODS PRIMERS 2023; 3:55. [PMID: 37969927 PMCID: PMC10647184 DOI: 10.1038/s43586-023-00247-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The introduction of the in-vitro evolution method known as SELEX (Systematic Evolution of Ligands by Exponential enrichment) more than 30 years ago led to the conception of versatile synthetic receptors known as aptamers. Offering many benefits such as low cost, high stability and flexibility, aptamers have sparked innovation in molecular diagnostics, enabled advances in synthetic biology and have facilitated new therapeutic approaches. The SELEX method itself is inherently adaptable and offers near limitless possibilities in yielding functional nucleic acid ligands. This Primer serves to provide guidance on experimental design and highlight new growth areas for this impactful technology.
Collapse
Affiliation(s)
- M.C. DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - A. Lin
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
| | - P. Mallikaratchy
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - E.M. McConnell
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - M. McKeague
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - R. Patel
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - S. Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
6
|
Ai L, Jiang X, Zhang K, Cui C, Liu B, Tan W. Tools and techniques for the discovery of therapeutic aptamers: recent advances. Expert Opin Drug Discov 2023; 18:1393-1411. [PMID: 37840268 DOI: 10.1080/17460441.2023.2264187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION The pursuit of novel therapeutic agents for serious diseases such as cancer has been a global endeavor. Aptamers characteristic of high affinity, programmability, low immunogenicity, and rapid permeability hold great promise for the treatment of diseases. Yet obtaining the approval for therapeutic aptamers remains challenging. Consequently, researchers are increasingly devoted to exploring innovative strategies and technologies to advance the development of these therapeutic aptamers. AREAS COVERED The authors provide a comprehensive summary of the recent progress of the SELEX (Systematic Evolution of Ligands by EXponential enrichment) technique, and how the integration of modern tools has facilitated the identification of therapeutic aptamers. Additionally, the engineering of aptamers to enhance their functional attributes, such as inhibiting and targeting, is discussed, demonstrating the potential to broaden their scope of utility. EXPERT OPINION The grand potential of aptamers and the insufficient development of relevant drugs have spurred countless efforts for stimulating their discovery and application in the therapeutic field. While SELEX techniques have undergone significant developments with the aid of advanced analysis instruments and ingeniously updated aptameric engineering strategies, several challenges still impede their clinical translation. A key challenge lies in the insufficient understanding of binding conformation and susceptibility to degradation under physiological conditions. Despite the hurdles, our opinion is optimistic. With continued progress in overcoming these obstacles, the widespread utilization of aptamers for clinical therapy is envisioned to become a reality soon.
Collapse
Affiliation(s)
- Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Xinyi Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Kejing Zhang
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
| | - Bo Liu
- Department of Geriatrics and Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, The People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, The People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, The People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, The People's Republic of China
| |
Collapse
|
7
|
Arese M, Mahmoudian M, Bussolino F. RNA aptamer-mediated gene therapy of prostate cancer: lessons from the past and future directions. Expert Opin Drug Deliv 2023; 20:1609-1621. [PMID: 38058168 DOI: 10.1080/17425247.2023.2292691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most prevalent cancers in the world, and the fifth cause of death from cancer in men. Among the non-surgical treatments for PCa, gene therapy strategies are in the early stages of development and recent clinical trials have provided new insights suggesting promising future. AREAS COVERED Recently, the creation of targeted gene delivery systems, based on specific PCa cell surface markers, has been viewed as a viable therapeutic approach. Prostate-specific membrane antigen (PSMA) is vastly expressed in nearly all prostate malignancies, and the intensity of expression increases with tumor aggressiveness, androgen independence, and metastasis. RNA aptamers are short and single-stranded oligonucleotides, which selectively bind to a specific ligand on the surface of the cells, which makes them fascinating small molecules for target delivery of therapeutics. PSMA-selective RNA aptamers represent great potential for developing targeted-gene delivery tools for PCa. EXPERT OPINION This review provides a thorough horizon for the researchers interested in developing targeted gene delivery systems for PCa via PSMA RNA aptamers. In addition, we provided general information about different prospects of RNA aptamers including discovery approaches, stability, safety, and pharmacokinetics.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mohammad Mahmoudian
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
8
|
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of Small Interfering RNA-Based Gene Drugs for Various Diseases. ACS OMEGA 2023; 8:20234-20250. [PMID: 37323391 PMCID: PMC10268023 DOI: 10.1021/acsomega.3c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases. After the discovery of the RNA interference (RNAi) mechanism, the development of siRNA-based gene therapy has been accelerated immensely. siRNA-based treatment for hereditary transthyretin-mediated amyloidosis (hATTR) using Onpattro and acute hepatic porphyria (AHP) by Givlaari and three more FDA-approved siRNA drugs has set up a milestone and further improved the confidence for the development of gene therapeutics for a spectrum of diseases. siRNA-based gene drugs have more advantages over other gene therapies and are under study to treat different types of diseases such as viral infections, cardiovascular diseases, cancer, and many more. However, there are a few bottlenecks to realizing the full potential of siRNA-based gene therapy. They include chemical instability, nontargeted biodistribution, undesirable innate immune responses, and off-target effects. This review provides a comprehensive view of siRNA-based gene drugs: challenges associated with siRNA delivery, their potential, and future prospects.
Collapse
Affiliation(s)
- Harshini Kurakula
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Swetha Vaishnavi
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Mohammed Yaseen Sharif
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Satheesh Ellipilli
- Department
of Chemistry, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
9
|
Baddireddy SM, Manyam R, Thomas DC. Expression of EGFR and survivin in ameloblastoma, odontogenic keratocyst and calcifying odontogenic cyst - An immunohistochemical study. J Oral Maxillofac Pathol 2023; 27:424. [PMID: 37854905 PMCID: PMC10581314 DOI: 10.4103/jomfp.jomfp_187_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 10/20/2023] Open
Abstract
Context Odontogenic lesions have diverse biological behaviour which is characterised by local invasiveness, and a high recurrence rate. EGFR and survivin was found to be involved in the aggressiveness, recurrences and metastasis of a variety of epithelial malignancies. Aims To assess and compare the expression of EGFR and survivin in Ameloblastoma (AB), Odontogenic keratocyst (OKC) and Calcifying odontogenic cyst (COC). Settings and Design The study's goal was to use immunohistochemistry to assess the qualitative and quantitative expression of EGFR and survivin and to correlate their expression patterns in AB, OKC and COC. Methods and Material Study included 30 AB, 15 OKC and 10 COC. All the slides were immunohistochemically analysed for qualitative, quantitative and semi-quantitative data. In each group, the presence of EGFR and survivin was assessed in terms of stain localisation, intensity and percentage of positive cells. Statistical Analysis Used Data were analysed using Chi-square test and one-way ANOVA, P value < 0.05 was considered statistically significant. Results EGFR positivity was found in all cases. Survivin was found to be 96% positive in AB and 100% positive in OKC and COC. Both EGFR and survivin showed predominant cytoplasmic staining. All the slides that are stained with EGFR are also stained with survivin. The intensity varied significantly between the layers. OKC showed higher immunoreactive scores (IRSs). Conclusions The current study provides insight into the role of EGFR and survivin in the pathogenesis of AB, OKC and COC. OKC appears to be more aggressive than ameloblastoma and COC, owing to its higher IRS.
Collapse
Affiliation(s)
- Sita M. Baddireddy
- Department of Oral Pathology and Microbiology, Vishnu Dental College, Vishnupur, Bhimavaram, Andhra Pradesh, India
| | - Ravikanth Manyam
- Department of Oral Pathology and Microbiology, Vishnu Dental College, Vishnupur, Bhimavaram, Andhra Pradesh, India
| | - Davis C Thomas
- Department of Temporomandibular Joint Disorders and Orofacial Pain, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
10
|
Cruz-Hernández CD, Rodríguez-Martínez G, Cortés-Ramírez SA, Morales-Pacheco M, Cruz-Burgos M, Losada-García A, Reyes-Grajeda JP, González-Ramírez I, González-Covarrubias V, Camacho-Arroyo I, Cerbón M, Rodríguez-Dorantes M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022; 12:biom12081056. [PMID: 36008950 PMCID: PMC9406110 DOI: 10.3390/biom12081056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer–siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.
Collapse
Affiliation(s)
- Carlos David Cruz-Hernández
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 04960, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
- Correspondence:
| |
Collapse
|
11
|
Wynn CS, Tang SC. Anti-HER2 therapy in metastatic breast cancer: many choices and future directions. Cancer Metastasis Rev 2022; 41:193-209. [PMID: 35142964 PMCID: PMC8924093 DOI: 10.1007/s10555-022-10021-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Metastatic HER2 + breast cancer is an expanding area of drug development and research, with three new drugs approved in 2020 alone. While first-line therapy is well-established for metastatic HER2 + breast cancer, the standard of care for second-line therapy will likely be changing soon based on the results of the DESTINY-Breast03 trial. In the third-line setting, many options are available. Considerations in choosing between regimens in the third-line include resistance to trastuzumab, the presence of brain metastases, and tolerability. High rates of resistance exist in this setting particularly due to expression of p95, a truncated form of HER2 that constitutively activates downstream signaling pathways. We suggest a tyrosine kinase inhibitor (TKI)-based regimen because of the activity of TKIs in brain metastases and in p95-expressing tumors. Attempts to overcome resistance to anti-HER2 therapies with PI3K inhibitors, mTOR inhibitors, and CDK 4/6 inhibitors are an active area of research. In the future, biomarkers are needed to help predict which therapies patients may benefit from the most. We review the many new drugs in development, including those with novel mechanisms of action.
Collapse
Affiliation(s)
- Carrie S Wynn
- Cancer Center and Research Institute, University of Mississippi Medical Center, Guyton Research Building, G-651-07, 2500 North State Street, Jackson, MS, 39216, USA
| | - Shou-Ching Tang
- Cancer Center and Research Institute, University of Mississippi Medical Center, Guyton Research Building, G-651-07, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
12
|
Ren S, Chen X, Tian X, Yang D, Dong Y, Chen F, Fang X. The expression, function, and utilization of Protamine1: a literature review. Transl Cancer Res 2022; 10:4947-4957. [PMID: 35116345 PMCID: PMC8799248 DOI: 10.21037/tcr-21-1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Objective Protamine 1 (PRM1) is specific in sperm and plays essential roles in fertilization, also a member of cancer testis antigen (CTA) family. This study aims to summarize the expression and function of PRM1 in spermatogenesis, and to broaden the current knowledge and inspire future development of PRM1-based therapeutic strategies in cancer treatment and nanomedicine. Background The protamine proteins, are characterized by an arginine-rich core and cysteine residues. Humans express two types of protamine: PRM1 and PRM2. The abnormal expression or proportion of PRM1 and PRM2 is known to be associated with subfertility and infertility, especially for PRM1 which is highly evolutionary conserved in mammalians and expressed in all vertebrates. Biological functions of PRM1 have been unveiled in diverse cellular processes, such as tumorigenesis, somatic cell nucleus transfer, and drug delivery systems. Moreover, PRM1 is identified as a CTA in chronic leukemia (CLL) and colorectal cancer (CRC). Methods Literature was obtained using PubMed and the keywords protamine 1, PRM1, or P1, from January 1, 1980, through July 20, 2021. We also collect the additional evidence through screening references of articles identified through the PubMed searches. Conclusions PRM1 is well-studied in male infertility, and further researches and attempts to develop PRM1 as novel tumor marker, as well as drug delivery vector, will be of important clinical significance.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuebo Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaofeng Tian
- Department of Breast, Thyroid, Hepatobiliary and Pancreatic Surgery, Xinmin Division of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingquan Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yongli Dong
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Fangfang Chen
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Nanomedicine Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Rosch JC, Hoogenboezem EN, Sorets AG, Duvall CL, Lippmann ES. Albumin-Binding Aptamer Chimeras for Improved siRNA Bioavailability. Cell Mol Bioeng 2022; 15:161-173. [PMID: 35401842 PMCID: PMC8938549 DOI: 10.1007/s12195-022-00718-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Short interfering RNAs (siRNAs) are potent nucleic acid-based drugs designed to target disease driving genes that may otherwise be undruggable with small molecules. However, therapeutic potential of siRNA in vivo is limited by poor pharmacokinetic properties, including rapid renal clearance and nuclease degradation. Backpacking on natural carriers such as albumin, which is present at high concentration and has a long half-life in serum, is an effective way to modify pharmacokinetics of biologic drugs that otherwise have poor bioavailability. In this work, we sought to develop albumin-binding aptamer-siRNA chimeras to improve the bioavailability of siRNA. Methods A Systematic Evolution of Ligands through Exponential Enrichment (SELEX) approach was used to obtain modified RNA-binding aptamers, which were then fused directly to siRNA via in vitro transcription. Molecular and pharmacokinetic properties of the aptamer-siRNA chimeras were subsequently measured in vitro and in vivo. Results In vitro assays show that albumin-binding aptamers are stable in serum while maintaining potent gene knockdown capabilities in the chimera format. In vivo, the absolute circulation half-life of the best-performing aptamer-siRNA chimera (Clone 1) was 1.6-fold higher than a scrambled aptamer chimera control. Conclusions Aptamer-siRNA chimeras exhibit improved bioavailability without compromising biological activity. Hence, this albumin-binding aptamer-siRNA chimera approach may be a promising strategy for drug delivery applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00718-y.
Collapse
Affiliation(s)
- Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | | | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA ,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
14
|
Yang C, Jiang Y, Hao SH, Yan XY, Hong DF, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B 2021; 10:20-33. [PMID: 34881767 DOI: 10.1039/d1tb02098f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used for the treatment of numerous cancers, but due to poor selectivity and severe systemic side effects, their clinical application is limited. Single-stranded DNA (ssDNA) or RNA aptamers could conjugate with highly toxic chemotherapy drugs, toxins, therapeutic RNAs or other molecules as novel aptamer-drug conjugates (ApDCs), which are capable of significantly improving the therapeutic efficacy and reducing the systemic toxicity of drugs and have great potential in clinics for targeted cancer therapy. In this review, we have comprehensively discussed and summarized the current advances in the screening approaches of aptamers for specific cancer biomarker targeting and development of the aptamer-drug conjugate strategy for targeted drug delivery. Moreover, considering the huge progress in artificial intelligence (AI) for protein and RNA structure predictions, automatic design of aptamers using deep/machine learning techniques could be a powerful approach for rapid and precise construction of biopharmaceutics (i.e., ApDCs) for application in cancer targeted therapy.
Collapse
Affiliation(s)
- Chang Yang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sai Heng Hao
- College of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De Fei Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology, the First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
15
|
Yu X, Xue L, Zhao J, Zhao S, Wu D, Liu HY. Non-Cationic RGD-Containing Protein Nanocarrier for Tumor-Targeted siRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13122182. [PMID: 34959463 PMCID: PMC8703291 DOI: 10.3390/pharmaceutics13122182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvβ3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.
Collapse
Affiliation(s)
- Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
| | - Lu Xue
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Shuhua Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Daqing Wu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Hong Yan Liu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Dotquant LLC, CoMotion Labs at University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-503-956-5302
| |
Collapse
|
16
|
Ward DM, Shodeinde AB, Peppas NA. Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment. Adv Healthc Mater 2021; 10:e2100350. [PMID: 33973393 PMCID: PMC8273125 DOI: 10.1002/adhm.202100350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Gene regulation using RNA interference (RNAi) therapy has been developed as one of the frontiers in cancer treatment. The ability to tailor the expression of genes by delivering synthetic oligonucleotides to tumor cells has transformed the way scientists think about treating cancer. However, its clinical application has been limited due to the need to deliver synthetic RNAi oligonucleotides efficiently and effectively to target cells. Advances in nanotechnology and biomaterials have begun to address the limitations to RNAi therapeutic delivery, increasing the likelihood of RNAi therapeutics for cancer treatment in clinical settings. Herein, innovations in the design of nanocarriers for the delivery of oligonucleotides for successful RNAi therapy are discussed.
Collapse
Affiliation(s)
- Deidra M Ward
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX, 78712, USA
- Department of Pediatrics and Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Wang YL, Chang LC, Chen KB, Wang SC. Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR. Am J Cancer Res 2021; 11:945-954. [PMID: 33791165 PMCID: PMC7994153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as promising targets in cancer treatment. However, compared to targeting the ordinary protein-coding genes, suppressing non-coding RNAs expressed in cancer cells has been a more challenging task. The major hurdles lay on the requirement of a tumor-specific delivery system for the designated inhibitor to suppress the target transcripts within the cellular compartment. EGFR is a cancer driver gene which is frequently associated with the triple-negative phenotype of breast cancer. Prior studies have shown that expression of the tumor-promoting lncRNA HOTAIR (HOX antisense intergenic RNA) is positively regulated by the epithelial growth factor receptor (EGFR) in triple-negative breast cancer (TNBC), and consistently the expression of both genes is closely correlated in breast cancer. Here we show that a chimeric aptamer recognizing the epithelial growth factor receptor (EGFR) coupled with a siRNA against HOTAIR (EGFR aptamer-coupled siHOTAIR) preferentially and effectively down-regulated HOTAIR in EGFR-expressing cancer cells. Functionally, the EGFR aptamer-coupled siHOTAIR more potently inhibited the growth, migration, and invasion of EGFR-expressing TNBC cells as well as cells with reconstituted EGFR compared to cancer cells with low EGFR expression. Our results demonstrate a novel strategy of targeting cancer progression by aptamer-directed delivery of anti-lncRNA RNA interference that can be applicable to other cellular contexts and cancer types.
Collapse
Affiliation(s)
- Yuan-Liang Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
| | - Ling-Chu Chang
- Chinese Medicine Research and Development Center, China Medical University HospitalTaichung 40402, Taiwan
| | - Kuen-Bao Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Department of Anesthesiology, China Medical University HospitalTaichung 40447, Taiwan
| | - Shao-Chun Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 40402, Taiwan
- Department of Cancer Biology, University of CincinnatiCincinnati, OH 45267, USA
- Department of Biotechnology, Asia UniversityTaichung, Taiwan
- The China Medical University-Academia Sinica PhD Graduate Program of Cancer Biology and Drug DevelopmentChina
| |
Collapse
|
18
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
19
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
20
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
21
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
22
|
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, Liu Z, Liu Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem 2020; 27:2189-2219. [PMID: 30295183 DOI: 10.2174/0929867325666181008142831] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Aptamers are single-stranded DNA or RNA with 20-100 nucleotides in length that can specifically bind to target molecules via formed three-dimensional structures. These innovative targeting molecules have attracted an increasing interest in the biomedical field. Compared to traditional protein antibodies, aptamers have several advantages, such as small size, high binding affinity, specificity, good biocompatibility, high stability and low immunogenicity, which all contribute to their wide application in the biomedical field. Aptamers can bind to the receptors on the cell membrane and mediate themselves or conjugated nanoparticles to enter into cells. Therefore, aptamers can be served as ideal targeting ligands for drug delivery. Since their excellent properties, different aptamer-mediated drug delivery systems had been developed for cancer therapy. This review provides a brief overview of recent advances in drug delivery systems based on aptamers. The advantages, challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Fen He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Nachuan Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Daipeng Xiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
23
|
Small interfering RNA from the lab discovery to patients' recovery. J Control Release 2020; 321:616-628. [PMID: 32087301 DOI: 10.1016/j.jconrel.2020.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In 1998, the RNA interference discovery by Fire and Mello revolutionized the scientific and therapeutic world. They showed that small double-stranded RNAs, the siRNAs, were capable of selectively silencing the expression of a targeted gene by degrading its mRNA. Very quickly, it appeared that the use of this natural mechanism was an excellent way to develop new therapeutics, due to its specificity at low doses. However, one major hurdle lies in the delivery into the targeted cells, given that the different extracellular and intracellular barriers of the organism coupled with the physico-chemical characteristics of siRNA do not allow an efficient and safe administration. The development of nanotechnologies has made it possible to counteract these hurdles by vectorizing the siRNA in a vector composed of cationic lipids or polymers, or to chemically modify it by conjugation to a molecule. This has enabled the first clinical developments of siRNAs to begin very quickly after their discovery, for the treatment of various acquired or hereditary pathologies. In 2018, the first siRNA-containing drug was approved by the FDA and the EMA for the treatment of an inherited metabolic disease, the hereditary transthyretin amyloidosis. In this review, we discuss the different barriers to the siRNA after systemic administration and how vectorization or chemical modifications lead to avoid it. We describe some interesting clinical developments and finally, we present the future perspectives.
Collapse
|
24
|
Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers (Basel) 2019; 11:cancers11101521. [PMID: 31636244 PMCID: PMC6826972 DOI: 10.3390/cancers11101521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Due to the progress made in the area of precision and personalized medicine in the field of cancer therapy, strategies to selectively and specifically identify target molecules causative of the diseases are urgently needed. Efforts are being made by a number of different laboratories, companies, and researchers to develop therapeutic molecules that selectively recognize the tissues and the cells of interest, exhibit few or no off-target and side effects, are non-immunogenic, and have a strong action. Aptamers, artificially selected single-stranded DNA or RNA oligonucleotides, are promising molecules satisfying many of the requirements needed for diagnosis and precision medicine. Aptamers can also couple to their native mechanism of action the delivery of additional molecules (oligonucleotides, siRNAs, miRNAs) to target cells. In this review, we summarize recent progress in the aptamer-mediated strategy for the specific delivery of therapeutic oligonucleotides.
Collapse
|
25
|
Maghsoudi S, Shahraki BT, Rabiee N, Afshari R, Fatahi Y, Dinarvand R, Ahmadi S, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M. Recent Advancements in aptamer-bioconjugates: Sharpening Stones for breast and prostate cancers targeting. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|
27
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
28
|
Siminzar P, Omidi Y, Golchin A, Aghanejad A, Barar J. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. J Drug Target 2019; 28:92-101. [PMID: 31062625 DOI: 10.1080/1061186x.2019.1616745] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Distinctive physicochemical features make mesoporous silica magnetic nanoparticles (SPION@SiO2) as a multifunctional nanosystem (NS) for the targeted delivery of therapeutic agents. In the present study, we engineered the mucin-1 (MUC-1) conjugated SPION@SiO2 (SPION@SiO2-MUC-1) for the targeted delivery of doxorubicin (DOX) to the breast cancer cells. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised using thermal decomposition technique, and then, coated with mesoporous silica to modify their biocompatibility and reduce undesired cytotoxic effects. Subsequently, DOX was loaded onto the silica porous structures, which was then nanoparticles (NPs) grafted with 5'-amine-modified MUC-1 aptamers. Transmission electron microscopy and particle size analysis by differential light scattering exhibited spherical and monodisperse NPs with a size range of 5-27 nm. The FT-IR spectroscopy confirmed the surface modification of the engineered NS. The surface area and pore size of the SPION@SiO2-COOH NSs were calculated by BJH and BET calculations. The MTT assay revealed higher cytotoxicity of MUC-1 grafted SPION@SiO2 NSs in the MUC-1-positive MCF-7 cells as compared to the control MUC-1-negative MDA-MB-231 cells. The flow cytometry analysis of the SPION@SiO2-MUC-1 NSs revealed a higher uptake as compared to the non-targeted nanocomposite (NC) in MCF-7 cells. In conclusion, the engineered SPION@SiO2-MUC-1 NS is proposed to serve as an effective multifunctional targeted nanomedicine/theranostics against MUC-1 overexpressing cancer cells.
Collapse
Affiliation(s)
- Paniz Siminzar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
He L, Liu J, Li S, Feng X, Wang C, Zhuang X, Ding J, Chen X. Polymer Nanoplatforms at Work in Prostate Cancer Therapy. ADVANCED THERAPEUTICS 2019; 2. [DOI: 10.1002/adtp.201800122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractProstate cancer (PCa) is the most common male urogenital malignancy worldwide. Surgery, endocrine therapy, radiotherapy, and chemotherapy are the main clinical management options for PCa. However, these three therapies each have limitations. For example, surgery is not suitable for the advanced PCa patients with extensive metastases, and radiotherapy causes serious side effects. Primary endocrine therapy promotes the progression of hormone‐sensitive PCa into the castration‐resistant prostate cancer. Therefore, considering these drawbacks, chemotherapy has become an effective and extensive treatment for PCa. Among the modern therapeutic strategies against advanced PCa, polymer‐nanocarrier‐incorporated formulations have gradually emerged due to their well‐controlled release profiles and improved tumor targeting abilities. The drug delivery systems based on polymer nanoplatforms passively target tumors via the enhanced permeability and retention effect. Simultaneously, stimuli‐responsive polymer nanoplatforms unload cargoes in response to certain stimuli in the tumor area. Furthermore, the active targeting ligand‐conjugated polymer nanoformulations against PCa‐specific markers have also achieved great success in PCa therapies. Herein, the advanced polymer nanoplatforms for PCa therapy are reviewed, while the future development of polymer nanoplatforms for PCa therapy is also predicted.
Collapse
Affiliation(s)
- Liang He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Jianhua Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Shengxian Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Chunxi Wang
- Department of Urology The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
30
|
Civit L, Theodorou I, Frey F, Weber H, Lingnau A, Gröber C, Blank M, Dambrune C, Stunden J, Beyer M, Schultze J, Latz E, Ducongé F, Kubbutat MHG, Mayer G. Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model. Sci Rep 2019; 9:4976. [PMID: 30899039 PMCID: PMC6428855 DOI: 10.1038/s41598-019-41460-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The targeting of specific tissue is a major challenge for the effective use of therapeutics and agents mediating this targeting are strongly demanded. We report here on an in vivo selection technology that enables the de novo identification of pegylated DNA aptamers pursuing tissue sites harbouring a hormone refractory prostate tumour. To this end, two libraries, one of which bearing an 11 kDa polyethylene glycol (PEG) modification, were used in an orthotopic xenograft prostate tumour mouse model for the selection process. Next-generation sequencing revealed an in vivo enriched pegylated but not a naïve DNA aptamer recognising prostate cancer tissue implanted either subcutaneous or orthotopically in mice. This aptamer represents a valuable and cost-effective tool for the development of targeted therapies for prostate cancer. The described selection strategy and its analysis is not limited to prostate cancer but will be adaptable to various tissues, tumours, and metastases. This opens the path towards DNA aptamers being experimentally and clinically engaged as molecules for developing targeted therapy strategies.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Ioanna Theodorou
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Franziska Frey
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Holger Weber
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Andreas Lingnau
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,Genmab B.V., Yalelaan 60, 3584 CM, Utrecht, The Netherlands
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg, Martinsried, Germany
| | - Chloé Dambrune
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Frédéric Ducongé
- CEA, DRT, Institut de biologie François-Jacob, Molecular Imaging Research Center (MIRCen), UMR CNRS 9199, 18 Route du Panorama, 92260, Roses, France
| | - Michael H G Kubbutat
- KTB Tumorforschungsgesellschaft mbH, Research Division ProQinase, Breisacher Str. 117, 79106, Freiburg, Germany.,ProQinase GmbH, Breisacher Straße 117, 79106, Freiburg, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany. .,Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
31
|
Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018; 9:genes9110529. [PMID: 30384431 PMCID: PMC6266988 DOI: 10.3390/genes9110529] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid-based aptamers have emerged as efficient delivery carriers of therapeutics. Thanks to their unique features, they can be, to date, considered one of the best targeting moieties, allowing the specific recognition of diseased cells and avoiding unwanted off-target effects on healthy tissues. In this review, we revise the most recent contributes on bispecific and multifunctional aptamer therapeutic chimeras. We will discuss key examples of aptamer-mediated delivery of nucleic acid and peptide-based therapeutics underlying their great potentiality and versatility. Achieved objectives and challenges will be highlighted as well.
Collapse
|
32
|
Xue L, Maihle NJ, Yu X, Tang SC, Liu HY. Synergistic Targeting HER2 and EGFR with Bivalent Aptamer-siRNA Chimera Efficiently Inhibits HER2-Positive Tumor Growth. Mol Pharm 2018; 15:4801-4813. [PMID: 30222359 PMCID: PMC6220360 DOI: 10.1021/acs.molpharmaceut.8b00388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
HER2 overexpression
is identified on 20–30% breast cancer
and other cancers at different levels. Although HER2 targeted monoclonal
antibody combined with chemical drugs has shown improved outcomes
in HER2 expressing patients, drug resistance and toxicity have limited
their efficacy. To overcome drug resistance, cotargeting multiple
HER receptors was proven to be effective. EGFR/HER2 dimerization can
active PI3K/AKT pathway, and resistance to HER2-targeted drugs is
associated with upregulation of EGFR. Here, we developed a novel HER2/EGFR
targeted nucleic acid therapeutic to address current drug limits.
The new therapeutic is constructed by fusing HER2 aptamer-EGFR siRNA
sense strand with HER2 aptamer-EGFR siRNA antisense strand into one
molecule: a bivalent HER2 aptamer-EGFR siRNA aptamer chimera (HEH).
In breast cancer cell lines, HEH can be selectively taken up into
HER2 expressing cells and successfully silence EGFR gene and down
regulate HER2 expression. In breast cancer xenograft models, HEH is
capable of triggering cell apoptosis, decreasing HER2 and EGFR expression,
and suppressing tumor growth. The therapeutic efficacy of HEH is superior
to HER2 aptamer only, which suggests that HEH has synergistic effect
by targeting HER2 and EGFR. This study demonstrated that HEH has great
potential as a new HER2 targeted drug to address toxicity and resistance
of current drugs and may provide a cure for many HER2 positive cancers.
Collapse
Affiliation(s)
- Lu Xue
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia , Augusta University , Augusta , Georgia 30912 , United States.,Department of Pediatrics Hematology , The First Hospital of Jilin University , Changchun 130021 , China
| | - Nita J Maihle
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia , Augusta University , Augusta , Georgia 30912 , United States
| | - Xiaolin Yu
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia , Augusta University , Augusta , Georgia 30912 , United States
| | - Shou-Ching Tang
- University of Mississippi Medical Center Cancer Institute , Jackson , Mississippi 39216 , United States
| | - Hong Yan Liu
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia , Augusta University , Augusta , Georgia 30912 , United States
| |
Collapse
|
33
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018. [DOI: '10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
34
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018; 134:107-121. [PMID: 29627370 DOI: 10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Traditional anticancer therapies are often unable to completely eradicate the tumor bulk due to multi-drug resistance (MDR) of cancers. A number of mechanisms such as micro-environmental stress and overexpression of drug efflux pumps are involved in the MDR process. Hence, therapeutic strategies for overcoming MDR are urgently needed to improve cancer treatment efficacy. Aptamers are short single-stranded oligonucleotides or peptides exhibiting unique three-dimensional structures and possess several unique advantages over conventional antibodies such as low immunogenicity and stronger tissue-penetration capacity. Aptamers targeting cancer-associated receptors have been explored to selectively deliver a therapeutic cargo (anticancer drugs, siRNAs, miRNAs and drug-carriers) to the intratumoral compartment where they can exert better tumor-killing effects. In this review, we summarize current knowledge of the multiple regulatory mechanisms of MDR, with a particular emphasis on aptamer-mediated novel therapeutic agents and strategies that seek to reversing MDR. The challenges associated with aptamer-based agents and approaches are also discussed.
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Lionel Hebbard
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
35
|
Catuogno S, Esposito CL, Condorelli G, de Franciscis V. Nucleic acids delivering nucleic acids. Adv Drug Deliv Rev 2018; 134:79-93. [PMID: 29630917 DOI: 10.1016/j.addr.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Nucleic acid therapeutics, including siRNAs, miRNAs/antimiRs, gRNAs and ASO, represent innovative and highly promising molecules for the safe treatment of a wide range of pathologies. The efficiency of systemic treatments is impeded by 1) the need to overcome physical and functional barriers in the organism, and 2) to accumulate in the intracellular active site at therapeutic concentrations. Although oligonucleotides either as modified naked molecules or complexed with delivery carriers have revealed to be effectively delivered to the affected target cells, this is restricted to topic treatments or to a few highly vascularized tissues. Therefore, the development of effective strategies for therapeutic nucleic acid selective delivery to target tissues is of primary importance in order to reduce the occurrence of undesired effects on non-target healthy tissues and to permit their translation to clinic. Due to their high affinity for specific ligands, high tissue penetration and chemical flexibility, short single-stranded nucleic acid aptamers are emerging as very attractive carriers for various therapeutic oligonucleotides. Yet, different aptamer-based bioconjugates, able to provide accumulation into target tissues, as well as efficient processing of therapeutic oligonucleotides, have been developed. In this respect, nucleic acid aptamer-mediated delivery strategies represent a powerful approach able to increase the therapeutic efficacy also highly reducing the overall toxicity. In this review, we will summarize recent progress in the field and discuss achieved objectives and optimization of aptamers as delivery carriers of short oligonucleotides.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Gerolama Condorelli
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Vittorio de Franciscis
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
36
|
Li J, Han Y, Zhou D, Zhou Y, Ye M, Wang H, Du Z. Downregulation of Survivin Gene Expression Affects Ionizing Radiation Resistance of Human T98 Glioma Cells. Cell Mol Neurobiol 2018; 38:861-868. [PMID: 29098505 PMCID: PMC11481966 DOI: 10.1007/s10571-017-0560-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022]
Abstract
Survivin is a tumor-associated gene, which has been detected in a wide variety of human tumors. Previous research has shown that Survivin can affect hepatoma carcinoma cell radiosensitivity. However, little is known about the role of Survivin in ionizing radiation resistance in glioma cells. In this study, we aimed to identify the effects of Survivin on ionizing radiation resistance in glioma cell line T98. Our results showed that downregulation of Survivin gene expression and ionizing irradiation could both inhibit T98 cell proliferation by assays in vitro including CCK-8 and immunohistochemistry. The inhibitory effect of downregulation of Survivin combined with irradiation was the most significant compared with other groups. Results of Western blotting and flow cytometric analysis also showed that downregulation of Survivin combined with the irradiation group achieved the highest apoptosis rate. Experimental results in vivo by intracranial implanting into nude mice were consistent with those in vitro. These findings indicated that ionizing radiation resistance of human T98 glioma cells can be inhibited effectively after Survivin gene silencing.
Collapse
Affiliation(s)
- Jicheng Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yong Han
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Dai Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Ming Ye
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Hangzhou Wang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China.
| | - Ziwei Du
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
Nikam RR, Gore KR. Journey of siRNA: Clinical Developments and Targeted Delivery. Nucleic Acid Ther 2018; 28:209-224. [PMID: 29584585 DOI: 10.1089/nat.2017.0715] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the evolutionary discovery of RNA interference and its utilization for gene knockdown in mammalian cell, a remarkable progress has been achieved in small interfering RNA (siRNA) therapeutics. siRNA is a promising tool, utilized as therapeutic agent against various diseases. Despite its significant potential benefits, safe, efficient, and target oriented delivery of siRNA is one of the major challenges in siRNA therapeutics. This review covers major achievements in clinical trials and targeted delivery of siRNAs using various targeting ligand-receptor pair. Local and systemically administered siRNA drug candidates at various phases in clinical trials are described in this review. This review also provides a deep insight in development of targeted delivery of siRNA. Various targeting ligand-siRNA pair with complexation and conjugation approaches are discussed in this review. This will help to achieve further optimization and development in targeted delivery of siRNAs to achieve higher gene silencing efficiency with lowest siRNA dose availability.
Collapse
Affiliation(s)
| | - Kiran R Gore
- Department of Chemistry, University of Mumbai , Mumbai, India
| |
Collapse
|
38
|
Yu X, Ghamande S, Liu H, Xue L, Zhao S, Tan W, Zhao L, Tang SC, Wu D, Korkaya H, Maihle NJ, Liu HY. Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA Chimera Confers Superior Activity against HER2 + Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 10:317-330. [PMID: 29499944 PMCID: PMC5862534 DOI: 10.1016/j.omtn.2017.12.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA (siRNA) chimera, which targets EGFR/HER2/HER3 in one molecule. This inhibitory molecule was constructed such that a single EGFR siRNA is positioned between the HER2 and HER3 aptamers to create a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera (H2EH3). EGFR siRNA was delivered into HER2-expressing cells by HER2/HER3 aptamer-induced internalization. HER2/HER3 aptamers act as antagonist molecules for blocking HER2 and HER3 signaling pathways and also as tumor-targeting agents for siRNA delivery. H2EH3 enables down-modulation of the expression of all three receptors, thereby triggering cell apoptosis. In breast cancer xenograft models, H2EH3 is able to bind to breast tumors with high specificity and significantly inhibits tumor growth via either systemic or intratumoral administration. Owing to low immunogenicity, ease of production, and high thermostability, H2EH3 is a promising therapeutic to supplement current single HER inhibitors and may act as a treatment for HER2+ breast cancer with intrinsic or acquired resistance to current drugs.
Collapse
Affiliation(s)
- Xiaolin Yu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Haitao Liu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Lu Xue
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhua Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Lijing Zhao
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Shou-Ching Tang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Daqing Wu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Nita J Maihle
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hong Yan Liu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
39
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
40
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
41
|
Röthlisberger P, Gasse C, Hollenstein M. Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. Int J Mol Sci 2017; 18:E2430. [PMID: 29144411 PMCID: PMC5713398 DOI: 10.3390/ijms18112430] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Recent progresses in organic chemistry and molecular biology have allowed the emergence of numerous new applications of nucleic acids that markedly deviate from their natural functions. Particularly, DNA and RNA molecules-coined aptamers-can be brought to bind to specific targets with high affinity and selectivity. While aptamers are mainly applied as biosensors, diagnostic agents, tools in proteomics and biotechnology, and as targeted therapeutics, these chemical antibodies slowly begin to be used in other fields. Herein, we review recent progress on the use of aptamers in the construction of smart DNA origami objects and MRI and PET imaging agents. We also describe advances in the use of aptamers in the field of neurosciences (with a particular emphasis on the treatment of neurodegenerative diseases) and as drug delivery systems. Lastly, the use of chemical modifications, modified nucleoside triphosphate particularly, to enhance the binding and stability of aptamers is highlighted.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Cécile Gasse
- Institute of Systems & Synthetic Biology, Xenome Team, 5 rue Henri Desbruères Genopole Campus 1, University of Evry, F-91030 Evry, France.
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
42
|
Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017; 5:biomedicines5030045. [PMID: 28792479 PMCID: PMC5618303 DOI: 10.3390/biomedicines5030045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted.
Collapse
|
43
|
Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017; 14:1517-1527. [PMID: 28026957 PMCID: PMC6628714 DOI: 10.1021/acs.molpharmaceut.6b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based drug delivery carrier has been one of the most employed modalities in biopharmaceuticals. In this study, we have compared avidin and its two analogues, neutravidin and streptavidin, as nanocarriers for the delivery of biotin-labeled siRNA with the help of biotinylated cholesterol (targeting ligand) and protamine (condensing agent). These proteins have similar binding affinity to biotin but substantial difference in their physical and chemical characteristics. Here, we have shown how these characteristics affect the size, cellular uptake, and activity of the avidin-based siRNA nanocomplex. In contrast to avidin and streptavidin nanocomplexes, neutravidin-based nanocomplex shows very low endosome entrapment and high cytoplasmic localization at extended times. High amount of the siRNA released in the cytoplasm by neutravidin-based nanocomplex at extended times (24 h) results in extensive and sustained PCBP2 gene silencing activity in HSC-T6 rat hepatic stellate cells. Neutravidin-based nanocomplex shows significantly low exocytosis in comparison to the streptavidin-based nanocomplex. Avidin-, neutravidin-, and streptavidin-based nanocomplexes are similar in size and had no significant cytotoxicity in transfected HSC-T6 cells or inflammatory cytokine induction in a whole blood assay. Compared to free siRNA, the neutravidin-based siRNA nanocomplex exhibits higher accumulation at 2 h in the liver of the rats with CCl4-induced liver fibrosis. Neutravidin has therefore been shown to be the most promising avidin analogue for the delivery of siRNA.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
44
|
de Almeida CEB, Alves LN, Rocha HF, Cabral-Neto JB, Missailidis S. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer. Int J Pharm 2017; 525:334-342. [PMID: 28373101 DOI: 10.1016/j.ijpharm.2017.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/09/2023]
Abstract
Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements.
Collapse
Affiliation(s)
- Carlos E B de Almeida
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil
| | - Lais Nascimento Alves
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil
| | - Henrique F Rocha
- Laboratório de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, CEP 21040-900, Brazil
| | - Januário Bispo Cabral-Neto
- Laboratório de Radiobiologia, Divisão de Física Médica, Instituto de Radioproteção e Dosimetria, Comissão Nacional de Energia Nuclear, Av. Salvador Allende S/N., Rio de Janeiro, RJ, CEP 22783-127, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Brg. Trompowski-Cidade Universitária, Rio de Janeiro, RJ, CEP 21044-020, Brazil
| | - Sotiris Missailidis
- Laboratório de Anticorpos Monoclonais, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, CEP 21040-900, Brazil.
| |
Collapse
|
45
|
Zheng J, Zhao S, Yu X, Huang S, Liu HY. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics 2017; 7:1373-1388. [PMID: 28435472 PMCID: PMC5399600 DOI: 10.7150/thno.17826] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
CD44 and EpCAM play crucial roles in intraperitoneal ovarian cancer development. In this study, we developed an RNA-based bispecific CD44-EpCAM aptamer that is capable of blocking CD44 and EpCAM simultaneously by fusing single CD44 and EpCAM aptamers with a double stranded RNA adaptor. With the aid of a panel of ovarian cancer cell lines, we found that bispecific CD44-EpCAM aptamer was much more effective than either single CD44 or EpCAM aptamer in the ability to inhibit cell growth and to induce apoptosis. When these aptamers were tested in intraperitoneal ovarian cancer xenograft model, bispecific CD44-EpCAM aptamer suppressed intraperitoneal tumor outgrowth much more significantly than single CD44 and EpCAM aptamer either alone or in combination. The enhanced efficacy of bispecific CD44-EpCAM aptamer is most likely to be attributed to its increased circulation time over the single aptamers. Moreover, we showed that bispecific CD44-EpCAM aptamer exhibited no toxicity to the host and was unable to trigger innate immunogenicity. Our study suggests that bispecific CD44-EpCAM aptamer may represent a promising therapeutic agent against advanced ovarian cancer.
Collapse
|
46
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
47
|
Yan J, Wang Y, Jia Y, Liu S, Tian C, Pan W, Liu X, Wang H. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed Pharmacother 2017; 88:374-383. [PMID: 28122302 DOI: 10.1016/j.biopha.2016.12.138] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Combination therapy is increasingly used as a primary cancer treatment regimen. In this report, we designed EGFR peptide decorated nanoparticles (NPs) to co-deliver docetaxel (DTX) and pH sensitive curcumin (CUR) prodrug for the treatment of prostate cancer. RESULTS EGFR peptide (GE11) targeted, pH sensitive, DTX and CUR prodrug NPs (GE11-DTX-CUR NPs) had an average diameter of 167nm and a zeta potential of -37.5mV. The particle size of the NPs was adequately maintained in serum and a sustained drug release pattern was observed. Improved inhibition of cancer cell and tumor tissue growth was shown in the GE11-DTX-CUR NPs group compared to the other groups. CONCLUSION It can be summarized that DTX and CUR prodrug could be delivered into tumor cells simultaneously by the GE 11 targeting and the EPR effect of NPs. The resulting GE11-DTX-CUR NPs is a promising system for the synergistic antitumor treatment of prostate cancer.
Collapse
Affiliation(s)
- Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji'nan 250102, Shandong, PR China
| | - Yuxiu Jia
- Research Department, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Shuangde Liu
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Chuan Tian
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Wengu Pan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Xiaoli Liu
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China
| | - Hongwei Wang
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan 250033, Shandong, PR China.
| |
Collapse
|
48
|
Yu L, Wu X, Chen M, Huang H, He Y, Wang H, Li D, Du Z, Zhang K, Goodin S, Zheng X. The Effects and Mechanism of YK-4-279 in Combination with Docetaxel on Prostate Cancer. Int J Med Sci 2017; 14:356-366. [PMID: 28553168 PMCID: PMC5436478 DOI: 10.7150/ijms.18382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Docetaxel is the first-line treatment for castration-resistant prostate cancer (CRPC). The limited survival benefit associated with the quick emergence of resistance and systemic toxicity diminishes its efficacy in high-dose monotherapy. YK-4-279 is a small molecule inhibitor of ETV1 that plays an important role in the progression of prostate cancer. The aim of this study was to evaluate the hypothesis that the combination of docetaxel and YK-4-279 will have a synergistic effect on inhibiting growth and accelerating apoptosis in human prostate cancer cells. Methods: Cell growth assessed using CCK-8 and trypan blue exclusion assays. Cell apoptosis was determined by morphological assessment in cells stained with propidium iodide. Standard scratch migration and Matrigel-coated transwell invasion assays were used to assess cell migration and invasion, respectively. Western blotting was used to investigate the levels of ETV1, AR, PSA, p-STAT3, survivin, Bcl-2, and p-Akt in prostate cancer cells. Results: The combination of low-dose docetaxel and YK-4-279 synergistically inhibited growth and induced apoptosis in human prostate cancer cells. The combination also more efficiently suppressed the migration and invasion of LNCaP and PC-3 cells. The combination of low-dose docetaxel and YK-4-279 caused a stronger decrease in the levels of ETV1, AR, PSA, p-STAT3, survivin, Bcl-2, and p-Akt in LNCaP cells and of p-Akt, Bcl-2, and p-STAT3 in PC-3 cells compared with either drug alone. Conclusions: These data suggest that the combination of docetaxel and YK-4-279 may be an effective approach for inhibiting the growth and metastasis of prostate cancer. This could permit a decrease in the docetaxel dose necessary for patients with CRPC and thereby lower its systemic toxicity.
Collapse
Affiliation(s)
- Lin Yu
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofeng Wu
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huarong Huang
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huaqian Wang
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dongli Li
- School of Chemical and Environmental Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhiyun Du
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,School of Chemical and Environmental Engineering, Wuyi University, Jiangmen 529020, China
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Xi Zheng
- Allan H Conney Laboratory for Anticancer Research, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Catuogno S, Esposito CL, de Franciscis V. Aptamer-Mediated Targeted Delivery of Therapeutics: An Update. Pharmaceuticals (Basel) 2016; 9:E69. [PMID: 27827876 PMCID: PMC5198044 DOI: 10.3390/ph9040069] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
The selective delivery of drugs in a cell- or tissue-specific manner represents the main challenge for medical research; in order to reduce the occurrence of unwanted off-target effects. In this regard, nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. To date, different aptamer-drug systems and aptamer-nanoparticles systems, in which nanoparticles function together with aptamers for the targeted delivery, have been successfully developed for a wide range of therapeutics, including toxins; peptides; chemotherapeutics and oligonucleotides. Therefore, aptamer-mediated drug delivery represents a powerful tool for the safe and effective treatment of different human pathologies, including cancer; neurological diseases; immunological diseases and so on. In this review, we will summarize recent progress in the field of aptamer-mediated drug delivery and we will discuss the advantages, the achieved objectives and the challenges to be still addressed in the near future, in order to improve the effectiveness of therapies.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| | - Carla L Esposito
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| | - Vittorio de Franciscis
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
50
|
Hong S, Sun N, Liu M, Wang J, Pei R. Building a chimera of aptamer–antisense oligonucleotide for silencing galectin-1 gene. RSC Adv 2016. [DOI: 10.1039/c6ra21250f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Galectin-1 is closely related with immune systems, and its overexpression may cause tumor metastasis.
Collapse
Affiliation(s)
- Shanni Hong
- School of Nano Technology and Nano Bionics
- University of Science and Technology of China
- Hefei 230026
- China
- Suzhou Institute of Nano-Tech and Nano-Bionics
| | - Na Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Min Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Jine Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| |
Collapse
|