1
|
Yang X, Chen Z, Lu J, Wei X, Yao Y, Lv W, Han J, Fei J. Identification and Characterization of the LecRLKs Gene Family in Maize, and Its Role Under Biotic and Abiotic Stress. BIOLOGY 2024; 14:20. [PMID: 39857251 PMCID: PMC11763279 DOI: 10.3390/biology14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Plant lectin receptor-like kinases (LecRLKs) are plant membrane protein receptor kinases. Lectin-like receptor kinases play a crucial role in regulating plant growth, development, and responses to environmental stimuli. It can rapidly respond to both biotic and abiotic stresses while mediating mechanisms of plant immune responses. This study represents the first identification of the LecRLK family genes in maize. It analyzes the gene structure, chromosomal locations, phylogenetic classification, promoter homoeotropic elements, and expression patterns under both biotic and abiotic stresses. The results indicate that these genes possess kinase and transmembrane domains, along with specific L-type or G-type extracellular domains. Most ZmLecRLK gene promoters contain cis-acting elements that are responsive to known hormones and stressors. Furthermore, these genes have been identified as being sensitive to both biotic and abiotic stresses. This discovery establishes a significant theoretical foundation for the selection of corn varieties in adverse environments. Additionally, it provides a basis for further in-depth exploration of the molecular regulatory mechanisms of LecRLK family genes.
Collapse
Affiliation(s)
- Xiangbo Yang
- College of Agriculture, Jilin Agricultural Science and Technology College, Jilin 132101, China;
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China; (Z.C.); (X.W.); (J.H.)
| | - Jianyu Lu
- Institute of Agricultural Biotechnology, Jilin Agricultural University, Changchun 130117, China;
| | - Xuancheng Wei
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China; (Z.C.); (X.W.); (J.H.)
| | - Yanying Yao
- Jilin Provincial Agricultural Environmental Protection and Rural Energy Management General Station, Changchun 130033, China; (Y.Y.); (W.L.)
| | - Wendi Lv
- Jilin Provincial Agricultural Environmental Protection and Rural Energy Management General Station, Changchun 130033, China; (Y.Y.); (W.L.)
| | - Jiarui Han
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China; (Z.C.); (X.W.); (J.H.)
| | - Jianbo Fei
- College of Agriculture, Jilin Agricultural Science and Technology College, Jilin 132101, China;
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China; (Z.C.); (X.W.); (J.H.)
| |
Collapse
|
2
|
Qu J, Yu D, Gu W, Khalid MHB, Kuang H, Dang D, Wang H, Prasanna B, Zhang X, Zhang A, Zheng H, Guan Y. Genetic architecture of kernel-related traits in sweet and waxy maize revealed by genome-wide association analysis. Front Genet 2024; 15:1431043. [PMID: 39399216 PMCID: PMC11466784 DOI: 10.3389/fgene.2024.1431043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Maize (Zea mays L.) is one of the most important crops worldwide, the kernel size-related traits are the major components of maize grain yield. Methods To dissect the genetic architecture of four kernel-related traits of 100-kernel weight, kernel length, kernel width, and kernel diameter, a genome-wide association study (GWAS) was conducted in the waxy and sweet maize panel comprising of 447 maize inbred lines re-sequenced at the 5× coverage depth. GWAS analysis was carried out with the mixed linear model using 1,684,029 high-quality SNP markers. Results In total, 49 SNPs significantly associated with the four kernel-related traits were identified, including 46 SNPs on chromosome 3, two SNPs on chromosome 4, and one SNP on chromosome 7. Haplotype regression analysis identified 338 haplotypes that significantly affected these four kernel-related traits. Genomic selection (GS) results revealed that a set of 10,000 SNPs and a training population size of 30% are sufficient for the application of GS in waxy and sweet maize breeding for kernel weight and kernel size. Forty candidate genes associated with the four kernel-related traits were identified, including both Zm00001d000707 and Zm00001d044139 expressed in the kernel development tissues and stages with unknown functions. Discussion These significant SNPs and important haplotypes provide valuable information for developing functional markers for the implementation of marker-assisted selection in breeding. The molecular mechanism of Zm00001d000707 and Zm00001d044139 regulating these kernel-related traits needs to be investigated further.
Collapse
Affiliation(s)
- Jingtao Qu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Diansi Yu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Gu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Huiyun Kuang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongdong Dang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Han J, Wang Q, Qian B, Liu Q, Wang Z, Liu Y, Chen Z, Wu W, Zhang C, Yin Y. Exploring the Roles of the Swi2/ Snf2 Gene Family in Maize Abiotic Stress Responses. Int J Mol Sci 2024; 25:9686. [PMID: 39273633 PMCID: PMC11396418 DOI: 10.3390/ijms25179686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.
Collapse
Affiliation(s)
- Jiarui Han
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Buxuan Qian
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qing Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziyu Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Weilin Wu
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| |
Collapse
|
4
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
5
|
Magar ND, Shah P, Barbadikar KM, Bosamia TC, Madhav MS, Mangrauthia SK, Pandey MK, Sharma S, Shanker AK, Neeraja CN, Sundaram RM. Long non-coding RNA-mediated epigenetic response for abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108165. [PMID: 38064899 DOI: 10.1016/j.plaphy.2023.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Plants perceive environmental fluctuations as stress and confront several stresses throughout their life cycle individually or in combination. Plants have evolved their sensing and signaling mechanisms to perceive and respond to a variety of stresses. Epigenetic regulation plays a critical role in the regulation of genes, spatiotemporal expression of genes under stress conditions and imparts a stress memory to encounter future stress responses. It is quintessential to integrate our understanding of genetics and epigenetics to maintain plant fitness, achieve desired genetic gains with no trade-offs, and durable long-term stress tolerance. The long non-coding RNA >200 nts having no coding potential (or very low) play several roles in epigenetic memory, contributing to the regulation of gene expression and the maintenance of cellular identity which include chromatin remodeling, imprinting (dosage compensation), stable silencing, facilitating nuclear organization, regulation of enhancer-promoter interactions, response to environmental signals and epigenetic switching. The lncRNAs are involved in a myriad of stress responses by activation or repression of target genes and hence are potential candidates for deploying in climate-resilient breeding programs. This review puts forward the significant roles of long non-coding RNA as an epigenetic response during abiotic stresses in plants and the prospects of deploying lncRNAs for designing climate-resilient plants.
Collapse
Affiliation(s)
- Nakul D Magar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Tejas C Bosamia
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gujarat, 364002, India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Arun K Shanker
- Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, 500059, India
| | - C N Neeraja
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - R M Sundaram
- Biotechnology Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
6
|
Sen S, Woodhouse MR, Portwood JL, Andorf CM. Maize Feature Store: A centralized resource to manage and analyze curated maize multi-omics features for machine learning applications. Database (Oxford) 2023; 2023:baad078. [PMID: 37935586 PMCID: PMC10634621 DOI: 10.1093/database/baad078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The big-data analysis of complex data associated with maize genomes accelerates genetic research and improves agronomic traits. As a result, efforts have increased to integrate diverse datasets and extract meaning from these measurements. Machine learning models are a powerful tool for gaining knowledge from large and complex datasets. However, these models must be trained on high-quality features to succeed. Currently, there are no solutions to host maize multi-omics datasets with end-to-end solutions for evaluating and linking features to target gene annotations. Our work presents the Maize Feature Store (MFS), a versatile application that combines features built on complex data to facilitate exploration, modeling and analysis. Feature stores allow researchers to rapidly deploy machine learning applications by managing and providing access to frequently used features. We populated the MFS for the maize reference genome with over 14 000 gene-based features based on published genomic, transcriptomic, epigenomic, variomic and proteomics datasets. Using the MFS, we created an accurate pan-genome classification model with an AUC-ROC score of 0.87. The MFS is publicly available through the maize genetics and genomics database. Database URL https://mfs.maizegdb.org/.
Collapse
Affiliation(s)
- Shatabdi Sen
- Department of Plant Pathology & Microbiology, Iowa State University, 1344 Advanced Teaching & Research Bldg, 2213 Pammel Dr, Ames, IA 50011, USA
| | - Margaret R Woodhouse
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Atanasoff Hall, 2434 Osborn Dr, Ames, IA 50011, USA
| |
Collapse
|
7
|
Huang P, Tate M, Berg‐Falloure KM, Christensen SA, Zhang J, Schirawski J, Meeley R, Kolomiets MV. A non-JA producing oxophytodienoate reductase functions in salicylic acid-mediated antagonism with jasmonic acid during pathogen attack. MOLECULAR PLANT PATHOLOGY 2023; 24:725-741. [PMID: 36715587 PMCID: PMC10257049 DOI: 10.1111/mpp.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/11/2023]
Abstract
Peroxisome-localized oxo-phytodienoic acid (OPDA) reductases (OPR) are enzymes converting 12-OPDA into jasmonic acid (JA). However, the biochemical and physiological functions of the cytoplasmic non-JA producing OPRs remain largely unknown. Here, we generated Mutator-insertional mutants of the maize OPR2 gene and tested its role in resistance to pathogens with distinct lifestyles. Functional analyses showed that the opr2 mutants were more susceptible to the (hemi)biotrophic pathogens Colletotrichum graminicola and Ustilago maydis, but were more resistant to the necrotrophic fungus Cochliobolus heterostrophus. Hormone profiling revealed that increased susceptibility to C. graminicola was associated with decreased salicylic acid (SA) but increased JA levels. Mutation of the JA-producing lipoxygenase 10 (LOX10) reversed this phenotype in the opr2 mutant background, corroborating the notion that JA promotes susceptibility to this pathogen. Exogenous SA did not rescue normal resistance levels in opr2 mutants, suggesting that this SA-inducible gene is the key downstream component of the SA-mediated defences against C. graminicola. Disease assays of the single and double opr2 and lox10 mutants and the JA-deficient opr7opr8 mutants showed that OPR2 negatively regulates JA biosynthesis, and that JA is required for resistance against C. heterostrophus. Overall, this study uncovers a novel function of a non-JA producing OPR as a major negative regulator of JA biosynthesis during pathogen infection, a function that leads to its contrasting contribution to either resistance or susceptibility depending on pathogen lifestyle.
Collapse
Affiliation(s)
- Pei‐Cheng Huang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan Tate
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Shawn A. Christensen
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Nutrition, Dietetics, and Food ScienceBrigham Young UniversityProvoUtahUSA
| | - Jinglan Zhang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
| | - Jan Schirawski
- Matthias‐Schleiden Institute/Genetics, Faculty of Biological SciencesFriedrich‐Schiller UniversityJenaGermany
| | | | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
8
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
9
|
Chen S, Dang D, Liu Y, Ji S, Zheng H, Zhao C, Dong X, Li C, Guan Y, Zhang A, Ruan Y. Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165582. [PMID: 37223800 PMCID: PMC10200999 DOI: 10.3389/fpls.2023.1165582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/25/2023]
Abstract
Introduction Drought stress is one of the most serious abiotic stresses leading to crop yield reduction. Due to the wide range of planting areas, the production of maize is particularly affected by global drought stress. The cultivation of drought-resistant maize varieties can achieve relatively high, stable yield in arid and semi-arid zones and in the erratic rainfall or occasional drought areas. Therefore, to a great degree, the adverse impact of drought on maize yield can be mitigated by developing drought-resistant or -tolerant varieties. However, the efficacy of traditional breeding solely relying on phenotypic selection is not adequate for the need of maize drought-resistant varieties. Revealing the genetic basis enables to guide the genetic improvement of maize drought tolerance. Methods We utilized a maize association panel of 379 inbred lines with tropical, subtropical and temperate backgrounds to analyze the genetic structure of maize drought tolerance at seedling stage. We obtained the high quality 7837 SNPs from DArT's and 91,003 SNPs from GBS, and a resultant combination of 97,862 SNPs of GBS with DArT's. The maize population presented the lower her-itabilities of the seedling emergence rate (ER), seedling plant height (SPH) and grain yield (GY) under field drought conditions. Results GWAS analysis by MLM and BLINK models with the phenotypic data and 97862 SNPs revealed 15 variants that were significantly independent related to drought-resistant traits at the seedling stage above the threshold of P < 1.02 × 10-5. We found 15 candidate genes for drought resistance at the seedling stage that may involve in (1) metabolism (Zm00001d012176, Zm00001d012101, Zm00001d009488); (2) programmed cell death (Zm00001d053952); (3) transcriptional regulation (Zm00001d037771, Zm00001d053859, Zm00001d031861, Zm00001d038930, Zm00001d049400, Zm00001d045128 and Zm00001d043036); (4) autophagy (Zm00001d028417); and (5) cell growth and development (Zm00001d017495). The most of them in B73 maize line were shown to change the expression pattern in response to drought stress. These results provide useful information for understanding the genetic basis of drought stress tolerance of maize at seedling stage.
Collapse
Affiliation(s)
- Shan Chen
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dongdong Dang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Yubo Liu
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Shuwen Ji
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Chenghao Zhao
- Dandong Academy of Agricultural Sciences, Fengcheng, Liaoning, China
| | - Xiaomei Dong
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Cong Li
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shang-hai Academy of Agricultural Sciences, Shanghai, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|
11
|
Eskier D, Arıbaş A, Karakülah G. PlanTEnrichment: A How-to Guide on Rapid Identification of Transposable Elements Associated with Regions of Interest in Select Plant Genomes. Methods Mol Biol 2023; 2703:59-70. [PMID: 37646937 DOI: 10.1007/978-1-0716-3389-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Transposable elements (TEs) are repeat elements that can relocate or create novel copies of themselves in the genome and contribute to genomic complexity and expansion, via events such as chromosome recombination or regulation of gene expression. However, given the large number of such repeats across the genome, identifying repeats of interest can be a challenge in even well-annotated genomes, especially in more complex, TE-rich plant genomes. Here, we describe a protocol for PlanTEnrichment, a database we created comprising information on 11 plant genomes to analyze stress-associated TEs using publicly available data. By selecting a genome and providing a list of genes or genomic regions whose TE associations the user wants to identify, the user can rapidly obtain TE subfamilies found near the provided regions, as well as their superfamily and class, and the enrichment values of the repeats. The results also provide the locations of individual repeat instances found, alongside the input regions or genes they are associated with, and a bar graph of the top ten most significant repeat subfamilies identified. PlanTEnrichment is freely available at http://tools.ibg.deu.edu.tr/plantenrichment/ and can be used by researchers with rudimentary or no proficiency in computational analysis of TE elements, allowing for expedience in the identification of TEs of interest and helping further our understanding of the potential contributions of TEs in plant genomes.
Collapse
Affiliation(s)
- Doğa Eskier
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İnciraltı, İzmir, Turkey
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey
| | - Alirıza Arıbaş
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İnciraltı, İzmir, Turkey.
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey.
| |
Collapse
|
12
|
Choudhary P, Muthamilarasan M. Modulating physiological and transcriptional regulatory mechanisms for enhanced climate resilience in cereal crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153815. [PMID: 36150236 DOI: 10.1016/j.jplph.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change adversely affects the yield and productivity of cereal crops, which consequently impacts food security. Therefore, studying stress acclimation, particularly transcriptional patterns and morpho-physiological responses of cereal crops to different stresses, will provide insights into the molecular determinants underlying climate resilience. The availability of advanced tools and approaches has enabled the characterization of plants at morphological, physiological, biochemical, and molecular levels, which will lead to the identification of genomic regions regulating the stress responses at these levels. This will further facilitate using transgenic, breeding, or genome editing approaches to manipulate the identified regions (genes, alleles, or QTLs) to enhance stress resilience. Next-generation sequencing approaches have advanced the identification of causal genes and markers in the genomes through forward or reverse genetics. In this context, the review enumerates the progress of dissecting the molecular mechanisms underlying transcriptional and physiological responses of major cereals to climate-induced stresses. The review systematically discusses different tools and approaches available to study the response of plants to various stresses and identify the molecular determinants regulating stress-resilience. Further, the application of genomics-assisted breeding, transgene-, and targeted editing-based approaches for modulating the genetic determinants for enhanced climate resilience has been elaborated.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
13
|
Li J, Chen M, Fan T, Mu X, Gao J, Wang Y, Jing T, Shi C, Niu H, Zhen S, Fu J, Zheng J, Wang G, Tang J, Gou M. Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3991-4007. [PMID: 35303096 DOI: 10.1093/jxb/erac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.
Collapse
Affiliation(s)
- Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyao Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tianyuan Fan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:978-993. [PMID: 35218100 DOI: 10.1111/tpj.15714] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.
Collapse
Affiliation(s)
- Xiaoxue Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ni Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ernest Wu
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
15
|
Osuman AS, Badu-Apraku B, Karikari B, Ifie BE, Tongoona P, Danquah EY. Genome-Wide Association Study Reveals Genetic Architecture and Candidate Genes for Yield and Related Traits under Terminal Drought, Combined Heat and Drought in Tropical Maize Germplasm. Genes (Basel) 2022; 13:genes13020349. [PMID: 35205393 PMCID: PMC8871853 DOI: 10.3390/genes13020349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Maize (Zea mays L.) production is constrained by drought and heat stresses. The combination of these two stresses is likely to be more detrimental. To breed for maize cultivars tolerant of these stresses, 162 tropical maize inbred lines were evaluated under combined heat and drought (CHD) and terminal drought (TD) conditions. The mixed linear model was employed for the genome-wide association study using 7834 SNP markers and several phenotypic data including, days to 50% anthesis (AD) and silking (SD), husk cover (HUSKC), and grain yield (GY). In total, 66, 27, and 24 SNPs were associated with the traits evaluated under CHD, TD, and their combined effects, respectively. Of these, four single nucleotide polymorphism (SNP) markers (SNP_161703060 on Chr01, SNP_196800695 on Chr02, SNP_195454836 on Chr05, and SNP_51772182 on Chr07) had pleiotropic effects on both AD and SD under CHD conditions. Four SNPs (SNP_138825271 (Chr03), SNP_244895453 (Chr04), SNP_168561609 (Chr05), and SNP_62970998 (Chr06)) were associated with AD, SD, and HUSKC under TD. Twelve candidate genes containing phytohormone cis-acting regulating elements were implicated in the regulation of plant responses to multiple stress conditions including heat and drought. The SNPs and candidate genes identified in the study will provide invaluable information for breeding climate smart maize varieties under tropical conditions following validation of the SNP markers.
Collapse
Affiliation(s)
- Alimatu Sadia Osuman
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra 00223, Ghana; (A.S.O.); (B.E.I.); (P.T.); (E.Y.D.)
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan 200001, Nigeria
- Crops Research Institute, P.O. Box 3785, Kumasi 00223, Ghana
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan 200001, Nigeria
- Correspondence: ; Tel.: +234-810-848-2590
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, P.O. Box TL 1882, Tamale 00223, Ghana;
| | - Beatrice Elohor Ifie
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra 00223, Ghana; (A.S.O.); (B.E.I.); (P.T.); (E.Y.D.)
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra 00223, Ghana; (A.S.O.); (B.E.I.); (P.T.); (E.Y.D.)
| | - Eric Yirenkyi Danquah
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra 00223, Ghana; (A.S.O.); (B.E.I.); (P.T.); (E.Y.D.)
| |
Collapse
|
16
|
Woodhouse MR, Sen S, Schott D, Portwood JL, Freeling M, Walley JW, Andorf CM, Schnable JC. qTeller: a tool for comparative multi-genomic gene expression analysis. Bioinformatics 2021; 38:236-242. [PMID: 34406385 DOI: 10.1093/bioinformatics/btab604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Over the last decade, RNA-Seq whole-genome sequencing has become a widely used method for measuring and understanding transcriptome-level changes in gene expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to evaluate gene expression across many different conditions, tissues and cell types. Although many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are dedicated to making data generated for individual genomic analysis accessible and reusable at a gene-level scale for comparative analysis between genes, across different genomes and meta-analyses. RESULTS To address this challenge, we revamped the comparative gene expression tool qTeller to take advantage of the growing number of public RNA-Seq datasets. qTeller allows users to evaluate gene expression data in a defined genomic interval and also perform two-gene comparisons across multiple user-chosen tissues. Though previously unpublished, qTeller has been cited extensively in the scientific literature, demonstrating its importance to researchers. Our new version of qTeller now supports multiple genomes for intergenomic comparisons, and includes capabilities for both mRNA and protein abundance datasets. Other new features include support for additional data formats, modernized interface and back-end database and an optimized framework for adoption by other organisms' databases. AVAILABILITY AND IMPLEMENTATION The source code for qTeller is open-source and available through GitHub (https://github.com/Maize-Genetics-and-Genomics-Database/qTeller). A maize instance of qTeller is available at the Maize Genetics and Genomics database (MaizeGDB) (https://qteller.maizegdb.org/), where we have mapped over 200 unique datasets from GenBank across 27 maize genomes. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Shatabdi Sen
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - David Schott
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Michael Freeling
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin W Walley
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - James C Schnable
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
17
|
Negi P, Mishra S, Ganapathi TR, Srivastava AK. Regulatory short RNAs: A decade's tale for manipulating salt tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1535-1555. [PMID: 34227692 DOI: 10.1111/ppl.13492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is a globally increasing environmental detriment to crop growth and productivity. Exposure to salt stress evokes a complex medley of cellular signals, which rapidly reprogram transcriptional and metabolic networks to shape plant phenotype. To date, genetic engineering approaches were used with success to enhance salt tolerance; however, their performance is yet to be evaluated under realistic field conditions. Regulatory short non-coding RNAs (rsRNAs) are emerging as next-generation candidates for engineering salt tolerance in crops. In view of this, the present review provides a comprehensive analysis of a decade's worth of functional studies on non-coding RNAs involved in salt tolerance. Further, we have integrated this knowledge of rsRNA-mediated regulation with the current paradigm of salt tolerance to highlight two regulatory complexes (RCs) for regulating salt tolerance in plants. Finally, a knowledge-driven roadmap is proposed to judiciously utilize RC component(s) for enhancing salt tolerance in crops.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
19
|
Madzima TF, Vendramin S, Lynn JS, Lemert P, Lu KC, McGinnis KM. Direct and Indirect Transcriptional Effects of Abiotic Stress in Zea mays Plants Defective in RNA-Directed DNA Methylation. FRONTIERS IN PLANT SCIENCE 2021; 12:694289. [PMID: 34489998 PMCID: PMC8418275 DOI: 10.3389/fpls.2021.694289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Plants respond to abiotic stress stimuli, such as water deprivation, through a hierarchical cascade that includes detection and signaling to mediate transcriptional and physiological changes. The phytohormone abscisic acid (ABA) is well-characterized for its regulatory role in these processes in response to specific environmental cues. ABA-mediated changes in gene expression have been demonstrated to be temporally-dependent, however, the genome-wide timing of these responses are not well-characterized in the agronomically important crop plant Zea mays (maize). ABA-mediated responses are synergistic with other regulatory mechanisms, including the plant-specific RNA-directed DNA methylation (RdDM) epigenetic pathway. Our prior work demonstrated that after relatively long-term ABA induction (8 h), maize plants homozygous for the mop1-1 mutation, defective in a component of the RdDM pathway, exhibit enhanced transcriptional sensitivity to the phytohormone. At this time-point, many hierarchically positioned transcription factors are differentially expressed resulting in primary (direct) and secondary (indirect) transcriptional outcomes. To identify more immediate and direct MOP1-dependent responses to ABA, we conducted a transcriptomic analysis using mop1-1 mutant and wild type plants treated with ABA for 1 h. One h of ABA treatment was sufficient to induce unique categories of differentially expressed genes (DEGs) in mop1-1. A comparative analysis between the two time-points revealed that distinct epigenetically-regulated changes in gene expression occur within the early stages of ABA induction, and that these changes are predicted to influence less immediate, indirect transcriptional responses. Homology with MOP1-dependent siRNAs and a gene regulatory network (GRN) were used to identify putative immediate and indirect targets, respectively. By manipulating two key regulatory networks in a temporal dependent manner, we identified genes and biological processes regulated by RdDM and ABA-mediated stress responses. Consistent with mis-regulation of gene expression, mop1-1 homozygous plants are compromised in their ability to recover from water deprivation. Collectively, these results indicate transcriptionally and physiologically relevant roles for MOP1-mediated regulation of gene expression of plant responses to environmental stress.
Collapse
Affiliation(s)
- Thelma F. Madzima
- Division of Biological Sciences, School of STEM, University of Washington Bothell, Bothell, WA, United States
| | - Stefania Vendramin
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jason S. Lynn
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Phebe Lemert
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Katherine C. Lu
- Division of Biological Sciences, School of STEM, University of Washington Bothell, Bothell, WA, United States
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
20
|
Exploration of Epigenetics for Improvement of Drought and Other Stress Resistance in Crops: A Review. PLANTS 2021; 10:plants10061226. [PMID: 34208642 PMCID: PMC8235456 DOI: 10.3390/plants10061226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023]
Abstract
Crop plants often have challenges of biotic and abiotic stresses, and they adapt sophisticated ways to acclimate and cope with these through the expression of specific genes. Changes in chromatin, histone, and DNA mostly serve the purpose of combating challenges and ensuring the survival of plants in stressful environments. Epigenetic changes, due to environmental stress, enable plants to remember a past stress event in order to deal with such challenges in the future. This heritable memory, called "plant stress memory", enables plants to respond against stresses in a better and efficient way, not only for the current plant in prevailing situations but also for future generations. Development of stress resistance in plants for increasing the yield potential and stability has always been a traditional objective of breeders for crop improvement through integrated breeding approaches. The application of epigenetics for improvements in complex traits in tetraploid and some other field crops has been unclear. An improved understanding of epigenetics and stress memory applications will contribute to the development of strategies to incorporate them into breeding for complex agronomic traits. The insight in the application of novel plant breeding techniques (NPBTs) has opened a new plethora of options among plant scientists to develop germplasms for stress tolerance. This review summarizes and discusses plant stress memory at the intergenerational and transgenerational levels, mechanisms involved in stress memory, exploitation of induced and natural epigenetic changes, and genome editing technologies with their future possible applications, in the breeding of crops for abiotic stress tolerance to increase the yield for zero hunger goals achievement on a sustainable basis in the changing climatic era.
Collapse
|
21
|
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 2021; 17:e1009326. [PMID: 34125827 PMCID: PMC8224964 DOI: 10.1371/journal.pgen.1009326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/24/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Mediator of Paramutation1 (Mop1), a gene encoding a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 27 dimethylation (H3K27me2), even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by histone H3 lysine 27 trimethylation (H3K27me3), a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild-type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements. Most plant genomes are mostly transposable elements (TEs), most of which are held in check by modifications of both DNA and histones. The bulk of silenced TEs are associated with methylated DNA and histone H3 lysine 9 dimethylation (H3K9me2). In contrast, epigenetically silenced genes are often associated with histone lysine 27 trimethylation (H3K27me3). Although stress can affect each of these modifications, plants are generally competent to rapidly reset them following that stress. Here we demonstrate that although DNA methylation is not required to maintain silencing of the MuDR element, it is essential for preventing heat-induced, stable and heritable changes in both H3K9me2 and H3K27me3 at this element, and for concomitant changes in transcriptional activity. These finding suggest that RdDM acts to buffer the effects of heat on silenced transposable elements, and that a loss of DNA methylation under conditions of stress can have profound and long-lasting effects on epigenetic silencing in maize.
Collapse
|
22
|
Heidari P, Faraji S, Ahmadizadeh M, Ahmar S, Mora-Poblete F. New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum: A Genome-Wide Comprehensive Analysis. Front Genet 2021; 12:657970. [PMID: 34054921 PMCID: PMC8155530 DOI: 10.3389/fgene.2021.657970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The TIFY gene family, a key plant-specific transcription factor (TF) family, is involved in diverse biological processes including plant defense and growth regulation. Despite TIFY proteins being reported in some plant species, a genome-wide comparative and comprehensive analysis of TIFY genes in plant species can reveal more details. In the current study, the members of the TIFY gene family were significantly increased by the identification of 18 and six new members using maize and tomato reference genomes, respectively. Thus, a genome-wide comparative analysis of the TIFY gene family between 48 tomato (Solanum lycopersicum, a dicot plant) genes and 26 maize (Zea mays, a monocot plant) genes was performed in terms of sequence structure, phylogenetics, expression, regulatory systems, and protein interaction. The identified TIFYs were clustered into four subfamilies, namely, TIFY-S, JAZ, ZML, and PPD. The PPD subfamily was only detected in tomato. Within the context of the biological process, TIFY family genes in both studied plant species are predicted to be involved in various important processes, such as reproduction, metabolic processes, responses to stresses, and cell signaling. The Ka/Ks ratios of the duplicated paralogous gene pairs indicate that all of the duplicated pairs in the TIFY gene family of tomato have been influenced by an intense purifying selection, whereas in the maize genome, there are three duplicated blocks containing Ka/Ks > 1, which are implicated in evolution with positive selection. The amino acid residues present in the active site pocket of TIFY proteins partially differ in each subfamily, although the Mg or Ca ions exist heterogeneously in the centers of the active sites of all the predicted TIFY protein models. Based on the expression profiles of TIFY genes in both plant species, JAZ subfamily proteins are more associated with the response to abiotic and biotic stresses than other subfamilies. In conclusion, globally scrutinizing and comparing the maize and tomato TIFY genes showed that TIFY genes play a critical role in cell reproduction, plant growth, and responses to stress conditions, and the conserved regulatory mechanisms may control their expression.
Collapse
Affiliation(s)
- Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sahar Faraji
- Department of Plant Breeding, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, Talca, Chile
| | | |
Collapse
|
23
|
Chano V, Domínguez-Flores T, Hidalgo-Galvez MD, Rodríguez-Calcerrada J, Pérez-Ramos IM. Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach. Heredity (Edinb) 2021; 126:748-762. [PMID: 33608652 PMCID: PMC8102545 DOI: 10.1038/s41437-021-00415-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The impact of reduced rainfall and increased temperatures forecasted by climate change models on plant communities will depend on the capacity of plant species to acclimate and adapt to new environmental conditions. The acclimation process is mainly driven by epigenetic regulation, including structural and chemical modifications on the genome that do not affect the nucleotide sequence. In plants, one of the best-known epigenetic mechanisms is cytosine-methylation. We evaluated the impact of 30% reduced rainfall (hereafter "drought" treatment; D), 3 °C increased air temperature ("warming"; W), and the combination of D and W (WD) on the phenotypic and epigenetic variability of Hordeum murinum subsp. leporinum L., a grass species of high relevance in Mediterranean agroforestry systems. A full factorial experiment was set up in a savannah-like ecosystem located in southwestern Spain. H. murinum exhibited a large phenotypic plasticity in response to climatic conditions. Plants subjected to warmer conditions (i.e., W and WD treatments) flowered earlier, and those subjected to combined stress (WD) showed a higher investment in leaf area per unit of leaf mass (i.e., higher SLA) and produced heavier seeds. Our results also indicated that both the level and patterns of methylation varied substantially with the climatic treatments, with the combination of D and W inducing a clearly different epigenetic response compared to that promoted by D and W separately. The main conclusion achieved in this work suggests a potential role of epigenetic regulation of gene expression for the maintenance of homoeostasis and functional stability under future climate change scenarios.
Collapse
Affiliation(s)
- Víctor Chano
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain ,grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ,grid.7450.60000 0001 2364 4210Present Address: Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Tania Domínguez-Flores
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Maria Dolores Hidalgo-Galvez
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Jesús Rodríguez-Calcerrada
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ignacio Manuel Pérez-Ramos
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
24
|
Chialva C, Blein T, Crespi M, Lijavetzky D. Insights into long non-coding RNA regulation of anthocyanin carrot root pigmentation. Sci Rep 2021; 11:4093. [PMID: 33603038 PMCID: PMC7892999 DOI: 10.1038/s41598-021-83514-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Carrot (Daucus carota L.) is one of the most cultivated vegetable in the world and of great importance in the human diet. Its storage organs can accumulate large quantities of anthocyanins, metabolites that confer the purple pigmentation to carrot tissues and whose biosynthesis is well characterized. Long non-coding RNAs (lncRNAs) play critical roles in regulating gene expression of various biological processes in plants. In this study, we used a high throughput stranded RNA-seq to identify and analyze the expression profiles of lncRNAs in phloem and xylem root samples using two genotypes with a strong difference in anthocyanin production. We discovered and annotated 8484 new genes, including 2095 new protein-coding and 6373 non-coding transcripts. Moreover, we identified 639 differentially expressed lncRNAs between the phenotypically contrasted genotypes, including certain only detected in a particular tissue. We then established correlations between lncRNAs and anthocyanin biosynthesis genes in order to identify a molecular framework for the differential expression of the pathway between genotypes. A specific natural antisense transcript linked to the DcMYB7 key anthocyanin biosynthetic transcription factor suggested how the regulation of this pathway may have evolved between genotypes.
Collapse
Affiliation(s)
- Constanza Chialva
- grid.507426.2Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo, CONICET, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza Argentina
| | - Thomas Blein
- grid.4444.00000 0001 2112 9282Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris, Batiment 630, Gif Sur Yvette, France
| | - Martin Crespi
- grid.4444.00000 0001 2112 9282Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay and University of Paris, Batiment 630, Gif Sur Yvette, France
| | - Diego Lijavetzky
- grid.507426.2Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM), UNCuyo, CONICET, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza Argentina
| |
Collapse
|
25
|
Yu C, Yan M, Dong H, Luo J, Ke Y, Guo A, Chen Y, Zhang J, Huang X. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110676. [PMID: 33288001 DOI: 10.1016/j.plantsci.2020.110676] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Ascorbic acid (AsA) is an antioxidant and enzyme co-factor that is vital to plant development and abiotic stress tolerance. However, the regulation mechanisms of AsA biosynthesis in plants remain poorly understood. Here, we report a basic helix-loop-helix 55 (ZmbHLH55) transcription factor that regulates AsA biosynthesis in maize. Analysis of publicly available transcriptomic data revealed that ZmbHLH55 is co-expressed with several genes of the GDP-mannose pathway. Experimental data showed that ZmbHLH55 forms homodimers localized to the cell nuclei, and it exhibits DNA binding and transactivation activity in yeast. Under salt stress conditions, knock down mutant (zmbhlh55) in maize accumulated lower levels of AsA compared with wild type, accompanied by lower antioxidant enzymes activity, shorter root length, and higher malondialdehyde (MDA) level. Gene expression data from the WT and zmbhlh55 mutant, showed that ZmbHLH55 positively regulates the expression of ZmPGI2, ZmGME1, and ZmGLDH, but negatively regulates ZmGMP1 and ZmGGP. Furthermore, ZmbHLH55-overexpressing Arabidopsis, under salt conditions, showed higher AsA levels, increased rates of germination, and elevated antioxidant enzyme activities. In conclusion, these results have identified previously unknown regulation mechanisms for AsA biosynthesis, indicating that ZmbHLH55 may be a potential candidate to enhance plant salt stress tolerance in the future.
Collapse
Affiliation(s)
- Chunmei Yu
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Ming Yan
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Huizhen Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Luo
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Yongchao Ke
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Anfang Guo
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Yanhong Chen
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Jian Zhang
- Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China
| | - Xiaosan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
27
|
Xie S, Luo H, Huang Y, Wang Y, Ru W, Shi Y, Huang W, Wang H, Dong Z, Jin W. A Missense Mutation in a Large Subunit of Ribonucleotide Reductase Confers Temperature-Gated Tassel Formation. PLANT PHYSIOLOGY 2020; 184:1979-1997. [PMID: 33020253 PMCID: PMC7723098 DOI: 10.1104/pp.20.00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/15/2020] [Indexed: 05/15/2023]
Abstract
Temperature is a major factor regulating plant growth. To reproduce at extreme temperatures, plants must develop normal reproductive organs when exposed to temperature changes. However, little is known about the underlying molecular mechanisms. Here, we identified the maize (Zea mays) mutant thermosensitive vanishing tassel1-R (tvt1-R), which lacks tassels at high (restrictive) temperatures due to shoot apical meristem (SAM) arrest, but forms normal tassels at moderate (permissive) temperatures. The critical stage for phenotypic conversion in tvt1-R mutants is V2 to V6 (Vn, where "n" is the number of leaves with collars visible). Positional cloning and allelism and complementation tests revealed that a G-to-A mutation causing a Arg277-to-His277 substitution in ZmRNRL1, a ribonucleotide reductase (RNR) large subunit (RNRL), confers the tvt1-R mutant phenotype. RNR regulates the rate of deoxyribonucleoside triphosphate (dNTP) production for DNA replication and damage repair. By expression, yeast two-hybrid, RNA sequencing, and flow cytometric analyses, we found that ZmRNRL1-tvt1-R failed to interact with all three RNR small subunits at 34°C due to the Arg277-to-His277 substitution, which could impede RNR holoenzyme (α2β2) formation, thereby decreasing the dNTP supply for DNA replication. Decreased dNTP supply may be especially severe for the SAM that requires a continuous, sufficient dNTP supply for rapid division, as demonstrated by the SAM arrest and tassel absence in tvt1-R mutants at restrictive temperatures. Our study reveals a novel mechanism of temperature-gated tassel formation in maize and provides insight into the role of RNRL in SAM maintenance.
Collapse
Affiliation(s)
- Shiyi Xie
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, Hunan Agricultural University, Changsha 410128, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaxin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Ru
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Balti I, Benny J, Perrone A, Caruso T, Abdallah D, Salhi-Hannachi A, Martinelli F. Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:54-71. [PMID: 32727652 DOI: 10.1071/fp20028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visualisation and Integrated Discovery) was used for metabolic process enrichment analysis. We identified of a total of 5122 differentially expressed genes when considering all abiotic stresses (3895 were upregulated and 1227 were downregulated). Jasmonate-related genes were more commonly upregulated by drought, whereas gibberellin downregulation was a key signal for drought and heat. In contrast, cold stress clearly upregulated genes involved in ABA (abscisic acid), cytokinin and gibberellins. A gene (non-phototrophic hypocotyl) involved in IAA (indoleacetic acid) response was induced by heat. Regarding secondary metabolism, as expected, MVA pathway (mevalonate pathway), terpenoids and alkaloids were generally upregulated by all different stresses. However, flavonoids, lignin and lignans were more repressed by heat (cinnamoyl coA reductase 1 and isopentenyl pyrophosphatase). Cold stress drastically modulated genes involved in terpenoid and alkaloids. Relating to transcription factors, AP2-EREBP, MADS-box, WRKY22, MYB, homoebox genes members were significantly modulated by drought stress whereas cold stress enhanced AP2-EREBPs, bZIP members, MYB7, BELL 1 and one bHLH member. C2C2-CO-LIKE, MADS-box and a homeobox (HOMEOBOX3) were mostly repressed in response to heat. Gene set enrichment analysis showed that ubiquitin-mediated protein degradation was enhanced by heat, which unexpectedly repressed glutaredoxin genes. Cold stress mostly upregulated MAP kinases (mitogen-activated protein kinase). Findings of this work will allow the identification of new molecular markers conserved across crops linked to major genes involved in quantitative agronomic traits affected by different abiotic stress.
Collapse
Affiliation(s)
- Imen Balti
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy; and Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Jubina Benny
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, 90128, Italy
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4 Palermo, 90128, Italy
| | - Donia Abdallah
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Salhi-Hannachi
- Department of Biology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, 50019, Italy; and Corresponding author.
| |
Collapse
|
29
|
A systems genetics approach reveals environment-dependent associations between SNPs, protein coexpression, and drought-related traits in maize. Genome Res 2020; 30:1593-1604. [PMID: 33060172 PMCID: PMC7605251 DOI: 10.1101/gr.255224.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
The effect of drought on maize yield is of particular concern in the context of climate change and human population growth. However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult task that would greatly benefit from a better understanding of the genotype–phenotype relationship. To provide novel insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic, and genomic data acquired from 254 maize hybrids grown under two watering conditions. Using association genetics and protein coexpression analysis, we detected more than 22,000 pQTLs across the two conditions and confidently identified 15 loci with potential pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound remodeling of the proteome, which affected the structure of the protein coexpression network, and a reprogramming of the genetic control of the abundance of many proteins, including those involved in stress response. Colocalizations between pQTLs and QTLs for ecophysiological traits, found mostly in the water deficit condition, indicated that this reprogramming may also affect the phenotypic level. Finally, we identified several candidate genes that are potentially responsible for both the coexpression of stress response proteins and the variations of ecophysiological traits under water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of drought tolerance and suggest some pathways for further research and breeding.
Collapse
|
30
|
Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. Epigenetics: possible applications in climate-smart crop breeding. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5223-5236. [PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell’Università, Padova, Italy
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
31
|
Forestan C, Farinati S, Zambelli F, Pavesi G, Rossi V, Varotto S. Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. PLANT, CELL & ENVIRONMENT 2020; 43:55-75. [PMID: 31677283 DOI: 10.1111/pce.13660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Silvia Farinati
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Vincenzo Rossi
- CREA - Centro di Cerealicoltura e Colture Industriali (CREA-CI), Via Stezzano 24, 24126, Bergamo, Italy
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
32
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
33
|
Luo X, Liu J. Transcriptome Analysis of Acid-Responsive Genes and Pathways Involved in Polyamine Regulation in Iron Walnut. Genes (Basel) 2019; 10:E605. [PMID: 31405132 PMCID: PMC6723594 DOI: 10.3390/genes10080605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
We reported changes in the co-regulated mRNA expression in iron walnut (Juglans sigillata) in response to soil pH treatments and identified mRNAs specific to acidic soil conditions. Phenotypic and physiological analyses revealed that iron walnut growth was greater for the pH 4-5 and pH 5-6 treatments than for the pH 3-4 and pH 6-7 treatments. A total of 2768 differentially expressed genes were detected and categorized into 12 clusters by Short Time-series Expression Miner (STEM). The 994 low-expression genes in cluster III and 255 high-expression genes in cluster X were classified as acid-responsive genes on the basis of the relationships between phenotype, physiology, and STEM clustering, and the two gene clusters were analyzed by a maximum likelihood (ML) evolutionary tree with the greatest log likelihood values. No prominent sub-clusters occurred in cluster III, but three occurred in cluster X. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that acid-responsive genes were related primarily to arginine biosynthesis and the arginine/proline metabolism pathway, implying that polyamine accumulation may enhance iron walnut acid stress tolerance. Overall, our results revealed 1249 potentially acid-responsive genes in iron walnut, indicating that its response to acid stress involves different pathways and activated genes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China.
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China
| |
Collapse
|
34
|
Jha UC, Bohra A, Jha R, Parida SK. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes. PLANT CELL REPORTS 2019; 38:255-277. [PMID: 30637478 DOI: 10.1007/s00299-019-02374-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge. Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on 'adaptive traits' that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping-genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated "omics-assisted" approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Rintu Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, 110067, India
| |
Collapse
|
35
|
Spatio-Temporal Transcriptional Dynamics of Maize Long Non-Coding RNAs Responsive to Drought Stress. Genes (Basel) 2019; 10:genes10020138. [PMID: 30781862 PMCID: PMC6410058 DOI: 10.3390/genes10020138] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators in plant stress response. Here, we report a genome-wide lncRNA transcriptional analysis in response to drought stress using an expanded series of maize samples collected from three distinct tissues spanning four developmental stages. In total, 3488 high-confidence lncRNAs were identified, among which 1535 were characterized as drought responsive. By characterizing the genomic structure and expression pattern, we found that lncRNA structures were less complex than protein-coding genes, showing shorter transcripts and fewer exons. Moreover, drought-responsive lncRNAs exhibited higher tissue- and development-specificity than protein-coding genes. By exploring the temporal expression patterns of drought-responsive lncRNAs at different developmental stages, we discovered that the reproductive stage R1 was the most sensitive growth stage with more lncRNAs showing altered expression upon drought stress. Furthermore, lncRNA target prediction revealed 653 potential lncRNA-messenger RNA (mRNA) pairs, among which 124 pairs function in cis-acting mode and 529 in trans. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to oxidoreductase activity, water binding, and electron carrier activity. Multiple promising targets of drought-responsive lncRNAs were discovered, including the V-ATPase encoding gene, vpp4. These findings extend our knowledge of lncRNAs as important regulators in maize drought response.
Collapse
|
36
|
Luo D, Zhou Q, Wu Y, Chai X, Liu W, Wang Y, Yang Q, Wang Z, Liu Z. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC PLANT BIOLOGY 2019; 19:32. [PMID: 30665358 PMCID: PMC6341612 DOI: 10.1186/s12870-019-1630-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa's productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress. RESULTS In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24 h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551 bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress. CONCLUSIONS Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.
Collapse
Affiliation(s)
- Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Yuguo Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Xutian Chai
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100000 People’s Republic of China
| | - Zengyu Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Core Research & Transformation, Noble Research Institute, Ardmore, OK 73401 USA
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
37
|
Calixto CPG, Tzioutziou NA, James AB, Hornyik C, Guo W, Zhang R, Nimmo HG, Brown JWS. Cold-Dependent Expression and Alternative Splicing of Arabidopsis Long Non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2019; 10:235. [PMID: 30891054 PMCID: PMC6413719 DOI: 10.3389/fpls.2019.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/12/2019] [Indexed: 05/07/2023]
Abstract
Plants re-program their gene expression when responding to changing environmental conditions. Besides differential gene expression, extensive alternative splicing (AS) of pre-mRNAs and changes in expression of long non-coding RNAs (lncRNAs) are associated with stress responses. RNA-sequencing of a diel time-series of the initial response of Arabidopsis thaliana rosettes to low temperature showed massive and rapid waves of both transcriptional and AS activity in protein-coding genes. We exploited the high diversity of transcript isoforms in AtRTD2 to examine regulation and post-transcriptional regulation of lncRNA gene expression in response to cold stress. We identified 135 lncRNA genes with cold-dependent differential expression (DE) and/or differential alternative splicing (DAS) of lncRNAs including natural antisense RNAs, sORF lncRNAs, and precursors of microRNAs (miRNAs) and trans-acting small-interfering RNAs (tasiRNAs). The high resolution (HR) of the time-series allowed the dynamics of changes in transcription and AS to be determined and identified early and adaptive transcriptional and AS changes in the cold response. Some lncRNA genes were regulated only at the level of AS and using plants grown at different temperatures and a HR time-course of the first 3 h of temperature reduction, we demonstrated that the AS of some lncRNAs is highly sensitive to small temperature changes suggesting tight regulation of expression. In particular, a splicing event in TAS1a which removed an intron that contained the miR173 processing and phased siRNAs generation sites was differentially alternatively spliced in response to cold. The cold-induced reduction of the spliced form of TAS1a and of the tasiRNAs suggests that splicing may enhance production of the siRNAs. Our results identify candidate lncRNAs that may contribute to the regulation of expression that determines the physiological processes essential for acclimation and freezing tolerance.
Collapse
Affiliation(s)
- Cristiane P. G. Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nikoleta A. Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Allan B. James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Csaba Hornyik
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Hugh G. Nimmo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John W. S. Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: John W. S. Brown,
| |
Collapse
|
38
|
Bai L, Chen Q, Jiang L, Lin Y, Ye Y, Liu P, Wang X, Tang H. Comparative transcriptome analysis uncovers the regulatory functions of long noncoding RNAs in fruit development and color changes of Fragaria pentaphylla. HORTICULTURE RESEARCH 2019; 6:42. [PMID: 30854215 PMCID: PMC6397888 DOI: 10.1038/s41438-019-0128-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 05/18/2023]
Abstract
To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding RNAs (lncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed protein-coding genes and lncRNAs associated with fruit development and ripening in both of the F. pentaphylla varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall organization or biogenesis, suggesting that lncRNAs may act as negative regulators to suppress photosynthesis and cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla. Pairwise comparisons of two varieties at three developmental stages identified 365 differentially expressed lncRNAs in total. Functional annotation of target genes suggested that lncRNAs in F. pentaphylla may play roles in fruit color formation by regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further revealed that the low expression of Fra a and CHS may be the main cause of colorless fruit in F. pentaphylla.
Collapse
Affiliation(s)
- Lijun Bai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
- Chengdu Life Baseline Technology Co., LTD, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuntian Ye
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Peng Liu
- Chengdu Life Baseline Technology Co., LTD, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
39
|
Anderson SN, Zynda GJ, Song J, Han Z, Vaughn MW, Li Q, Springer NM. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways. G3 (BETHESDA, MD.) 2018; 8:1921-1932. [PMID: 29618467 PMCID: PMC5982821 DOI: 10.1534/g3.118.200284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for DNA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm tissue, highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
40
|
Nepolean T, Kaul J, Mukri G, Mittal S. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:361. [PMID: 29696027 PMCID: PMC5905169 DOI: 10.3389/fpls.2018.00361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/05/2018] [Indexed: 05/28/2023]
Abstract
Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems.
Collapse
Affiliation(s)
- Thirunavukkarsau Nepolean
- Maize Research Lab, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
41
|
Lunardon A, Forestan C, Farinati S, Varotto S. De Novo Identification of sRNA Loci and Non-coding RNAs by High-Throughput Sequencing. Methods Mol Biol 2018; 1675:297-314. [PMID: 29052198 DOI: 10.1007/978-1-4939-7318-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-coding RNA transcripts, such as long non-coding RNAs, miRNAs, siRNAs, and transposon-originating transcripts, are involved in the regulation of RNA stability, protein translation, and/or the modulation of chromatin states. RNA-Seq can be used to catalog this diversity of novel transcripts and a joint analysis of these transcriptomic data can provide useful insights into epigenetic regulation of dynamic responses such as the stress response, which may not be deciphered from individual analysis of single transcript categories. Here, we present a protocol that allows the identification and analysis of small RNAs and long non-coding RNAs, together with the comparison of these species between different sample types.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy.
| |
Collapse
|
42
|
Kumar V, Khare T, Shriram V, Wani SH. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. PLANT CELL REPORTS 2018; 37:61-75. [PMID: 28951953 DOI: 10.1007/s00299-017-2210-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/12/2017] [Indexed: 05/07/2023]
Abstract
Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19-24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192101, India.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
43
|
Horváth V, Merenciano M, González J. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends Genet 2017; 33:832-841. [DOI: 10.1016/j.tig.2017.08.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
44
|
Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseverino W, Varotto S. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. BMC PLANT BIOLOGY 2017; 17:161. [PMID: 29025411 PMCID: PMC5639751 DOI: 10.1186/s12870-017-1108-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. RESULTS In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. CONCLUSIONS This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Alice Lunardon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
- Present Address: Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| |
Collapse
|
45
|
Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice ( Oryza rufipogon). Biosci Rep 2017; 37:BSR20160509. [PMID: 28424372 PMCID: PMC6434088 DOI: 10.1042/bsr20160509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.
Collapse
|