1
|
Zerti D, Dorgau B, Sernagor E, Armstrong L, Lako M, Hilgen G. Evaluating the outcomes of pluripotent stem-cell-derived photoreceptor transplantation in retinal repair. FEBS J 2025. [PMID: 40347492 DOI: 10.1111/febs.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
In recent decades, numerous research groups have focused on restoring visual function through the transplantation of stem cells into animal models of retinal neurodegeneration. Significant advancements in surgical techniques, the maturation of donor cells, and the production of cell suspensions, along with ensuring proper synaptic connectivity with the host environment, are key considerations for the potential implementation of this strategy in clinical practice. In this review, we summarize the latest progress in the transplantation of stem cell-derived photoreceptors, emphasizing the outcomes related to visual function observed in the used animal models. Additionally, we analyze the various methods of stem cell differentiation and the surgical techniques selected for transplanting these photoreceptor precursors. Finally, we report on functional assessments from recent studies to highlight the considerable potential of stem cell-derived photoreceptor transplants as a therapeutic approach for retinal degenerative diseases.
Collapse
Affiliation(s)
- Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Ou S, Hori K, Muangkram Y, Himeno Y, Tachibanaki S, Amano A. Analysis of the relationship between rod cell membrane currents and the photoreceptor component of electroretinograms using a cable model. Sci Rep 2025; 15:11211. [PMID: 40175484 PMCID: PMC11965377 DOI: 10.1038/s41598-025-95998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
This study presents a one-dimensional bidomain cable model for analyzing the relationship between rod membrane currents and rod electroretinogram (ERG) waveform components. The model incorporates the detailed structural and electrophysiological properties of rod photoreceptors by assuming the distribution of various ion currents. Simulation results indicate that the outer segment current (Iphoto) primarily influences the photoreceptor component of ERG in low-intensity light, while the transient potential notch shape called "nose," observed under high-intensity light stimulation, is mainly attributed to the Ih current in the inner segment. In addition, capacitive currents in the outer segment play a crucial role in maintaining extracellular current loops when Iphoto is inactive. These findings highlight that currents other than Iphoto, such as Ih and capacitive currents, contribute significantly to the ERG waveform, particularly under high-intensity light, as theoretically suggested by Robson et al. The model successfully reproduced the experimentally measured rod ERG waveforms and their local components, providing a foundational platform for further investigation of ERG mechanisms. This enhanced understanding could lead to improved clinical applications of ERG in the diagnosis and assessment of retinal conditions. Future work will focus on refining the ion channel distribution, incorporating additional transport mechanisms, and validating the model using a broader range of experimental data to better replicate the complex electrophysiological phenomena of rod photoreceptor cells.
Collapse
Affiliation(s)
- Shaocong Ou
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Kouta Hori
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Yuttamol Muangkram
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Yukiko Himeno
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan
| | - Shuji Tachibanaki
- Division of Biology, Department of Natural Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Amano
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu City, Shiga, Japan.
| |
Collapse
|
3
|
Watanabe M, Yamada T, Koike C, Takahashi M, Tachibana M, Mandai M. Transplantation of genome-edited retinal organoids restores some fundamental physiological functions coordinated with severely degenerated host retinas. Stem Cell Reports 2025; 20:102393. [PMID: 39824188 PMCID: PMC11864131 DOI: 10.1016/j.stemcr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025] Open
Abstract
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1-/- ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays. Notably, retinal ganglion cells (RGCs) in TP-rd1 retinas acquired light sensitivity comparable to that of WT retinas. Furthermore, RGCs in TP-rd1 retinas showed light adaptation to a photopic background and responded to flickering stimuli. These results demonstrate that transplantation of gRO sheets may restore some fundamental physiological functions, possibly coordinating with the remaining functions in retinas with end-stage degeneration.
Collapse
Affiliation(s)
- Mikiya Watanabe
- VCCT Inc., Kobe, Hyogo 650-0047, Japan; Graduate School of Pharmacy, Ritsumeikan University, Kusatsu, Siga 525-8577, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takayuki Yamada
- Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Vision Care Inc., Kobe, Hyogo 650-0047, Japan
| | - Chieko Koike
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Ritsumeikan Global Innovation Research Organization(R-GIRO), Ritsumeikan University, Kusatsu, Siga 525-8577, Japan; College of Pharmaceutical Science, Ritsumeikan University, Kusatsu, Siga 525-8577, Japan
| | - Masayo Takahashi
- Vision Care Inc., Kobe, Hyogo 650-0047, Japan; Ritsumeikan Advanced Research Academy, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masao Tachibana
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Michiko Mandai
- Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
4
|
Akiba R, Tu HY, Hashiguchi T, Takahashi Y, Toyooka K, Tsukamoto Y, Baba T, Takahashi M, Mandai M. Host-Graft Synapses Form Functional Microstructures and Shape the Host Light Responses After Stem Cell-Derived Retinal Sheet Transplantation. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39374009 PMCID: PMC11463710 DOI: 10.1167/iovs.65.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Retinitis pigmentosa represents a leading cause of blindness in developed countries, yet effective treatments for the disease remain unestablished. Previous studies have demonstrated the potential of stem cell-derived retinal organoid (SC-RO) sheet transplantation to form host-graft synapses and to improve light responsiveness in animal models of retinal degeneration. However, the detailed microstructures of these de novo synapses and their functional contribution have not been well elucidated. This study aims to (1) elucidate the microstructures of the host-graft synapse, and (2) investigate the overall distribution and contribution of these synapses to host retinal light responses. Methods We identified host-graft synapses using a reporter system in mouse SC-RO and rd1 mice, a well-established model of end-stage retinal degeneration. Correlative array tomography was used to reveal the microstructure of host-graft synapses. Furthermore, we developed a semi-automated algorithm that robustly detects the host-graft photoreceptor synapses in the overall grafted area using the same reporter system in flat-mount retinas. We then integrated the spatial distribution of the host-graft synapses with light responses detected by multi-electrode array recording. Results Correlative array tomography revealed that host-graft synapses recapitulate the developmental process of photoreceptor synapse formation involving horizontal cells first and then rod bipolar cells. By integrating the spatial distribution of host-graft synapse and multi-electrode array recording, we showed that the number of light-responsive host retinal ganglion cells is positively correlated with the local density of host-graft synapses. Conclusions De novo host-graft synapses recapitulate the developmental microstructure of the photoreceptor synapse, and their formation contributes to the light responsiveness after SC-RO transplantation.
Collapse
Affiliation(s)
- Ryutaro Akiba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Institute for Protein Research, Osaka University, Suita-shi, Osaka, Japan
| | - Tomoyo Hashiguchi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Yoshiko Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | - Takayuki Baba
- Chiba University Graduate School of Medicine, Department of Ophthalmology, Chuo-ku, Chiba, Japan
| | - Masayo Takahashi
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| | - Michiko Mandai
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Retinal Regeneration, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
- Kobe City Eye Hospital Research Center, Minato-jima, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Li J, Zhou W, Liang L, Li Y, Xu K, Li X, Huang Z, Jin Y. Noninvasive electrical stimulation as a neuroprotective strategy in retinal diseases: a systematic review of preclinical studies. J Transl Med 2024; 22:28. [PMID: 38184580 PMCID: PMC10770974 DOI: 10.1186/s12967-023-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Electrical activity has a crucial impact on the development and survival of neurons. Numerous recent studies have shown that noninvasive electrical stimulation (NES) has neuroprotective action in various retinal disorders. OBJECTIVE To systematically review the literature on in vivo studies and provide a comprehensive summary of the neuroprotective action and the mechanisms of NES on retinal disorders. METHODS Based on the PRISMA guideline, a systematic review was conducted in PubMed, Web of Science, Embase, Scopus and Cochrane Library to collect all relevant in vivo studies on "the role of NES on retinal diseases" published up until September 2023. Possible biases were identified with the adopted SYRCLE's tool. RESULTS Of the 791 initially gathered studies, 21 articles met inclusion/exclusion criteria for full-text review. The results revealed the neuroprotective effect of NES (involved whole-eye, transcorneal, transscleral, transpalpebral, transorbital electrical stimulation) on different retinal diseases, including retinitis pigmentosa, retinal degeneration, high-intraocular pressure injury, traumatic optic neuropathy, nonarteritic ischemic optic neuropathy. NES could effectively delay degeneration and apoptosis of retinal neurons, preserve retinal structure and visual function with high security, and its mechanism of action might be related to promoting the secretion of neurotrophins and growth factors, decreasing inflammation, inhibiting apoptosis. The quality scores of included studies ranged from 5 to 8 points (a total of 10 points), according to SYRCLE's risk of bias tool. CONCLUSION This systematic review indicated that NES exerts neuroprotective effects on retinal disease models mainly through its neurotrophic, anti-inflammatory, and anti-apoptotic capabilities. To assess the efficacy of NES in a therapeutic setting, however, well-designed clinical trials are required in the future.
Collapse
Affiliation(s)
- Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China.
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| |
Collapse
|
6
|
Katada Y, Yoshida K, Serizawa N, Lee D, Kobayashi K, Negishi K, Okano H, Kandori H, Tsubota K, Kurihara T. Highly sensitive visual restoration and protection via ectopic expression of chimeric rhodopsin in mice. iScience 2023; 26:107716. [PMID: 37720108 PMCID: PMC10504486 DOI: 10.1016/j.isci.2023.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Photoreception requires amplification by mammalian rhodopsin through G protein activation, which requires a visual cycle. To achieve this in retinal gene therapy, we incorporated human rhodopsin cytoplasmic loops into Gloeobacter rhodopsin, thereby generating Gloeobacter and human chimeric rhodopsin (GHCR). In a murine model of inherited retinal degeneration, we induced retinal GHCR expression by intravitreal injection of a recombinant adeno-associated virus vector. Retinal explant and visual thalamus electrophysiological recordings, behavioral tests, and histological analysis showed that GHCR restored dim-environment vision and prevented the progression of retinal degeneration. Thus, GHCR may be a potent clinical tool for the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuho Yoshida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Nutritional Sciences, Toyo University, Kita-ku, Tokyo 115-8650, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc., Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
7
|
Kralik J, van Wyk M, Leonardon B, Schilardi G, Schneider S, Kleinlogel S. The Bovine Ex Vivo Retina: A Versatile Model for Retinal Neuroscience. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37610761 PMCID: PMC10461644 DOI: 10.1167/iovs.64.11.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose The isolated ex vivo retina is the standard model in retinal physiology and neuroscience. During isolation, the retina is peeled from the retinal pigment epithelium (RPE), which plays a key role in the visual cycle. Here we introduce the choroid-attached bovine retina as an in vivo-like model for retinal physiology. We find that-in the bovine eye-the choroid and retina can be peeled from the sclera as a single thin sheet. Importantly, the retina remains tightly associated with the RPE, which is sandwiched between the retina and the choroid. Furthermore, bovine tissue is readily available and cheap, and there are no ethical concerns related to the use of animals solely for research purposes. Methods We combine multi-electrode array and single-cell patch-clamp recordings to characterize light responses in the choroid-attached bovine ex vivo retina. Results We demonstrate robust and consistent light responses in choroid-attached preparations. Importantly, light responses adapt to different levels of background illumination and rapidly recover from photobleaching. The choroid-attached retina is also thin enough to permit targeted electrophysiological recording from individual retinal neurons using standard differential interference contrast microscopy. We also characterize light responses and membrane properties of bovine retinal ganglion cells and compare data obtained from bovine and murine retinas. Conclusions The choroid-attached retinal model retains the advantages of the isolated retina but with an intact visual cycle and represents a useful tool to elucidate retinal physiology.
Collapse
Affiliation(s)
- Jakub Kralik
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michiel van Wyk
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Leonardon
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giulia Schilardi
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Kim J, Ryu B, Bang J, Kim CY, Park JH. Postnatal exposure to trimethyltin chloride induces retinal developmental neurotoxicity in mice via glutamate and its transporter related changes. Reprod Toxicol 2023; 119:108395. [PMID: 37164060 DOI: 10.1016/j.reprotox.2023.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Exposure to toxic substances during postnatal period is one of the major factors causing retinal developmental defects. The developmental toxicity of trimethyltin chloride (TMT), a byproduct of an organotin compound widely used in agriculture and industrial fields, has been reported; however, the effect on the mammalian retina during postnatal development and the mechanism have not been elucidated to date. We exposed 0.75 and 1.5 mg/kg of TMT to neonatal ICR mice (1:1 ratio of male and female) up to postnatal day 14 and performed analysis of the retina: histopathology, apoptosis, electrophysiological function, glutamate concentration, gene expression, and fluorescence immunostaining. Exposure to TMT caused delayed eye opening, eye growth defect and thinning of retinal layer. In addition, apoptosis occurred in the retina along with b-wave and spiking activity changes in the micro-electroretinogram. These changes were accompanied by an increase in the concentration of glutamate, upregulation of astrocyte-related genes, and increased expression of glial excitatory amino acid transporter (EAAT) 1 and 2. Conversely, EAAT 3, 4, and 5, mainly located in the neurons, were decreased. Our results are the first to prove postnatal retinal developmental neurotoxicity of TMT at the mammalian model and analyze the molecular, functional as well as morphological aspects to elucidate possible mechanisms: glutamate toxicity with EAAT expression changes. These mechanisms may suggest not only a strategy to treat but also a clue to prevent postnatal retina developmental toxicity of toxic substances.
Collapse
Affiliation(s)
- Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Bokyeong Ryu
- Department of Biomedical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Junpil Bang
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhang K, Liu Y, Song Y, Xu S, Yang Y, Jiang L, Sun S, Luo J, Wu Y, Cai X. Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays. Front Bioeng Biotechnol 2023; 11:1245082. [PMID: 37600306 PMCID: PMC10434521 DOI: 10.3389/fbioe.2023.1245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (-15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Longhui Jiang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Haq W, Zrenner E, Ueffing M, Paquet-Durand F. Using Micro-Electrode-Array Recordings and Retinal Disease Models to Elucidate Visual Functions: Simultaneous Recording of Local Electroretinograms and Ganglion Cell Action Potentials Reveals the Origin of Retinal Oscillatory Potentials. Bioengineering (Basel) 2023; 10:725. [PMID: 37370656 DOI: 10.3390/bioengineering10060725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The electroretinogram (ERG) is an essential diagnostic tool for visual function, both in clinical and research settings. Here, we establish an advanced in vitro approach to assess cell-type-specific ERG signal components. METHODS Retinal explant cultures, maintained under entirely controlled conditions, were derived from wild-type mice and rd10 rod- and cpfl1 cone-degeneration mouse models. Local micro-ERG (µERG) and simultaneous ganglion cell (GC) recordings were obtained from the retinal explants using multi-electrode arrays. Band-pass filtering was employed to distinguish photoreceptor, bipolar cell, amacrine cell (AC), and GC responses. RESULTS Scotopic and photopic stimulation discriminated between rod and cone responses in wild-type and mutant retina. The 25 kHz sampling rate allowed the visualization of oscillatory potentials (OPs) in extraordinary detail, revealing temporal correlations between OPs and GC responses. Pharmacological isolation of different retinal circuits found that OPs are generated by inner retinal AC electrical synapses. Importantly, this AC activity helped synchronise GC activity. CONCLUSION Our µERG protocol simultaneously records the light-dependent activities of the first-, second-, and third-order neurons within the native neuronal circuitry, providing unprecedented insights into retinal physiology and pathophysiology. This method now also enables complete in vitro retinal function testing of therapeutic interventions, providing critical guidance for later in vivo investigations.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany
| | - François Paquet-Durand
- Centre for Ophthalmology, Institute for Ophthalmic Research, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany
| |
Collapse
|
11
|
Huang KC, Gomes C, Meyer JS. Retinal Ganglion Cells in a Dish: Current Strategies and Recommended Best Practices for Effective In Vitro Modeling of Development and Disease. Handb Exp Pharmacol 2023; 281:83-102. [PMID: 36907969 PMCID: PMC10497719 DOI: 10.1007/164_2023_642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Liu F, Zhang M, Xiong G, Han X, Lee VWH, So KF, Chiu K, Xu Y. Trans-Sclera Electrical Stimulation Improves Retinal Function in a Mouse Model of Retinitis Pigmentosa. Life (Basel) 2022; 12:1917. [PMID: 36431052 PMCID: PMC9693292 DOI: 10.3390/life12111917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a photoreceptor-degenerating disease with no effective treatment. Trans-corneal electrical stimulation has neuroprotective effects in degenerating retinas, but repeated applications cause corneal injury. To avoid the risk of corneal damage, here we tested whether repetitive trans-sclera electrical stimulation (TsES) protects degenerating retinas in rd10 mice, a model of RP. At postnatal day 20 (P20), the right eyes of rd10 mice were exposed to 30 min of TsES daily or every other day till P25, at the amplitude of 50 or 100 μA, with zero current as the sham. Immunostaining, multi-electrode-array (MEA) recording, and a black-and-white transition box were applied to examine the morphological and functional changes of the treated retina. Functionally, TsES modified the retinal light responses. It also reduced the high spontaneous firing of retinal ganglion cells. TsES at 100 μA but not 50 μA increased the light sensitivities of ganglion cells as well as their signal-to-noise ratios. TsES at 100 μA increased the survival of photoreceptors without improving the visual behavior of rd10 mice. Our data suggest that repetitive TsES improves the retinal function of rd10 mice at the early degenerating stage, therefore, it might be an effective long-term strategy to delay retinal degeneration in RP patients.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, 601 West Huangpu Ave., Guangzhou 510632, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengrong Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, 601 West Huangpu Ave., Guangzhou 510632, China
| | - Guoyin Xiong
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiu Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, 601 West Huangpu Ave., Guangzhou 510632, China
| | | | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, 601 West Huangpu Ave., Guangzhou 510632, China
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Kin Chiu
- Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, 601 West Huangpu Ave., Guangzhou 510632, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
13
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
14
|
Araya-Arriagada J, Garay S, Rojas C, Duran-Aniotz C, Palacios AG, Chacón M, Medina LE. Multiscale entropy analysis of retinal signals reveals reduced complexity in a mouse model of Alzheimer's disease. Sci Rep 2022; 12:8900. [PMID: 35614075 PMCID: PMC9132967 DOI: 10.1038/s41598-022-12208-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most significant health challenges of our time, affecting a growing number of the elderly population. In recent years, the retina has received increased attention as a candidate for AD biomarkers since it appears to manifest the pathological signatures of the disease. Therefore, its electrical activity may hint at AD-related physiological changes. However, it is unclear how AD affects retinal electrophysiology and what tools are more appropriate to detect these possible changes. In this study, we used entropy tools to estimate the complexity of the dynamics of healthy and diseased retinas at different ages. We recorded microelectroretinogram responses to visual stimuli of different nature from retinas of young and adult, wild-type and 5xFAD-an animal model of AD-mice. To estimate the complexity of signals, we used the multiscale entropy approach, which calculates the entropy at several time scales using a coarse graining procedure. We found that young retinas had more complex responses to different visual stimuli. Further, the responses of young, wild-type retinas to natural-like stimuli exhibited significantly higher complexity than young, 5xFAD retinas. Our findings support a theory of complexity-loss with aging and disease and can have significant implications for early AD diagnosis.
Collapse
Affiliation(s)
- Joaquín Araya-Arriagada
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
- Centro de Investigación e Innovación en Gerontología Aplicada (CIGAP), Facultad de Salud, Universidad Santo Tomás, Antofagasta, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián Garay
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristóbal Rojas
- Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Sistemas Complejos de Valparaíso, Valparaíso, Chile
| | - Max Chacón
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Leonel E Medina
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile.
- Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile.
| |
Collapse
|
15
|
Excitatory Amino Acid Transporter EAAT5 Improves Temporal Resolution in the Retina. eNeuro 2021; 8:ENEURO.0406-21.2021. [PMID: 34772693 PMCID: PMC8670604 DOI: 10.1523/eneuro.0406-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft. In the retina, EAAT1 and EAAT2 are considered the major glutamate transporters. However, it has not yet been possible to determine how EAAT5 shapes the retinal light responses because of the lack of a selective EAAT5 blocker or EAAT5 knock-out (KO) animal model. In this study, EAAT5 was found to be expressed in a punctate manner close to release sites of glutamatergic synapses in the mouse retina. Light responses from retinae of wild-type (WT) and of a newly generated model with a targeted deletion of EAAT5 (EAAT5-/-) were recorded in vitro using multielectrode arrays (MEAs). Flicker resolution was considerably lower in EAAT5-/- retinae than in WT retinae. The close proximity to the glutamate release site makes EAAT5 an ideal tool to improve temporal information processing in the retina by controlling information transfer at glutamatergic synapses.
Collapse
|
16
|
Kralik J, Kleinlogel S. Functional Availability of ON-Bipolar Cells in the Degenerated Retina: Timing and Longevity of an Optogenetic Gene Therapy. Int J Mol Sci 2021; 22:ijms222111515. [PMID: 34768944 PMCID: PMC8584043 DOI: 10.3390/ijms222111515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 01/19/2023] Open
Abstract
Degenerative diseases of the retina are responsible for the death of photoreceptors and subsequent loss of vision in patients. Nevertheless, the inner retinal layers remain intact over an extended period of time, enabling the restoration of light sensitivity in blind retinas via the expression of optogenetic tools in the remaining retinal cells. The chimeric Opto-mGluR6 protein represents such a tool. With exclusive ON-bipolar cell expression, it combines the light-sensitive domains of melanopsin and the intracellular domains of the metabotropic glutamate receptor 6 (mGluR6), which naturally mediates light responses in these cells. Albeit vision restoration in blind mice by Opto-mGluR6 delivery was previously shown, much is left to be explored in regard to the effects of the timing of the treatment in the degenerated retina. We performed a functional evaluation of Opto-mGluR6-treated murine blind retinas using multi-electrode arrays (MEAs) and observed long-term functional preservation in the treated retinas, as well as successful therapeutical intervention in later stages of degeneration. Moreover, the treatment decreased the inherent retinal hyperactivity of the degenerated retinas to levels undistinguishable from healthy controls. Finally, we observed for the first time micro electroretinograms (mERGs) in optogenetically treated animals, corroborating the origin of Opto-mGluR6 signalling at the level of mGluR6 of ON-bipolar cells.
Collapse
|
17
|
Matsuyama T, Tu HY, Sun J, Hashiguchi T, Akiba R, Sho J, Fujii M, Onishi A, Takahashi M, Mandai M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021; 24:102866. [PMID: 34409267 PMCID: PMC8361135 DOI: 10.1016/j.isci.2021.102866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/23/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
ESC/iPSC-retinal sheet transplantation, which supplies photoreceptors as well as other retinal cells, has been shown to be able to restore visual function in mice with end-stage retinal degeneration. Here, by introducing a novel type of genetically engineered mouse ESC/iPSC-retinal sheet with reduced numbers of secondary retinal neurons but intact photoreceptor cell layer structure, we reinforced the evidence that ESC/iPSC-retinal sheet transplantation can establish synaptic connections with the host, restore light responsiveness, and reduce aberrant retinal ganglion cell spiking in mice. Furthermore, we show that genetically engineered grafts can substantially improve the outcome of the treatment by improving neural integration. We speculate that this leads to reduced spontaneous activity in the host which in turn contributes to a better visual recovery.
Collapse
Affiliation(s)
- Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
19
|
Liu F, Liu X, Zhou Y, Yu Y, Wang K, Zhou Z, Gao H, So KF, Vardi N, Xu Y. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways. J Neurochem 2021; 158:1131-1150. [PMID: 34265077 DOI: 10.1111/jnc.15472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited photoreceptor degeneration diseases that causes blindness without effective treatment. The pathogenesis of retinal degeneration involves mainly oxidative stress and inflammatory responses. Zeaxanthin dipalmitate (ZD), a wolfberry-derived carotenoid, has anti-inflammatory and anti-oxidative stress effects. Here we investigated whether these properties of ZD can delay the retinal degeneration in rd10 mice, a model of RP, and explored its underlying mechanism. One shot of ZD or control vehicle was intravitreally injected into rd10 mice on postnatal day 16 (P16). Retinal function and structure of rd10 mice were assessed at P25, when rods degenerate substantially, using a visual behavior test, multi-electrode-array recordings and immunostaining. Retinal pathogenic gene expression and regulation of signaling pathways by ZD were explored using transcriptome sequencing and western blotting. Our results showed that ZD treatment improved the visual behavior of rd10 mice and delayed the degeneration of retinal photoreceptors. It also improved the light responses of photoreceptors, bipolar cells and retinal ganglion cells. The expression of genes that are involved in inflammation, apoptosis and oxidative stress were up-regulated in rd10 mice, and were reduced by ZD. ZD further reduced the activation of two key factors, signal transducer and activator of transcription 3 and chemokine (C-C motif) ligand 2, down-regulated the expression of the inflammatory factor GFAP, and inhibited extracellular signal regulated protein kinases and P38, but not the JNK pathways. In conclusion, ZD delays the degeneration of the rd10 retina both morphologically and functionally. Its anti-inflammatory function is mediated primarily through the signal transducer and activator of transcription 3, chemokine (C-C motif) ligand 2 and MAPK pathways. Thus, ZD may serve as a potential clinical candidate to treat RP.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobin Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yamin Zhou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yankun Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ke Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
20
|
Smith BJ, Côté PD, Tremblay F. Voltage-gated sodium channel-dependent retroaxonal modulation of photoreceptor function during post-natal development in mice. Dev Neurobiol 2021; 81:353-365. [PMID: 33248000 DOI: 10.1002/dneu.22793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
Juvenile (postnatal day 16) mice lacking Nav 1.6 channels (null-mutant Scn8admu ) have reduced photoreceptor function, which is unexpected given that Nav channels have not been detected in mouse photoreceptors and do not contribute appreciably to photoreceptor function in adults. We demonstrate that acute block of Nav channels with intravitreal TTX in juvenile (P16) wild-type mice has no effect on photoreceptor function. However, reduced light activity by prolonged dark adaptation from P8 caused significant reduction in photoreceptor function at P16. Injecting TTX into the retrobulbar space at P16 to specifically block Nav channels in the optic nerve also caused a reduction in photoreceptor function comparable to that seen at P16 in null-mutant Scn8a mice. In both P16 null-mutant Scn8admu and retrobulbar TTX-injected wild-type mice, photoreceptor function was restored following intravitreal injection of the TrkB receptor agonist 7,8-dihydroxyflavone, linking Nav -dependent retrograde transport to TrkB-dependent neurotrophic factor production pathways as a modulatory influence of photoreceptor function at P16. We also found that in Scn8admu mice, photoreceptor function recovers by P22-25 despite more precarious general health of the animal. Retrobulbar injection of TTX in the wild type still reduced the photoreceptor response at this age but to a lesser extent, suggesting that Nav -dependent modulation of photoreceptor function is largely transient, peaking soon after eye opening. Together, these results suggest that the general photosensitivity of the retina is modulated following eye opening by retrograde transport through activity-dependent retinal ganglion cell axonal signaling targeting TrkB receptors.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Izaak Walton Killam Health Centre, Halifax, NS, Canada
| |
Collapse
|
21
|
Pigment Epithelium-Derived Factor (PEDF) Fragments Prevent Mouse Cone Photoreceptor Cell Loss Induced by Focal Phototoxicity In Vivo. Int J Mol Sci 2020; 21:ijms21197242. [PMID: 33008127 PMCID: PMC7582775 DOI: 10.3390/ijms21197242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor.
Collapse
|
22
|
Ha Y, Yoo HJ, Shin S, Jun SB. Hemispherical Microelectrode Array for Ex Vivo Retinal Neural Recording. MICROMACHINES 2020; 11:mi11050538. [PMID: 32466300 PMCID: PMC7281771 DOI: 10.3390/mi11050538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
To investigate the neuronal visual encoding process in the retina, researchers have performed in vitro and ex vivo electrophysiological experiments using animal retinal tissues. The microelectrode array (MEA) has become a key component in retinal experiments because it enables simultaneous neural recording from a population of retinal neurons. However, in most retinal experiments, it is inevitable that the retinal tissue is flattened on the planar MEA, becoming deformed from the original hemispherical shape. During the tissue deforming process, the retina is subjected to mechanical stress, which can induce abnormal physiological conditions. To overcome this problem, in this study, we propose a hemispherical MEA with a curvature that allows retinal tissues to adhere closely to electrodes without tissue deformation. The electrode array is fabricated by stretching a thin, flexible polydimethylsiloxane (PDMS) electrode layer onto a hemispherical substrate. To form micro patterns of electrodes, laser processing is employed instead of conventional thin-film microfabrication processes. The feasibility for neural recording from retinal tissues using this array is shown by conducting ex vivo retinal experiments. We anticipate that the proposed techniques for hemispherical MEAs can be utilized not only for ex vivo retinal studies but also for various flexible electronics.
Collapse
Affiliation(s)
- Yoonhee Ha
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.H.); (H.-J.Y.)
| | - Hyun-Ji Yoo
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.H.); (H.-J.Y.)
| | - Soowon Shin
- Department of Bioengineering, TODOC Co., Ltd., Seoul 08394, Korea;
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea; (Y.H.); (H.-J.Y.)
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
- Correspondence: ; Tel.: +82-2-3277-3892
| |
Collapse
|
23
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
25
|
Tu HY, Matsuyama T. Multielectrode Array Recording of Mouse Retinas Transplanted with Stem Cell-Derived Retinal Sheets. Methods Mol Biol 2020; 2092:207-220. [PMID: 31786791 DOI: 10.1007/978-1-0716-0175-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal multielectrode array (MEA) recording allows us to examine the action potentials of retinal ganglion cells and field potentials of photoreceptors and bipolar cells. In addition to studying the retinal circuitry, it has become one of the standard examination tools for the characterization of stem cell-derived retinal transplantation in degenerated retinas. Besides the detection of responses to simple light stimulation, it is also necessary to consider the spatial correlation of the graft and the electrodes, in order to unbiasedly reveal the locally reconstructed retinal circuitry after transplantation. Here, we introduce our newly developed protocol of MEA recording and analysis that may serve as a standard for evaluating transplanted retinas.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| |
Collapse
|
26
|
Marrese M, Lonardoni D, Boi F, van Hoorn H, Maccione A, Zordan S, Iannuzzi D, Berdondini L. Investigating the Effects of Mechanical Stimulation on Retinal Ganglion Cell Spontaneous Spiking Activity. Front Neurosci 2019; 13:1023. [PMID: 31611765 PMCID: PMC6776634 DOI: 10.3389/fnins.2019.01023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces are increasingly recognized as major regulators of several physiological processes at both the molecular and cellular level; therefore, a deep understanding of the sensing of these forces and their conversion into electrical signals are essential for studying the mechanosensitive properties of soft biological tissues. To contribute to this field, we present a dual-purpose device able to mechanically stimulate retinal tissue and to record the spiking activity of retinal ganglion cells (RGCs). This new instrument relies on combining ferrule-top micro-indentation, which provides local measurements of viscoelasticity, with high-density multi-electrode array (HD-MEAs) to simultaneously record the spontaneous activity of the retina. In this paper, we introduce this instrument, describe its technical characteristics, and present a proof-of-concept experiment that shows how RGC spiking activity of explanted mice retinas respond to mechanical micro-stimulations of their photoreceptor layer. The data suggest that, under specific conditions of indentation, the retina perceive the mechanical stimulation as modulation of the visual input, besides the longer time-scale of activation, and the increase in spiking activity is not only localized under the indentation probe, but it propagates across the retinal tissue.
Collapse
Affiliation(s)
- Marica Marrese
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Lonardoni
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Boi
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Hedde van Hoorn
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alessandro Maccione
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Zordan
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Iannuzzi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Luca Berdondini
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
27
|
Alarautalahti V, Ragauskas S, Hakkarainen JJ, Uusitalo-Järvinen H, Uusitalo H, Hyttinen J, Kalesnykas G, Nymark S. Viability of Mouse Retinal Explant Cultures Assessed by Preservation of Functionality and Morphology. Invest Ophthalmol Vis Sci 2019; 60:1914-1927. [PMID: 31042799 DOI: 10.1167/iovs.18-25156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal explant cultures provide simplified systems where the functions of the retina and the effects of ocular therapies can be studied in an isolated environment. The purpose of this study was to provide insight into long-term preservation of retinal tissue in culture conditions, enable a deeper understanding of the interdependence of retinal morphology and function, and ensure the reliability of the explant technique for prolonged experiments. Methods Retinal explants from adult mice were cultured as organotypic culture at the air-medium interface for 14 days in vitro (DIV). Retinal functionality was assessed by multielectrode array technique and morphology by immunohistochemical methods at several time points during culture. Results Retinal explants retained viability for 14 DIV, although with diminishing neuronal activity, progressing neuronal loss, and increasing reactive gliosis. We recorded spontaneous retinal ganglion cell (RGC) activity up to 14 DIV with temporally changing distribution of RGC firing rates. Light responsiveness was measurable from RGCs for 7 DIV and from photoreceptors for 2 DIV. Apoptotic cells were detected beginning at 3 DIV with their density peaking at 7 DIV. The number of RGCs gradually decreased by 70% during 14 DIV. The change was accompanied by the loss of RGC functionality, resulting in 84% loss of electrically active RGCs. Conclusions Retinal explants provide a valuable tool for studies of retinal functions and development of ocular therapies. However, critical for long-term use, retinal functionality was lost before structural loss, emphasizing a need for both functional and morphologic readouts to determine the overall state of the cultured retina.
Collapse
Affiliation(s)
- Virpi Alarautalahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
28
|
Cai W, Chen M, Fan J, Jin H, Yu D, Qiang S, Peng C, Yu J. Fluorescein sodium loaded by polyethyleneimine for fundus fluorescein angiography improves adhesion. Nanomedicine (Lond) 2019; 14:2595-2611. [PMID: 31361188 DOI: 10.2217/nnm-2019-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To improve the retention of fluorescein sodium (FS) as a kind of clinical contrast agent for fundus fluorescein angiography (FFA). Materials & methods: Polyethyleneimine (PEI) was designed to synthesize PEI–NHAc–FS nanoparticles (NPs), and the formed NPs were characterized by both physicochemical properties and their effects on FFA. Results: Compared with free FS, PEI–NHAc–FS NPs showed similar optical performance, and could obviously reduce cellular adsorption and uptake both in vitro and in vivo, which could promote the metabolism of NPs in ocular blood vessels. Conclusion: PEI–NHAc–FS NPs represent a smart nanosize fluorescence contrast agent, which hold promising potential for clinical FFA diagnosis, therapy and research work.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Meixiu Chen
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jiaqi Fan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Department of Ophthalmology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Sujing Qiang
- Department of Central Laboratory, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Chen Peng
- Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Department of Ophthalmology, Ninghai First Hospital, Ninghai, Zhejiang, 315600, PR China
| |
Collapse
|
29
|
Kireev D, Rincón Montes V, Stevanovic J, Srikantharajah K, Offenhäusser A. N 3-MEA Probes: Scooping Neuronal Networks. Front Neurosci 2019; 13:320. [PMID: 31024239 PMCID: PMC6467947 DOI: 10.3389/fnins.2019.00320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
In the current work, we introduce a brand new line of versatile, flexible, and multifunctional MEA probes, the so-called Nano Neuro Net, or N3-MEAs. Material choice, dimensions, and room for further upgrade, were carefully considered when designing such probes in order to cover the widest application range possible. Proof of the operation principle of these novel probes is shown in the manuscript via the recording of extracellular signals, such as action potentials and local field potentials from cardiac cells and retinal ganglion cells of the heart tissue and eye respectively. Reasonably large signal to noise ratio (SNR) combined with effortless operation of the devices, mechanical and chemical stability, multifunctionality provide, in our opinion, an unprecedented blend. We show successful recordings of (1) action potentials from heart tissue with a SNR up to 13.2; (2) spontaneous activity of retinal ganglion cells with a SNR up to 12.8; and (3) local field potentials with an ERG-like waveform, as well as spiking responses of the retina to light stimulation. The results reveal not only the multi-functionality of these N3-MEAs, but high quality recordings of electrogenic tissues.
Collapse
Affiliation(s)
- Dmitry Kireev
- Forschungszentrum Jülich, Institute of Bioelectronics (ICS-8), Jülich, Germany.,Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States
| | | | - Jelena Stevanovic
- Forschungszentrum Jülich, Institute of Bioelectronics (ICS-8), Jülich, Germany
| | | | | |
Collapse
|
30
|
Matsuo T, Sakurai M, Terada K, Uchida T, Yamashita K, Tanaka T, Takarabe K. Photoelectric Dye-Coupled Polyethylene Film: Photoresponsive Properties Evaluated by Kelvin Probe and In Vitro Biological Response Detected in Dystrophic Retinal Tissue of Rats. ADVANCED BIOMEDICAL ENGINEERING 2019. [DOI: 10.14326/abe.8.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Toshihiko Matsuo
- Regenerative and Reconstructive Medicine (Ophthalmology), Okayama University Medical School and Graduate School of Interdisciplinary Science and Engineering in Health Systems
| | | | | | - Tetsuya Uchida
- Polymer Materials Science, Okayama University Faculty of Engineering and Graduate School of Natural Science and Technology
| | - Koichiro Yamashita
- Polymer Materials Science, Okayama University Faculty of Engineering and Graduate School of Natural Science and Technology
| | - Tenu Tanaka
- Polymer Materials Science, Okayama University Faculty of Engineering and Graduate School of Natural Science and Technology
| | | |
Collapse
|
31
|
Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S, Yonemura S, Sunagawa GA, Matsuyama T, Fujii M, Kuwahara A, Kishino A, Koide N, Eiraku M, Tanihara H, Takahashi M, Mandai M. Establishment of Immunodeficient Retinal Degeneration Model Mice and Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. Stem Cell Reports 2018; 10:1059-1074. [PMID: 29503091 PMCID: PMC5918611 DOI: 10.1016/j.stemcr.2018.01.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing demand for clinical retinal degeneration therapies featuring human ESC/iPSC-derived retinal tissue and cells warrants proof-of-concept studies. Here, we established two mouse models of end-stage retinal degeneration with immunodeficiency, NOG-rd1-2J and NOG-rd10, and characterized disease progress and immunodeficient status. We also transplanted human ESC-derived retinal sheets into NOG-rd1-2J and confirmed their long-term survival and maturation of the structured graft photoreceptor layer, without rejection or tumorigenesis. We recorded light responses from the host ganglion cells using a multi-electrode array system; this result was consistent with whole-mount immunostaining suggestive of host-graft synapse formation at the responding sites. This study demonstrates an application of our mouse models and provides a proof of concept for the clinical use of human ESC-derived retinal sheets. Two mouse models of immunodeficient end-stage retinal degeneration were established Immunodeficient host permitted transplantation of human ESC-derived retinal sheets Transplanted human ESC-derived retinal sheets survived long term and maturated After transplantation, light responses were recorded from the degenerated host retina
Collapse
Affiliation(s)
- Satoshi Iraha
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Takahiro Kagawa
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Takehito Watanabe
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies., Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
32
|
Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito SI, Sun J, Kaneko J, Sho J, Yamada C, Takahashi M. iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-Degeneration Mice. Stem Cell Reports 2017; 8:69-83. [PMID: 28076757 PMCID: PMC5233464 DOI: 10.1016/j.stemcr.2016.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022] Open
Abstract
Recent success in functional recovery by photoreceptor precursor transplantation in dysfunctional retina has led to an increased interest in using embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal progenitors to treat retinal degeneration. However, cell-based therapies for end-stage degenerative retinas that have lost the outer nuclear layer (ONL) are still a big challenge. In the present study, by transplanting mouse iPSC-derived retinal tissue (miPSC retina) in the end-stage retinal-degeneration model (rd1), we visualized the direct contact between host bipolar cell terminals and the presynaptic terminal of graft photoreceptors by gene labeling, showed light-responsive behaviors in transplanted rd1 mice, and recorded responses from the host retina with transplants by ex vivo micro-electroretinography and ganglion cell recordings using a multiple-electrode array system. Our data provides a proof of concept for transplanting ESC/iPSC retinas to restore vision in end-stage retinal degeneration. iPSC retina reconstructs outer nuclear layer in the end-stage retina Contacts between the host bipolar cells and graft photoreceptors were visualized rd1 mice became responsive to light after iPSC-retina transplantation RGC responses to light were recorded from host rd1 retina after transplantation
Collapse
Affiliation(s)
- Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shin-ichiro Ito
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Jun Kaneko
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chikako Yamada
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|