1
|
Matsuda K, Mita Y, Saigoh K, Saito Y, Noguchi N. Modifications of DJ-1 in which pI shifts to acidic in red blood cells a potential biomarker for Parkinson's disease at early stages. Free Radic Res 2024; 58:748-757. [PMID: 39576630 DOI: 10.1080/10715762.2024.2430536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, the incidence of which increases with age. However, since there is no fundamental treatment or methods for early diagnosis, new methods of treatment and diagnosis are urgently needed. We focused on post-translational modifications of DJ-1, which is encoded by the familial PD-causative gene PARK7 in red blood cells (RBCs). DJ-1 has three cysteines (Cys46, Cys53, and Cys106), with Cys106 being preferentially oxidized. We previously reported that sulfinated/sulfonated Cys106 DJ-1 (oxDJ-1) is increased in the RBCs of PD patients. In this study, we analyzed RBC-derived DJ-1 from PD patients and control subjects by 2-dimensional electrophoresis. We found that the ratio of the spot of DJ-1 with a more acidic isoelectric point than oxDJ-1 was increased more significantly than that of oxDJ-1 in RBCs from patients at the early stage of unmedicated PD and decreased with the progression of PD stage and treatment. Furthermore, we revealed that this acidic spot of DJ-1 increased upon exposure to H2O2. However, when either Cys53 or Cys106 of DJ-1 was replaced with serine, there was no significant increase in the acidic spot caused by H2O2. In this study, we propose a new biomarker for early diagnosis of PD using both the ratios of oxDJ-1 to total DJ-1 and the acidic spot of DJ-1 to total DJ-1.
Collapse
Affiliation(s)
- Kohei Matsuda
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuichiro Mita
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kazumasa Saigoh
- Department of Clinical Genetics, Kindai University Hospital, Osaka, Japan
| | - Yoshiro Saito
- Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
2
|
Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci 2024; 61:529-545. [PMID: 38529882 DOI: 10.1080/10408363.2024.2331471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by the gradual depletion of dopaminergic neurons in the substantia nigra. Despite substantial strides in comprehending potential causative mechanisms, the validation of biomarkers with unequivocal evidence for routine clinical application remains elusive. Consequently, the diagnosis heavily relies on patients' clinical assessments and medical backgrounds. The imperative need for diagnostic and prognostic biomarkers arises due to the prevailing limitations of treatments, which predominantly address symptoms without modifying the disease course. This comprehensive review aims to elucidate the existing landscape of diagnostic and prognostic biomarkers for PD, drawing insights from contemporary literature.
Collapse
Affiliation(s)
- Nazlı Durmaz Celik
- Department of Neurology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Serkan Ozben
- Department of Neurology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Tomris Ozben
- Department of Medical Biochemistry, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Yang Y, Nie X, Wang Y, Sun J, Gao X, Zhang J. Evolving insights into erythrocytes in synucleinopathies. Trends Neurosci 2024; 47:693-707. [PMID: 39043489 DOI: 10.1016/j.tins.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are characterized by neuronal loss accompanied by α-synuclein (α-syn) accumulation in the brain. While research conventionally focused on brain pathology, there is growing interest in peripheral alterations. Erythrocytes, which are rich in α-syn, have emerged as a compelling site for synucleinopathies-related alterations. Erythrocyte-derived extracellular vesicles (EVs), containing pathological α-syn species, can traverse the blood-brain barrier (BBB) under certain conditions and the gastrointestinal tract, where α-syn and gut microbiota interact extensively. This review explores the accumulating evidence of erythrocyte involvement in synucleinopathies, as well as their potential in disease pathogenesis and diagnosis. Given their unique properties, erythrocytes and erythrocyte-derived EVs may also serve as an ideal therapeutic platform for treating synucleinopathies and beyond.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Nie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China
| | - Yajie Wang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Liu H, Wang X, He K, Chen Z, Li X, Ren J, Zhao X, Liu S, Zhou T, Chen H. Oxidized DJ-1 activates the p-IKK/NF-κB/Beclin1 pathway by binding PTEN to induce autophagy and exacerbate myocardial ischemia-reperfusion injury. Eur J Pharmacol 2024; 971:176496. [PMID: 38508437 DOI: 10.1016/j.ejphar.2024.176496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.
Collapse
Affiliation(s)
- Huiru Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xueying Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330004, PR China
| | - Kang He
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zihan Chen
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoqi Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jianmin Ren
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Song Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, PR China
| | - Heping Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
5
|
Andrews T, Seravallic J, Powers R. The reversible low-temperature instability of human DJ-1 oxidative states. Biopolymers 2024; 115:e23534. [PMID: 36972340 PMCID: PMC10948107 DOI: 10.1002/bip.23534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO2 - ), and over-oxidized (C106-SO3 - ) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.
Collapse
Affiliation(s)
- Tessa Andrews
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| | - Javier Seravallic
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0664, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664,USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588-0304, USA
| |
Collapse
|
6
|
A novel splicing variant of DJ-1 in Parkinson's disease induces mitochondrial dysfunction. Heliyon 2023; 9:e14039. [PMID: 36915530 PMCID: PMC10006478 DOI: 10.1016/j.heliyon.2023.e14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Several studies have identified mutations in neuroprotective genes in a few cases of Parkinson's disease (PD); however, the role of alternative splicing changes in PD remains unelucidated. Based on the transcriptome analysis of substantia nigra (SN) tissues obtained from PD cases and age-matched healthy controls, we identified a novel alternative splicing variant of DJ-1, lacking exon 6 (DJ-1 ΔE6), frequently detected in the SN of patients with PD. We found that the exon 6 skipping of DJ-1 induces mitochondrial dysfunction and impaired antioxidant capability. According to an in silico modeling study, the exon 6 skipping of DJ-1 disrupts the structural state suitable for the oxidation of the cysteine 106 residue that is a prerequisite for activating its neuroprotective roles. Our results suggest that change in DJ-1 alternative splicing may contribute to PD progression and provide an insight for studying PD etiology and its potential therapeutic targets.
Collapse
|
7
|
Kulkarni A, Preeti K, Tryphena KP, Srivastava S, Singh SB, Khatri DK. Proteostasis in Parkinson's disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Res Rev 2023; 84:101816. [PMID: 36481490 DOI: 10.1016/j.arr.2022.101816] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The protein dyshomeostasis is identified as the hallmark of many age-related neurodegenerative disorders including Parkinson's disease (PD). The diseased brain shows the deposition of Lewy bodies composed of α-synuclein protein aggregates. Functional proteostasis is characterized by the well-coordinated signaling network constituting unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks ensure proper synthesis, folding, confirmation, and degradation of protein i.e., α-synuclein protein in PD. The proper functioning the of intricately woven proteostasis network is quite resilient to sustain under the influence of stressors. The synuclein protein turnover is hugely influenced by the autosomal dominant, recessive, and X-linked mutational changes of a gene involved in UPR, UPS, and ALP. The methylation, acetylation-related epigenetic modifications of DNA and histone proteins along with microRNA-mediated transcriptional changes also lead to extensive proteostasis dysregulation. The result of defective proteostasis is the deposition of many proteins which start appearing in the biofluids and can be identified as potential biomarkers for early diagnosis of PD. The therapeutic intervention targeted at different strata of proteostasis machinery holds great possibilities for delaying the age-related accumulation of pathological hallmarks.
Collapse
Affiliation(s)
- Amrita Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
8
|
Wang Y, Wang C. Quantitative reactive cysteinome profiling reveals a functional link between ferroptosis and proteasome-mediated degradation. Cell Death Differ 2023; 30:125-136. [PMID: 35974250 PMCID: PMC9883465 DOI: 10.1038/s41418-022-01050-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a unique type of cell death that is hallmarked with the imbalanced redox homeostasis as triggered by iron-dependent lipid peroxidation. Cysteines often play critical roles in proteins to help maintain a healthy cellular environment by dynamically switching between their reduced and oxidized forms, however, how the global redox landscape of cysteinome is perturbed upon ferroptosis remains unknown to date. By using a quantitative chemical proteomic strategy, we systematically profiled the dynamic changes of cysteinome in ferroptotic cells and identified a list of candidate sites whose redox states are precisely regulated under ferroptosis-inducing and rescuing conditions. In particular, C106 of the protein/nucleic acid deglycase DJ-1 acts as an intriguing sensor switch for the ferroptotic condition, whose oxidation results in the disruption of its interaction with the 20S proteasome and leads to a marked activation in the proteasome system. Our chemoproteomic profiling and associated functional studies reveal a novel functional link between ferroptosis and the proteasome-mediated protein degradation. It also suggests proteasome as a promising target for developing treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Yankun Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
10
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
11
|
Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, Liu G, Thorland E, Cilento EM, Hou Y, Liu Z, Feng T, Zhang J. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun 2021; 9:37. [PMID: 33685516 PMCID: PMC7941904 DOI: 10.1186/s40478-021-01133-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral biomarkers indicative of brain pathology are critically needed for early detection of Parkinson’s disease (PD). In this study, using NanoString and digital PCR technologies, we began by screening for alterations in genes associated with PD or atypical Parkinsonism in erythrocytes of PD patients, in which PD-related changes have been reported, and which contain ~ 99% of blood α-synuclein. Erythrocytic CHCHD2 mRNA was significantly reduced even at the early stages of the disease. A significant reduction in protein and/or mRNA expression of CHCHD2 was confirmed in PD brains collected at autopsy as well as in the brains of a PD animal model overexpressing α-synuclein, in addition to seeing a reduction of CHCHD2 in erythrocytes of the same animals. Overexpression of α-synuclein in cellular models of PD also resulted in reduced CHCHD2, via mechanisms likely involving altered subcellular localization of p300 histone acetyltransferase. Finally, the utility of reduced CHCHD2 mRNA as a biomarker for detecting PD, including early-stage PD, was validated in a larger cohort of 205 PD patients and 135 normal controls, with a receiver operating characteristic analysis demonstrating > 80% sensitivity and specificity.
Collapse
|
12
|
Turpin C, Catan A, Guerin-Dubourg A, Debussche X, Bravo SB, Álvarez E, Van Den Elsen J, Meilhac O, Rondeau P, Bourdon E. Enhanced oxidative stress and damage in glycated erythrocytes. PLoS One 2020; 15:e0235335. [PMID: 32628695 PMCID: PMC7337333 DOI: 10.1371/journal.pone.0235335] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/12/2020] [Indexed: 01/14/2023] Open
Abstract
Diabetes is associated with a dramatic mortality rate due to its vascular complications. Chronic hyperglycemia in diabetes leads to enhanced glycation of erythrocytes and oxidative stress. Even though erythrocytes play a determining role in vascular complications, very little is known about how erythrocyte structure and functionality can be affected by glycation. Our objective was to decipher the impact of glycation on erythrocyte structure, oxidative stress parameters and capacity to interact with cultured human endothelial cells. In vitro glycated erythrocytes were prepared following incubation in the presence of different concentrations of glucose. To get insight into the in vivo relevance of our results, we compared these data to those obtained using red blood cells purified from diabetics or non-diabetics. We measured erythrocyte deformability, susceptibility to hemolysis, reactive oxygen species production and oxidative damage accumulation. Altered structures, redox status and oxidative modifications were increased in glycated erythrocytes. These modifications were associated with reduced antioxidant defence mediated by enzymatic activity. Enhanced erythrocyte phagocytosis by endothelial cells was observed when cultured with glycated erythrocytes, which was associated with increased levels of phosphatidylserine-likely as a result of an eryptosis phenomenon triggered by the hyperglycemic treatment. Most types of oxidative damage identified in in vitro glycated erythrocytes were also observed in red blood cells isolated from diabetics. These results bring new insights into the impact of glycation on erythrocyte structure, oxidative damage and their capacity to interact with endothelial cells, with a possible relevance to diabetes.
Collapse
Affiliation(s)
- Chloé Turpin
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Aurélie Catan
- Centre hospitalier Ouest Réunion, Saint-Paul, France
| | | | - Xavier Debussche
- CHU de La Réunion, Service d'endocrinologie, Saint Denis, France
- Centre d'Investigations Cliniques 1410 INSERM, Reunion University Hospital, Saint-Pierre, Réunion, France
| | - Susana B. Bravo
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, CIBERCV, Madrid, Spain
| | - Ezequiel Álvarez
- Proteomic Unit and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, CIBERCV, Madrid, Spain
| | - Jean Van Den Elsen
- Department of Biology and Biochemistry, University of Bath, Claverton Down, United Kingdom
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- Centre hospitalier universitaire de La Réunion, Saint Denis, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- * E-mail: (PR); (EB)
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- * E-mail: (PR); (EB)
| |
Collapse
|
13
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
14
|
Solti K, Kuan WL, Fórizs B, Kustos G, Mihály J, Varga Z, Herberth B, Moravcsik É, Kiss R, Kárpáti M, Mikes A, Zhao Y, Imre T, Rochet JC, Aigbirhio F, Williams-Gray CH, Barker RA, Tóth G. DJ-1 can form β-sheet structured aggregates that co-localize with pathological amyloid deposits. Neurobiol Dis 2019; 134:104629. [PMID: 31669752 DOI: 10.1016/j.nbd.2019.104629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into β-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue. These findings suggest that the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could then contribute to AD and PD disease onset and progression.
Collapse
Affiliation(s)
- Katalin Solti
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Wei-Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Balázs Fórizs
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA
| | | | - Judith Mihály
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Herberth
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA
| | | | - Róbert Kiss
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | | | - Anna Mikes
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Franklin Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Gergely Tóth
- TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Palo Alto, CA, USA.
| |
Collapse
|
15
|
The effect of cysteine oxidation on DJ-1 cytoprotective function in human alveolar type II cells. Cell Death Dis 2019; 10:638. [PMID: 31474749 PMCID: PMC6717737 DOI: 10.1038/s41419-019-1833-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
DJ-1 is a multifunctional protein with cytoprotective functions. It is localized in the cytoplasm, nucleus, and mitochondria. The conserved cysteine residue at position 106 (Cys106) within DJ-1 serves as a sensor of redox state and can be oxidized to both the sulfinate (-SO2−) and sulfonate (-SO3−) forms. DJ-1 with Cys106-SO2− has cytoprotective activity but high levels of reactive oxygen species can induce its overoxidation to Cys106-SO3−. We found increased oxidative stress in alveolar type II (ATII) cells isolated from emphysema patients as determined by 4-HNE expression. DJ-1 with Cys106-SO3− was detected in these cells by mass spectrometry analysis. Moreover, ubiquitination of Cys106-SO3− DJ-1 was identified, which suggests that this oxidized isoform is targeted for proteasomal destruction. Furthermore, we performed controlled oxidation using H2O2 in A549 cells with DJ-1 knockout generated using CRISPR-Cas9 strategy. Lack of DJ-1 sensitized cells to apoptosis induced by H2O2 as detected using Annexin V and propidium iodide by flow cytometry analysis. This treatment also decreased both mitochondrial DNA amount and mitochondrial ND1 (NADH dehydrogenase 1, subunit 1) gene expression, as well as increased mitochondrial DNA damage. Consistent with the decreased cytoprotective function of overoxidized DJ-1, recombinant Cys106-SO3− DJ-1 exhibited a loss of its thermal unfolding transition, mild diminution of secondary structure in CD spectroscopy, and an increase in picosecond–nanosecond timescale dynamics as determined using NMR. Altogether, our data indicate that very high oxidative stress in ATII cells in emphysema patients induces DJ-1 overoxidation to the Cys106-SO3− form, leading to increased protein flexibility and loss of its cytoprotective function, which may contribute to this disease pathogenesis.
Collapse
|
16
|
Lin CR, Bahmed K, Tomar D, Marchetti N, Criner GJ, Bolla S, Wilson MA, Madesh M, Kosmider B. The relationship between DJ-1 and S100A8 in human primary alveolar type II cells in emphysema. Am J Physiol Lung Cell Mol Physiol 2019; 317:L791-L804. [PMID: 31313618 DOI: 10.1152/ajplung.00494.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.
Collapse
Affiliation(s)
- Chih-Ru Lin
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Karim Bahmed
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Mark A Wilson
- Redox Biology Center and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Muniswamy Madesh
- Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, Pennsylvania
| | - Beata Kosmider
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania.,Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, Pennsylvania.,Department of Physiology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Kobayashi M, Muramatsu K, Haruyama T, Uesugi H, Kikuchi A, Konno H, Noguchi N, Saito Y. Polymerization of Oxidized DJ-1 via Noncovalent and Covalent Binding: Significance of Disulfide Bond Formation. ACS OMEGA 2019; 4:9603-9614. [PMID: 31460051 PMCID: PMC6648325 DOI: 10.1021/acsomega.9b00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
Abstract
The reactive cysteine residue at position 106 (Cys106) of DJ-1 is preferentially oxidized under oxidative stress, generating oxidized DJ-1 (oxDJ-1). Oxidation of Cys106 to sulfinic acid changes the biologic action of DJ-1 and increases its cytoprotective properties. The similar activation step is known in peroxiredoxins (Prxs), in which oxidation of reactive Cys to sulfinic acid induces polymerization of Prxs and changes its enzyme characteristic from peroxidase to molecular chaperone. In the present study, oxDJ-1 was prepared and its polymerization and related amino acid residues were investigated. We found that oxDJ-1 formed a characteristic polymer with disulfide bonds and with noncovalent and covalent binding other than disulfide. The physiological concentration of glutathione resolved the polymer form of oxDJ-1, and glutathionylation of other two Cys residues, such as Cys 46 and 53, was detected. Mutant analysis indicated the necessity not only of Cys106 but also of Cys46 for the polymer formation. The cellular experiment demonstrated that the electrophilic quinone treatment induced a high-molecular-weight complex containing oxDJ-1. Dynamic polymerization of oxDJ-1 with a ring and a stacked structure was observed by an atomic force microscope. Collectively, these results clearly demonstrated the characteristic polymer formation of oxDJ-1 with a disulfide bond and noncovalent and covalent binding other than disulfide, which might be related to the biologic function of oxDJ-1.
Collapse
Affiliation(s)
- Mayuka Kobayashi
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
| | - Kana Muramatsu
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
| | - Takamitsu Haruyama
- Nano
Life Science Institute (WPI
NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Nara
Institute of Science and Technology, Nara 630-0192, Japan
| | - Haruka Uesugi
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
| | - Ai Kikuchi
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
| | - Hiroki Konno
- Nano
Life Science Institute (WPI
NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Noriko Noguchi
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
| | - Yoshiro Saito
- The
Systems Life Sciences Laboratory, Department of Life and Medical Systems,
Faculty of Life and Medical Sciences, Doshisha
University, Kyoto 610-0394, Japan
- Laboratory
of Molecular Biology and Metabolism, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Vida C, Kobayashi H, Garrido A, Martínez de Toda I, Carro E, Molina JA, De la Fuente M. Lymphoproliferation Impairment and Oxidative Stress in Blood Cells from Early Parkinson's Disease Patients. Int J Mol Sci 2019; 20:ijms20030771. [PMID: 30759742 PMCID: PMC6386872 DOI: 10.3390/ijms20030771] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
In Parkinson’s Disease (PD), the peripheral changes in the functional capacity and redox state of immune cells has been scarcely investigated, especially in the early PD stages. Aging is a risk factor for PD, and the age-related impairment of the immune system, based on a chronic-oxidative stress situation, is involved in the rate of aging. We analyzed several functions in isolated peripheral blood neutrophils and mononuclear cells from PD stage 2 patients, and compared the results to those in healthy elderly and adult controls. Several oxidative stress and damage parameters were studied in whole blood cells. The results showed an impairment of the lymphoproliferative response in stimulated conditions in the PD patients compared with age-matched controls, who also showed typical immunosenescence in comparison with adult individuals. Higher oxidative stress and damage were observed in whole blood cells from PD patients (lower glutathione peroxidase activity, and higher oxidized glutathione and malondialdehyde contents). Our results suggest an accelerated immunosenescence in PD stage 2, and that several of the parameters studied could be appropriate peripheral biomarkers in the early stages of PD.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Hikaru Kobayashi
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Eva Carro
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - José Antonio Molina
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
19
|
Kim A, Nigmatullina R, Zalyalova Z, Soshnikova N, Krasnov A, Vorobyeva N, Georgieva S, Kudrin V, Narkevich V, Ugrumov M. Upgraded Methodology for the Development of Early Diagnosis of Parkinson's Disease Based on Searching Blood Markers in Patients and Experimental Models. Mol Neurobiol 2018; 56:3437-3450. [PMID: 30128652 DOI: 10.1007/s12035-018-1315-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Numerous attempts to develop an early diagnosis of Parkinson's disease (PD) by searching biomarkers in biological fluids were unsuccessful. The drawback of this methodology is searching markers in patients at the clinical stage without guarantee that they are also characteristic of either preclinical stage or prodromal stage (preclinical-prodromal stage). We attempted to upgrade this methodology by selecting only markers that are found both in patients and in PD animal models. HPLC and RT-PCR were used to estimate the concentration of amino acids, catecholamines/metabolites in plasma and gene expression in lymphocytes in 36 untreated early-stage PD patients and 52 controls, and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice at modeling the clinical ("symptomatic") stage and preclinical-prodromal ("presymptomatic") stage of PD. It was shown that among 13 blood markers found in patients, 7 markers are characteristic of parkinsonian symptomatic mice and 3 markers of both symptomatic and presymptomatic mice. According to our suggestion, the detection of the same marker in patients and symptomatic animals indicates adequate reproduction of pathogenesis along the corresponding metabolic pathway, whereas the detection of the same marker in presymptomatic animals indicates its specificity for preclinical-prodromal stage. This means that the minority of markers found in patients-decreased concentration of L-3,4-dihydroxyphenylalanine (L-DOPA) and dihydroxyphenylacetic acid (DOPAC) and increased dopamine D3 receptor gene expression-are specific for preclinical-prodromal stage and are suitable for early diagnosis of PD. Thus, we upgraded a current methodology for development of early diagnosis of PD by searching blood markers not only in patients but also in parkinsonian animals.
Collapse
Affiliation(s)
- Alexander Kim
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Razina Nigmatullina
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
| | - Zuleikha Zalyalova
- Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
- Kazan Hospital for War Veterans, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Alexey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Michael Ugrumov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
- National Research University Higher School of Economics, Moscow, Russia.
| |
Collapse
|
20
|
Urano Y, Mori C, Fuji A, Konno K, Yamamoto T, Yashirogi S, Ando M, Saito Y, Noguchi N. 6-Hydroxydopamine induces secretion of PARK7/DJ-1 via autophagy-based unconventional secretory pathway. Autophagy 2018; 14:1943-1958. [PMID: 30112966 PMCID: PMC6152502 DOI: 10.1080/15548627.2018.1493043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED PARK7/DJ-1 is a Parkinson disease- and cancer-associated protein that functions as a multifunctional protein involved in gene transcription regulation and anti-oxidative defense. Although PARK7 lacks the secretory signal sequence, it is secreted and plays important physiological and pathophysiological roles. Whereas secretory proteins that lack the endoplasmic reticulum-targeting signal sequence are secreted from cells by way of what is called the unconventional secretion mechanism, the specific processes responsible for causing PARK7 to be secreted across the plasma membrane have remained unclear. In the present study, we found that PARK7 secretion was increased by treatment with 6-OHDA via the unconventional secretory pathway in human neuroblastoma SH-SY5Y cells and MEF cells. We also found that 6-OHDA-induced PARK7 secretion was suppressed in Atg5-, Atg9-, or Atg16l1-deficient MEF cells or ATG16L1 knockdown SH-SY5Y cells, indicating that the autophagy-based unconventional secretory pathway is involved in PARK7 secretion. We moreover observed that 6-OHDA-derived electrophilic quinone induced oxidative stress as indicated by a decrease in glutathione levels, and that this was suppressed by pretreatment with antioxidant NAC. We further found that NAC treatment suppressed autophagy and PARK7 secretion. We also observed that 6-OHDA-induced autophagy was associated with activation of AMPK and ULK1 via a pathway which was independent of MTOR. Collectively these results suggest that electrophilic 6-OHDA quinone enhances oxidative stress, and that this is followed by AMPK-ULK1 pathway activation and induction of secretory autophagy to produce unconventional secretion of PARK7. ABBREVIATIONS 6-OHDA: 6-hydroxydopamine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CAV1: caveolin 1; ER: endoplasmic reticulum; FN1: fibronectin 1; GSH: glutathione; IDE: insulin degrading enzyme; IL: interleukin; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAC: N-acetyl-L-cysteine; PARK7/DJ-1: Parkinsonism associated deglycase; PD: Parkinson disease; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; RPN1: ribophorin I; ROS: reactive oxygen species; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Chinatsu Mori
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ayano Fuji
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Keito Konno
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takayuki Yamamoto
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Shohei Yashirogi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Mayu Ando
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
21
|
Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Sci Rep 2018; 8:12056. [PMID: 30104666 PMCID: PMC6089991 DOI: 10.1038/s41598-018-30561-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 plays an important role in antioxidant defenses, and a reactive cysteine at position 106 (Cys106) of DJ-1, a critical residue of its biological function, is oxidized under oxidative stress. DJ-1 oxidation has been reported in patients with Parkinson's disease (PD), but the relationship between DJ-1 oxidation and PD is still unclear. In the present study using specific antibody for Cys106-oxidized DJ-1 (oxDJ-1), we analyzed oxDJ-1 levels in the brain and peripheral tissues in young and aged mice and in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). OxDJ-1 levels in the brain, heart, and skeletal muscle were high compared with other tissues. In the brain, oxDJ-1 was detected in PD-related brain sites such as the substantia nigra (SN) of the midbrain, olfactory bulb (OB), and striatum. In aged wild-type mice, oxDJ-1 levels in the OB, striatum, and heart tended to decrease, while those in the skeletal muscle increased significantly. Expression of dopamine-metabolizing enzymes significantly increased in the SN and OB of aged DJ-1-/- mice, accompanied by a complementary increase in glutathione peroxidase 1. MPTP treatment concordantly changed oxDJ-1 levels in PD-related brain sites and heart. These results indicate that the effects of physiological metabolism, aging, and neurotoxin change oxDJ-1 levels in PD-related brain sites, heart, and skeletal muscle where mitochondrial load is high, suggesting a substantial role of DJ-1 in antioxidant defenses and/or dopamine metabolism in these tissues.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuto Kataoka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Takuma Kashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kojiro Hayashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Asa Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takanori Imanishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
22
|
De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, Timothy Greenamyre J. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiol Dis 2018; 115:101-114. [PMID: 29649621 PMCID: PMC5943150 DOI: 10.1016/j.nbd.2018.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amina El Ayadi
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Hinkle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Yamagishi Y, Saigoh K, Saito Y, Ogawa I, Mitsui Y, Hamada Y, Samukawa M, Suzuki H, Kuwahara M, Hirano M, Noguchi N, Kusunoki S. Diagnosis of Parkinson's disease and the level of oxidized DJ-1 protein. Neurosci Res 2018; 128:58-62. [PMID: 28705587 DOI: 10.1016/j.neures.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is difficult to distinguish from progressive supranuclear palsy (PSP) and multiple system atrophy (MSA); in addition, biomarker studies in PD mostly focused on those found in the cerebrospinal fluid, and there are few reports of simple biomarkers identified by blood analysis. Previously, the DJ-1 gene was identified as a causative gene of familial PD. Oxidized DJ-1 protein (oxDJ-1) levels were reported to increase in the blood of patients with unmedicated PD. Therefore, we determined the levels of oxDJ-1 in the erythrocytes of patients with PD, PSP, and MSA using ELISA. The oxDJ-1 levels were 165±117, 96±78, and 69±40ng/mg protein in the PD, PSP, and MSA groups, respectively. The mean level in disease control group was 66±31, revealing significant differences between the PD and PSP groups, the PD and MSA groups, and the PD and disease control groups. Our results indicated that oxDJ-1 levels in erythrocytes can be used as a marker for the differential diagnosis of PD.
Collapse
Affiliation(s)
- Yuko Yamagishi
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazumasa Saigoh
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Ikuko Ogawa
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Mitsui
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yukihiro Hamada
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Makoto Samukawa
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hidekazu Suzuki
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Motoi Kuwahara
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Makito Hirano
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
24
|
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y, Tanaka K. Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Sci Rep 2017; 7:12816. [PMID: 28993701 PMCID: PMC5634459 DOI: 10.1038/s41598-017-13146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
DJ-1 (also known as PARK7) has been identified as a causal gene for hereditary recessive Parkinson’s disease (PD). Consequently, the full elucidation of DJ-1 function will help decipher the molecular mechanisms underlying PD pathogenesis. However, because various, and sometimes inconsistent, roles for DJ-1 have been reported, the molecular function of DJ-1 remains controversial. Recently, a number of papers have suggested that DJ-1 family proteins are involved in aldehyde detoxification. We found that DJ-1 indeed converts methylglyoxal (pyruvaldehyde)-adducted glutathione (GSH) to intact GSH and lactate. Based on evidence that DJ-1 functions in mitochondrial homeostasis, we focused on the possibility that DJ-1 protects co-enzyme A (CoA) and its precursor in the CoA synthetic pathway from aldehyde attack. Here, we show that intact CoA and β-alanine, an intermediate in CoA synthesis, are recovered from methylglyoxal-adducts by recombinant DJ-1 purified from E. coli. In this process, methylglyoxal is converted to L-lactate rather than the D-lactate produced by a conventional glyoxalase. PD-related pathogenic mutations of DJ-1 (L10P, M26I, A104T, D149A, and L166P) impair or abolish detoxification activity, suggesting a pathological significance. We infer that a key to understanding the biological function of DJ-1 resides in its methylglyoxal-adduct hydrolase activity, which protects low-molecular thiols, including CoA, from aldehydes.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Bruno Barros Queliconi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Mishima
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Kenji Takagi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yutaka Ito
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
25
|
Salidroside Protects against MPP+-Induced Neuronal Injury through DJ-1-Nrf2 Antioxidant Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5398542. [PMID: 29234413 PMCID: PMC5637855 DOI: 10.1155/2017/5398542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. We have found that salidroside (Sal) exhibited neuroprotective effects against MPP+ toxicity. However, the molecular mechanism is not fully understood. In this study, we found that Sal significantly prevented MPP+-induced decrease of mRNA and protein expression of Nrf2, GCLc, SOD1, and SOD2 in SH-SY5Y cells. Moreover, silencing of Nrf2 significantly inhibited Sal-induced increase in mRNA and protein expression of GCLc, SOD1, and SOD2. But Nrf2 silence did not significantly impact Sal-exhibited effects on DJ-1 expression. Silencing of Nrf2 significantly suppressed the decrease of apoptosis induced by Sal in MPP+-treated SH-SY5Y cells. Sal significantly prevented MPP+-induced decrease of the mRNA and protein expression of DJ-1 in SH-SY5Y cells. Moreover, silencing of DJ-1 significantly inhibited Sal-induced increase in mRNA and protein expression of Nrf2, GCLc, SOD1, and SOD2 in MPP+-treated SH-SY5Y cells. These results indicated that DJ-1 was an upstream regulator of Nrf2 in the neuroprotective effects of Sal. Furthermore, silencing of DJ-1 significantly suppressed the decrease of apoptosis induced by Sal in MPP+-treated SH-SY5Y cells. In conclusion, Sal prevented MPP+-induced neurotoxicity through upregulation of DJ-1-Nrf2-antioxidant pathway. Our findings provide novel insights into the neuroprotective effects of Sal against PD.
Collapse
|
26
|
Kiss R, Zhu M, Jójárt B, Czajlik A, Solti K, Fórizs B, Nagy É, Zsila F, Beke-Somfai T, Tóth G. Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease. Biochim Biophys Acta Gen Subj 2017; 1861:2619-2629. [PMID: 28844983 DOI: 10.1016/j.bbagen.2017.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/28/2023]
Abstract
DJ-1 (PARK7) is a multifunctional protein linked to the onset and progression of a number of diseases, most of which are associated with high oxidative stress. The Cys106 of DJ-1 is unusually reactive and thus sensitive to oxidation, and due to high oxidative stress it was observed to be in various oxidized states in disease condition. The oxidation state of Cys106 of DJ-1 is believed to determine the specific functions of the protein in normal and disease conditions. Here we report molecular dynamics simulation and biophysical experimental studies on DJ-1 in reduced (Cys106, S-), oxidized (Cys106, SO2-), and over-oxidized (Cys106, SO3-) states. To simulate the different oxidation states of Cys106 in DJ-1, AMBER related force field parameters were developed and reported for 3-sulfinoalanine and cysteine sulfonic acid. Our studies found that the overall structure of DJ-1 in different oxidation states was similar globally, while it differed locally significantly, which have implications on its stability, function and its link to disease on-set. Importantly, the results suggest that over-oxidation may trigger loss of functions due to local structural modification in the Cys106 containing pocket of DJ-1 and structurally destabilize the dimeric state of DJ-1, which is believed to be its bioactive conformation. Such loss of functions would result in reduced ability of DJ-1 to protect from oxidative stress insults and may lead to increased progression of disease.
Collapse
Affiliation(s)
- Róbert Kiss
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Max Zhu
- Cantabio Pharmaceuticals, Sunnyvale, CA, USA
| | - Balázs Jójárt
- Department of Chemical Informatics, Faculty of Education, University of Szeged, Szeged, Hungary
| | - András Czajlik
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Solti
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Éva Nagy
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Tóth
- MTA-TTK-NAP B - Drug Discovery Research Group - Neurodegenerative Diseases, Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Cantabio Pharmaceuticals, Sunnyvale, CA, USA.
| |
Collapse
|
27
|
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radic Res 2017; 51:413-427. [PMID: 28372523 DOI: 10.1080/10715762.2017.1315114] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.
Collapse
Affiliation(s)
- Aya Umeno
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| | - Vasudevanpillai Biju
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan.,b Laboratory of Molecular Photonics, Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita Ward, Sapporo , Japan
| | - Yasukazu Yoshida
- a Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Kagawa , Japan
| |
Collapse
|
28
|
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci 2017; 18:E551. [PMID: 28273839 PMCID: PMC5372567 DOI: 10.3390/ijms18030551] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most important age-related neurodegenerative disorder in developed societies, after Alzheimer's disease, with a prevalence ranging from 41 per 100,000 in the fourth decade of life to over 1900 per 100,000 in people over 80 years of age. As a movement disorder, the PD phenotype is characterized by rigidity, resting tremor, and bradykinesia. Parkinson's disease -related neurodegeneration is likely to occur several decades before the onset of the motor symptoms. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. Parkinson's disease neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta, with widespread involvement of other central nervous system (CNS) structures and peripheral tissues. Pathogenic mechanisms associated with genomic, epigenetic and environmental factors lead to conformational changes and deposits of key proteins due to abnormalities in the ubiquitin-proteasome system together with dysregulation of mitochondrial function and oxidative stress. Conventional pharmacological treatments for PD are dopamine precursors (levodopa, l-DOPA, l-3,4 dihidroxifenilalanina), and other symptomatic treatments including dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone). The chronic administration of antiparkinsonian drugs currently induces the "wearing-off phenomenon", with additional psychomotor and autonomic complications. In order to minimize these clinical complications, novel compounds have been developed. Novel drugs and bioproducts for the treatment of PD should address dopaminergic neuroprotection to reduce premature neurodegeneration in addition to enhancing dopaminergic neurotransmission. Since biochemical changes and therapeutic outcomes are highly dependent upon the genomic profiles of PD patients, personalized treatments should rely on pharmacogenetic procedures to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
| |
Collapse
|