1
|
Jolivet N, Bertolin G. Revealing mitochondrial architecture and functions with single molecule localization microscopy. Biol Cell 2025; 117:e2400082. [PMID: 39877953 PMCID: PMC11775716 DOI: 10.1111/boc.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Understanding the spatiotemporal organization of components within living systems requires the highest resolution possible. Microscopy approaches that allow for a resolution below 250 nm include electron and super-resolution microscopy (SRM). The latter combines advanced imaging techniques and the optimization of image processing methods. Over the last two decades, various SRM-related approaches have been introduced, especially those relying on single molecule localization microscopy (SMLM). To develop and apply SMLM approaches, mitochondria are an ideal cellular compartment due to their size, which is below the standard diffraction limit. Furthermore, mitochondria are a dynamic yet narrow compartment, and a resolution below 250 nm is required to study their composition and multifaceted functions. To this end, several SMLM technologies have been used to reveal mitochondrial composition. However, there is still room for improvement in existing techniques to study protein-protein interactions and protein dynamics within this compartment. This review aims to offer an updated overview of the existing SMLM techniques and probes associated with mitochondria to enhance their resolution at the nanoscale. Last, it paves the way for future SMLM improvements to better resolve mitochondrial dynamics and functions.
Collapse
Affiliation(s)
- Nicolas Jolivet
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| | - Giulia Bertolin
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| |
Collapse
|
2
|
Zhao X, Wang F, Kam C, Wu MY, Zhang J, Xu C, Bao K, He Q, Ye R, Tang BZ, Chen S. Fluorescent Nanocable as a Biomedical Tool: Intracellular Self-Assembly Formed by a Natural Product Interconnects and Synchronizes Mitochondria. ACS NANO 2024; 18:21447-21458. [PMID: 39080909 PMCID: PMC11328177 DOI: 10.1021/acsnano.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/18/2024]
Abstract
Self-assembly processes commonly occur in various biological contexts to form functional biological structures. However, the self-assembly of nanofibers within cells by heterologous molecules showing a biological function is rare. In this work, we reported the intracellular formation of fluorescent nanofibers by a natural small molecule, lycobetaine (LBT), which facilitated the direct physical connection between mitochondria and synchronized their membrane potential oscillations. The luminescent properties of LBT enabled the real-time observation of nanofiber formation, while the semiconductive nature of the LBT nanofiber facilitated electrical signal transduction among the connected mitochondria. This study introduces an approach to modulate mitochondrial connectivity within cells using "nano-cables" which facilitate studies on synchronized mitochondrial operations and the underlying mechanisms of drug action.
Collapse
Affiliation(s)
- Xueqian Zhao
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Fei Wang
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Chuen Kam
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Ming-Yu Wu
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Jianyu Zhang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Hong Kong 999077, China
| | - Changhuo Xu
- Ministry
of Education Frontiers Science Center for Precision Oncology, Faculty
of Health Sciences, University of Macau, Macao 999078, China
| | - Kai Bao
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiyuan He
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ruquan Ye
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Hong Kong 999077, China
- School of
Science and Engineering, Shenzhen Institute of Aggregate Science and
Technology, The Chinese University of Hong
Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Sijie Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| |
Collapse
|
3
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
4
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
5
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
6
|
Fraix A, Parisi C, Seggio M, Sortino S. Nitric Oxide Photoreleasers with Fluorescent Reporting. Chemistry 2021; 27:12714-12725. [PMID: 34143909 DOI: 10.1002/chem.202101662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
7
|
OwYong TC, Ding S, Wu N, Fellowes T, Chen S, White JM, Wong WWH, Hong Y. Optimising molecular rotors to AIE fluorophores for mitochondria uptake and retention. Chem Commun (Camb) 2020; 56:14853-14856. [PMID: 33174870 DOI: 10.1039/d0cc06411d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular rotors exhibit fluorescence enhancement in a confined environment and thus have been used extensively in biological imaging. However, many molecular rotors suffer from small Stokes shift and self-aggregation caused quenching. In this work, we have synthesised a series of red emissive molecular rotors based on cationic α-cyanostilbene. Profoundly enhanced aggregation-induced emission (AIE) properties and greatly widened Stokes shifts can be achieved by molecular engineering. With specificity to stain mitochondria, we demonstrate a simple approach to achieve cell uptake and retention upon tuning the pyridinium substituent of the dyes.
Collapse
Affiliation(s)
- Tze Cin OwYong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia. and Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Siyang Ding
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Na Wu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Thomas Fellowes
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Jonathan M White
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
8
|
Matsumura T, Uryu O, Matsuhisa F, Tajiri K, Matsumoto H, Hayakawa Y. N-acetyl-l-tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals. EMBO Rep 2020; 21:e49211. [PMID: 32118349 PMCID: PMC10563448 DOI: 10.15252/embr.201949211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 10/12/2023] Open
Abstract
Under stress conditions, mitochondria release low levels of reactive oxygen species (ROS), which triggers a cytoprotective response, called "mitohormesis". It still remains unclear how mitochondria respond to stress-derived stimuli and release a low level of ROS. Here, we show that N-acetyl-l-tyrosine (NAT) functions as a plausible intrinsic factor responsible for these tasks in stressed animals. NAT is present in the blood or hemolymph of healthy animals, and its concentrations increase in response to heat stress. Pretreatment with NAT significantly increases the stress tolerance of tested insects and mice. Analyses using Drosophila larvae and cultured cells demonstrate that the hormetic effects are triggered by transient NAT-induced perturbation of mitochondria, which causes a small increase in ROS production and leads to sequential retrograde responses: NAT-dependent FoxO activation increases in the gene expression of antioxidant enzymes and Keap1. Moreover, we find that NAT represses tumor growth, possibly via the activation of Keap1. In sum, we propose that NAT is a vital endogenous molecule that could serve as a triggering factor for mitohormesis.
Collapse
Affiliation(s)
- Takashi Matsumura
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Outa Uryu
- Department of Applied Biological SciencesSaga UniversitySagaJapan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental SciencesSaga UniversitySagaJapan
| | - Keiji Tajiri
- Department of Applied Biological SciencesSaga UniversitySagaJapan
- Present address:
Fuji Environment Service Co., Kansai BranchKyotoJapan
| | | | - Yoichi Hayakawa
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Department of Applied Biological SciencesSaga UniversitySagaJapan
| |
Collapse
|
9
|
Sakuma M, Fuchi Y, Usui K, Karasawa S. Photophysical Properties of Emissive Pyrido[3,2‐
c
]carbazole Derivatives and Apoptosis Induction: Development towards Theranostic Agents in Response to Light Stimulus. Chem Asian J 2019; 14:3938-3945. [DOI: 10.1002/asia.201901200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Masaomi Sakuma
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University 3-3165 Higashi-Tamagawagakuen Machida Tokyo 194-8543 Japan
| |
Collapse
|
10
|
Gu M, Zeng Z, Xing M, Xiong Y, Deng Z, Chen S, Wang L. The Biological Applications of Two Aggregation-Induced Emission Luminogens. Biotechnol J 2019; 14:e1900212. [PMID: 31469239 DOI: 10.1002/biot.201900212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging, as a commonly used scientific tool, is widely applied in various biomedical and material structures through visualization technology. Highly selective and sensitive luminescent biological probes, as well as those with good water solubility, are urgently needed for biomedical research. In contrast to the traditional aggregation-caused quenching of fluorescence, in the unique phenomenon of aggregation-induced emission (AIE), the individual luminogens have extremely weak or no emissivity because they each have free intramolecular motion; however, when they form aggregates, these components immediately "light up". Since the discovery of "turn-on" mechanism, researchers have been studying and applying AIE in a variety of fields to develop more sensitive, selective, and efficient strategies for the AIE dyes. There are numerous advantages to the use of AIE-based methods, including low background interference, strong contrast, high performance in intracellular imaging, and the ability for long-term monitoring in vivo. In this review, two typical examples of AIEgens, TPE-Cy and TPE-Ph-In, are described, including their structure properties and applications. Recent progress in the biological applications is mainly focused on. Undoubtedly, in the near future, an increasing number of encouraging and practical ideas will promote the development of more AIEgens for broad use in biomedical applications.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixuan Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Mai Xing
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Yige Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
11
|
|
12
|
Riebe S, Saccone M, Stelzer J, Sowa A, Wölper C, Soloviova K, Strassert CA, Giese M, Voskuhl J. Alkylated Aromatic Thioethers with Aggregation‐Induced Emission Properties—Assembly and Photophysics. Chem Asian J 2018; 14:814-820. [DOI: 10.1002/asia.201801564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Steffen Riebe
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Marco Saccone
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Jacqueline Stelzer
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Andrea Sowa
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Christoph Wölper
- Faculty of Chemistry and Center for NanoIntegration (CENIDE)University of Duisburg-Essen Universitätsstrasse 5–7 45117 Essen Germany
| | - Kateryna Soloviova
- Institut für Anorganische und Analytische Chemie and CeNTechWestfälische Wilhelms-Universität Münster Heisenbergstrasse 11 48149 Münster Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie and CeNTechWestfälische Wilhelms-Universität Münster Heisenbergstrasse 11 48149 Münster Germany
| | - Michael Giese
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
13
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
14
|
Gao H, Zhang X, Chen C, Li K, Ding D. Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800074] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kai Li
- Institute of Materials Research & Engineering; A*STAR; Singapore 138634 Singapore
- Department of Biomedical Engineering; Southern University of Science and Technology; Shenzhen Guangdong 510855 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
15
|
Hayduk M, Riebe S, Rudolph K, Schwarze S, van der Vight F, Daniliuc CG, Jansen G, Voskuhl J. Molecular Recognition of Spermine using Aggregation-Induced Emission. Isr J Chem 2018. [DOI: 10.1002/ijch.201800037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Matthias Hayduk
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen
| | - Steffen Riebe
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen
| | - Kevin Rudolph
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen
| | - Sandrina Schwarze
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen
| | - Felix van der Vight
- Theoretical Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 5 45117 Essen Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität; Corrensstraße 40 48149 Münster Germany
| | - Georg Jansen
- Theoretical Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 5 45117 Essen Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry; University of Duisburg-Essen; Universitätsstrasse 7 45117 Essen
| |
Collapse
|
16
|
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 2018; 75:355-374. [PMID: 28779209 PMCID: PMC5765209 DOI: 10.1007/s00018-017-2603-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/24/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
The mitochondrial network constantly changes and remodels its shape to face the cellular energy demand. In human cells, mitochondrial fusion is regulated by the large, evolutionarily conserved GTPases Mfn1 and Mfn2, which are embedded in the mitochondrial outer membrane, and by OPA1, embedded in the mitochondrial inner membrane. In contrast, the soluble dynamin-related GTPase Drp1 is recruited from the cytosol to mitochondria and is key to mitochondrial fission. A number of new players have been recently involved in Drp1-dependent mitochondrial fission, ranging from large cellular structures such as the ER and the cytoskeleton to the surprising involvement of the endocytic dynamin 2 in the terminal abscission step. Here we review the recent findings that have expanded the mechanistic model for the mitochondrial fission process in human cells and highlight open questions.
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- U604 Inserm, Paris, France
- USC2020 INRA, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France.
- U604 Inserm, Paris, France.
- USC2020 INRA, Paris, France.
- SNC5101 CNRS, Paris, France.
| |
Collapse
|
17
|
He H, Ye Z, Xiao Y, Yang W, Qian X, Yang Y. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide. Anal Chem 2018; 90:2164-2169. [PMID: 29316789 DOI: 10.1021/acs.analchem.7b04510] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) potentially plays a regulatory role in mitochondrial fusion and fission, which are vital to cell survival and implicated in health, disease, and aging. Molecular tools facilitating the study of the relationship between NO and mitochondrial dynamics are in need. We have recently developed a novel NO donor (NOD550). Upon photoactivation, NOD550 decomposes to release two NO molecules and a fluorophore. The NO release could be spatially mapped with subdiffraction resolution and with a temporal resolution of 10 s. Due to the preferential localization of NOD550 at mitochondria, morphology and dynamics of mitochondria could be monitored upon NO release from NOD550.
Collapse
Affiliation(s)
- Haihong He
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| |
Collapse
|
18
|
Gao G, Jiang YW, Yang J, Wu FG. Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. NANOSCALE 2017; 9:18368-18378. [PMID: 29143843 DOI: 10.1039/c7nr06764j] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, a series of fluorescent carbon quantum dots (or carbon dots, CDs) with inherent mitochondrial targeting/imaging and cancerous/normal cell differentiation capabilities were prepared by a one-pot solvothermal treatment of glycerol and a silane molecule. Glycerol acted as a solvent and carbon source, and the silane molecule acted as a passivation agent. The as-prepared CDs could specifically and stably (for at least 24 h) visualize mitochondria of various types of cells without the introduction of mitochondria-targeting ligands (such as triphenylphosphonium). In addition, the CDs exhibited extraordinary features including facile synthesis, good water solubility, favorable biocompatibility, and excellent photostability as compared to commercial mitochondrial probes. Moreover, the CDs could efficiently distinguish cancerous cells from normal cells with high fluorescence contrast due to differences in their mitochondrial membrane potentials and substance uptake efficiencies. More importantly, to the best of our knowledge, the present study provides the first example of using CDs to distinguish cancerous cells from normal cells. The remarkable features of mitochondria-targeted imaging and cancerous cell recognition make the CDs an excellent fluorescent probe for various biomedical applications.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
19
|
Gu X, Kwok RT, Lam JW, Tang BZ. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017; 146:115-135. [DOI: 10.1016/j.biomaterials.2017.09.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
|
20
|
Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, Hausenloy DJ. Mitochondrial-Shaping Proteins in Cardiac Health and Disease - the Long and the Short of It! Cardiovasc Drugs Ther 2017; 31:87-107. [PMID: 28190190 PMCID: PMC5346600 DOI: 10.1007/s10557-016-6710-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Parisa Samangouei
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek John Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. .,The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK. .,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
21
|
Huang L, Dai L. Aggregation-Induced Emission for Highly Selective and Sensitive Fluorescent Biosensing and Cell Imaging. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Liang Huang
- Department of Macromolecular Science and Engineering, Center of Advanced Science and Engineering for Carbon (Case4carbon); Case Western Reserve University; 10900 Euclid Avenue Cleveland Ohio 44106
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Center of Advanced Science and Engineering for Carbon (Case4carbon); Case Western Reserve University; 10900 Euclid Avenue Cleveland Ohio 44106
| |
Collapse
|