1
|
Zhang J, Qiu Y, Ma F, Niu X, Bai P, Da M, Ma J. Targeting miR-103a-3p/IGFBP5 axis: a potential therapeutic strategy for gastric cancer progression. Discov Oncol 2025; 16:591. [PMID: 40263134 PMCID: PMC12014892 DOI: 10.1007/s12672-025-02390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Gastric cancer is a significant contributor to worldwide cancer deaths with limited treatment options and poor patient survival. MicroRNAs play crucial roles as potential oncogenic factors or tumor suppressors in cancers by modulating cell cycle progression, proliferation, migration, invasion, and apoptosis. However, the functional implications of miR-103a-3p in gastric cancer remain poorly known. The current study demonstrates a noteworthy increase in the expression of miR-103a-3p in gastric cancer tissues when compared to neighboring non-cancerous tissues. Our functional investigations indicate that the upregulation of miR-103a-3p contributes to enhanced proliferation, invasion, and migration capabilities in gastric cancer cells. After mechanistic studies, our findings indicate that miR-103a-3p may directly target insulin-like growth factor binding protein 5 (IGFBP5) in gastric cancer. Moreover, rescue experiments reveal that IGFBP5 overexpression can attenuate the progression induced by miR-103a-3p in gastric cancer cells. In summary, our findings suggest that the miR-103a-3p/IGFBP5 axis may play a role in gastric cancer progression, highlighting its potential as a therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Junrui Zhang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yue Qiu
- Department of Internal Medicine, Shenzhen People's Hospital, Shenzhen, 518000, China
| | - Fubin Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan, 750000, China
| | - Xingdong Niu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Pengwei Bai
- Clinical Medical College of Ningxia Medical University, Yinchuan, 750000, China
| | - Mingxu Da
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Junfeng Ma
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yan C, Du Y, Cui L, Bao H, Li H. CircPTK2 as a Valuable Biomarker and Treatment Target in Cancer. J Biochem Mol Toxicol 2025; 39:e70161. [PMID: 39887513 DOI: 10.1002/jbt.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Circular RNA (CircRNA)s, a newly discovered type of noncoding RNAs, have been found to play a role in controlling the development and aggressiveness of tumors. Abnormal control of circRNA has been observed in various types of human cancers, including bladder cancer, hepatocellular carcinoma (HCC), breast cancer, and gastric cancer (GC). CircRNAs possess binding sites for microRNAs (miRNAs) and function as miRNA sponges in posttranscriptional regulation. This mechanism has been documented to influence the course of cancer. Significantly, among these putative circRNAs, circular RNA protein tyrosine kinase 2 (circPTK2) exhibited increased expression and displayed a substantial association with adverse clinical characteristics and a negative prognosis. The production of these transcripts occurs via a back-splicing mechanism. The enclosed conformation of circRNAs shields them from destruction and enhances their potential as biomarkers. Gaining insight into the molecular mechanisms involved in these processes would aid in the development of treatment approaches and the discovery of new tumor markers. This article provides a comprehensive assessment of the latest research on the biosynthesis and features of circRNAs. It examines the role of circPTK2 in the diagnosis, treatment, and prognosis evaluation of cancer.
Collapse
Affiliation(s)
- Chengqiu Yan
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yu Du
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lihong Cui
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Han Bao
- Department of Anorectal, Changchun Hospital of Traditional Chinese Medicine, Changchun, China
| | - Hui Li
- Department of Anorectal Center, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Liang L, Kong C, Li J, Liu G, Wei J, Wang G, Wang Q, Yang Y, Shi D, Li X, Ma Y. Distinct microbes, metabolites, and the host genome define the multi-omics profiles in right-sided and left-sided colon cancer. MICROBIOME 2024; 12:274. [PMID: 39731152 DOI: 10.1186/s40168-024-01987-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, microbiota, and metabolites to explain the site-specific difference. METHODS Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy controls) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed. 16S rRNA gene, metagenomic sequencing, and metabolomics analyses of fecal samples were evaluated to identify tumor location-related bacteria and metabolites. Whole-exome sequencing (WES) and transcriptome sequencing (RNA-seq) were conducted to obtain the mutation burden and genomic expression pattern. RESULTS We found unique profiles of the intestinal microbiome, metabolome, and host genome between RCC and LCC. The bacteria Flavonifractor plautii (Fp) and Fusobacterium nucleatum, the metabolites L-phenylalanine, and the host genes PHLDA1 and WBP1 were the key omics features of RCC; whereas the bacteria Bacteroides sp. A1C1 (B.A1C1) and Parvimonas micra, the metabolites L-citrulline and D-ornithine, and the host genes TCF25 and HLA-DRB5 were considered the dominant omics features in LCC. Multi-omics correlation analysis indicated that RCC-enriched Fp was related to the accumulation of the metabolite L-phenylalanine and the suppressed WBP1 signal in RCC patients. In addition, LCC-enriched B.A1C1 was associated with the accumulation of the metabolites D-ornithine and L-citrulline as well as activation of the genes TCF25, HLA-DRB5, and AC079354.1. CONCLUSION Our findings identify previously unknown links between intestinal microbiota alterations, metabolites, and host genomics in RCC vs. LCC, suggesting that it may be possible to treat colorectal cancer (CRC) by targeting the gut microbiota-host interaction. Video Abstract.
Collapse
Affiliation(s)
- Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinming Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang Liu
- Guangdong Hongyuan Pukang Medical Technology Co., Ltd., Guangdong, China
| | - Jinwang Wei
- GenomiCare Biotechnology Co. Ltd., Shanghai, China
| | - Guan Wang
- GenomiCare Biotechnology Co. Ltd., Shanghai, China
| | - Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhang W, Guo G, Li X, Lin J, Zheng Z, Huang P, Lin C, Lin Y, Chen X, Lin K, Zheng C, Lin H, Lu Y, Zhang H. A bibliometric analysis of bladder cancer and microRNA research: Trends and advances from 2008 to 2022. Medicine (Baltimore) 2024; 103:e40289. [PMID: 39470484 PMCID: PMC11521070 DOI: 10.1097/md.0000000000040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Bladder cancer (BC) is a significant global health issue with high incidence and mortality rates. MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been found to be dysregulated in BC. Understanding the role of miRNAs in BC development could lead to targeted therapies and improved patient management. Our study presents a thorough examination of the correlation between BC and miRNA research from 2008 to 2022. With the help of 3 powerful methods, including VOSviewer, Biblioshiny, and CiteSpace software, we analyzed the retrieved documents from "Core Collection databases online" on the Web of Science. In total, 798 articles were extracted from the Web of Science, and the number of published papers showed an upward trend from 2008 to 2019. The total number of citations was 21,233, of which the highest paper was a review article written by Chan Jiajia et al in 2018 with 752 citations. Based on the result of the coauthor analysis, Seki Naohiko was the most productive writer and China had the highest volume of published articles. Co-citation analysis was used to reveal the knowledge structure of the research field. In addition to the keywords "Bladder cancer" and "miRNA," "Proliferation," "Biomarkers," and "Apoptosis" were the high-frequency used keywords. Recently, increasingly researchers have paid more attention to the field about BC and miRNA around the worldwide. Through in-depth communication and close collaboration, the veil of miRNA in BC has gradually been unveiled. Bibliometric analysis helps to identify hotspots in research and areas for future investigation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Gaowei Guo
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xinji Li
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Jinming Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Zexian Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Peidong Huang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Chuqi Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yurong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Kuncheng Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Changzheng Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Huirong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yong Lu
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Hui Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| |
Collapse
|
5
|
Li J, Qian L, Ge M, Zhao J, Yang Y. hsa_circ_0000518 stimulates the malignant progression of hepatocellular carcinoma via regulating ITGA5 to activate the Warburg effect. Cell Signal 2024; 120:111243. [PMID: 38830562 DOI: 10.1016/j.cellsig.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Studies have shown that the abnormal expression of circular RNA (circRNA) is inextricably linked to hepatocellular carcinoma (HCC). Recently, hsa_circ_0000518 (circ_0000518) was discovered in many cancer progressions. However, its function in HCC is still unclear. Through GEO database analysis combined with gene expression detection of HCC related clinical samples and cell lines, we identified that circ_0000518 was abnormally overexpressed in HCC. Cell and animal model experiments jointly indicated that circ_0000518 can stimulate HCC cell proliferation, migration, invasion and suppress apoptosis. Furthermore, we also found that knocking down the circ_0000518 could inhibit the Warburg effect in HCC cells. Mechanistically, circ_0000518 was found to be primarily localized in the cytoplasm, and sponge hsa-miR-326 (miR-326) promoted integrin alpha 5 (ITGA5) expression. In addition, circ_0000518 could enhance the stability of HuR-mediated ITGA5 mRNA, thereby activating the Warburg effect. In conclusion, this study elucidated that circ_0000518 was a cancer-promoting circRNA, which could enhance ITGA5 expression through competing endogenous RNAs (ceRNA) and RNA Binding Protein (RBP) mechanisms, thus facilitating the development of HCC. It provides a meaningful diagnostic and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Animals
- Cell Proliferation
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Warburg Effect, Oncologic
- Integrin alpha5/metabolism
- Integrin alpha5/genetics
- Cell Movement
- Mice, Nude
- Mice
- Apoptosis
- Disease Progression
- Mice, Inbred BALB C
- Male
- Integrins
Collapse
Affiliation(s)
- Jinhai Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liyuan Qian
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Mengchen Ge
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jie Zhao
- Department of General Surgery, Wujin Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
7
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
8
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
9
|
Zhu L, Han Y, Shu J. Changes in circMyt1l/rno-let-7d-5p/brain-derived neurotrophic factor. A damaged periventricular white matter damage model in neonatal rats. J Perinat Med 2024; 52:108-113. [PMID: 37936493 DOI: 10.1515/jpm-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES To investigate the function of circMyt1l/rno-let-7d-5p/BDNF in the white matter damage of premature rats. METHODS Bioinformatic analysis was used to analyze the differential expression of circMyt1l and its interacting miRNAs and mRNAs in rats with periventricular white matter damage. Rats at postnatal day 3 had their right common carotid artery permanently ligated, and were then exposed for 2 h to 6 % O2, or sham surgery and exposure to normal O2 levels (sham). CircMyt1l and rno-let-7d-5p expression was detected and BDNF protein levels were analyzed at 24, 48, and 72 h post hypoxia-ischemia. RESULTS Bioinformatic analysis suggested that circMyt1l, rno-let-7d-5p and BDNF interact. CircMyt1l expression decreased significantly relative to the sham-operated rats (p<0.01) in an exposure time-dependent manner. Contrastingly, rno-let-7d-5p increased significantly relative to the sham-operated rats (p<0.01) in an exposure time dependent manner. BDNF protein levels decreased significantly relative to the sham-operated rats (p<0.05) in an exposure time dependent manner. CONCLUSIONS The expression levels of circMyt1l/rno-let-7d-5p/BDNF are interrelated in periventricular white matter damage. Decreased circMyt1l expression of promoted the effect of rno-let-7d-5p and decreased the level of its target, BDNF.
Collapse
Affiliation(s)
- Lihua Zhu
- Jiangsu Health Vocational College, Nanjing, P.R. China
| | - Yiwen Han
- Jiangsu Health Vocational College, Nanjing, P.R. China
| | - Jiaping Shu
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, P.R. China
| |
Collapse
|
10
|
Shrestha SM, Fang X, Ye H, Ren L, Ji Q, Shi R. A novel upregulated hsa_circ_0032746 regulates the oncogenesis of esophageal squamous cell carcinoma by regulating miR-4270/MCM3 axis. Hum Genomics 2024; 18:3. [PMID: 38200573 PMCID: PMC10777493 DOI: 10.1186/s40246-023-00564-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Circular RNAs (CircRNA) have emerged as an interest of research in recent years due to its regulatory role in various kinds of cancers of human body. Esophageal squamous cell carcinoma (ESCC) is one of the major disease subtype in Asian countries, including China. CircRNAs are formed by back-splicing covalently joined 3'- and 5'- ends rather than canonical splicing and are found to have binding affinity with miRNAs that conjointly contribute to oncogenesis. MATERIALS AND METHODS 4 pairs of normal, cancer adjacent tissues and cancer tissues were analyzed by high-throughput RNA sequencing and 84 differentially upregulated circRNAs were detected in cancer tissues. hsa_circ_0032746 was silenced by siRNA and lentivirus and then further proliferation, migration and invasion were performed by CCK-8 and transwell assays. Bioinformatic analysis predicted binding affinity of circRNA/miRNA/mRNA axis. RESULTS After qPCR validation, we selected a novel upregulated hsa_circ_0032746 to explore its biogenetic functions which showed high expression in cancer tissues but not in cancer adjacent tissues. The clinicopathological relation of hsa_circ_0032746 showed positive correlation with the tumor location (P = 0.026) and gender (P = 0.05). We also predicted that hsa_circ_0032746 could sponge with microRNA. Bioinformatic analysis predicted 11 microRNA response element (MRE) sequences of hsa_circ_0032746 and dual luciferase reporter assay confirmed binding affinity with miR4270 evidencing further study of circRNA/miRNA role. The knockdown of hsa_circ_0032746 by siRNA and lentivirus demonstrated that proliferation, invasion and migration of ESCC were inhibited in vitro and vivo experiments. Bioinformatic analysis further predicted MCM3 as a target of miR-4270 and was found upregulated in ESCC upon validation. miR4270 mimic decreased the level of hsa_circ_0032746 and MCM3 while further rescue experiments demonstrated that hsa_circ_0032746 was dependent on miR4270/MCM3 axis on the development process of ESCC. CONCLUSION We revealed for the first time that circ_0032746/mir4270/MCM3 contributes in proliferation, migration and invasion of ESCC and could have potential prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Sachin Mulmi Shrestha
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Xin Fang
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Hui Ye
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Lihua Ren
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Qinghua Ji
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China
| | - Ruihua Shi
- Department of Gastroenterology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China.
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Wei W, Liu K, Huang X, Tian S, Wang H, Zhang C, Ye J, Dong Y, An Z, Ma X, Wang B, Huang Y, Zhang X. EIF4A3-mediated biogenesis of circSTX6 promotes bladder cancer metastasis and cisplatin resistance. J Exp Clin Cancer Res 2024; 43:2. [PMID: 38163881 PMCID: PMC10759346 DOI: 10.1186/s13046-023-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP)-based chemotherapy is a standard first-line treatment for metastatic bladder cancer (BCa) patients, and chemoresistance remains a major challenge in clinical practice. Circular RNAs (circRNAs) have emerged as essential regulators in carcinogenesis and cancer progression. However, the role of circRNAs in mediating CDDP chemosensitivity has yet to be well elucidated in BCa. METHODS CircSTX6 (hsa_circ_0007905) was identified by mining the public circRNA datasets and verified by Sanger sequencing, agarose gel electrophoresis, RNase R treatment and qRT-PCR assays. Then, function experiments were performed to evaluate the effects of circSTX6 on BCa metastasis. Luciferase reporter assay, RNA pull-down, RNA immunoprecipitation (RIP), RNA stability assay, Fluorescence in situ hybridization (FISH) and Immunofluorescence (IF) were conducted to evaluate the interaction among circSTX6, miR-515-3p, PABPC1 and SUZ12. Animal experiments were performed to explore the function of circSTX6 in tumor metastasis and CDDP sensitivity. RESULTS We identified that circSTX6 was significantly upregulated in clinical samples and cells of BCa. Functionally, circSTX6 promoted cell migration and invasion both in vitro and in vivo. Mechanistically, circSTX6 could act as a miR-515-3p sponge and abolish its effect on SUZ12. Moreover, circSTX6 was confirmed to increase the stability of SUZ12 mRNA by interacting with a mRNA stabilizer PABPC1 and subsequently promote the expression of SUZ12. Importantly, silencing of circSTX6 improved the chemosensitivity of CDDP-resistant bladder cancer cells to CDDP. Furthermore, in vivo analysis supported that knockdown of circSTX6 attenuated CDDP resistance in BCa tumors. CONCLUSION These studies demonstrate that circSTX6 plays a pivotal role in BCa metastasis and chemoresistance, and has potential to serve as a therapeutic target for treatment of BCa.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Kan Liu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Chi Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiali Ye
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Yuhao Dong
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
12
|
Juchem M, Cushman S, Lu D, Chatterjee S, Bär C, Thum T. Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. Methods Mol Biol 2024; 2765:247-260. [PMID: 38381344 DOI: 10.1007/978-1-0716-3678-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered. The production of in vitro transcribed circular RNA-containing LNPs based on a commercially available lipid mix is provided, in addition to the fundamentals for successful encapsulation based on lipid mixes composed of single components. Furthermore, the transfection and validation protocols for the identification of a functional and potentially therapeutic circRNA candidate for initial in vitro verification, before subsequent LNP studies, are explained.
Collapse
Affiliation(s)
- Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Feng Z, Zhang T, Cheng S, Yin X, Zhou Y. CircGFPT1 regulates the growth and apoptosis of esophageal squamous cell carcinoma through miR-142-5p/HAX1 axis. Gen Thorac Cardiovasc Surg 2024; 72:41-54. [PMID: 37455293 DOI: 10.1007/s11748-023-01955-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Currently, multiple circular RNAs (circRNAs) have been verified to act as essential regulators in the progression of esophageal squamous cell carcinoma (ESCC). However, there is no study regarding the role of circGFPT1 in the progression of cancers including ESCC. We aimed to investigate the role of circGFPT1 in ESCC progression. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to measure the expression of circGFPT1, miR-142-5p and HS1-associated protein X-1 (HAX1). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were employed to evaluate cell proliferation. Cell migration and invasion were detected by wound-healing and transwell assays. Flow cytometry analysis was conducted to assess cell apoptosis. The protein expression of E-cadherin, N-cadherin, Vimentin, C-caspase3, HAX1 and nuclear proliferation marker (Ki67) was analyzed by western blot or immunohistochemistry assay. RESULTS CircGFPT1 was up-regulated in ESCC tissues and cells. Silencing of circGFPT1 repressed cell proliferation and induced cell apoptosis in ESCC cells. CircGFPT1 acted as a sponge of miR-142-5p. The effects of circGFPT1 knockdown on ESCC cell proliferation and apoptosis were reversed by miR-142-5p inhibition. HAX1 was confirmed to be a target gene of miR-142-5p. CircGFPT1 knockdown inhibited HAX1 expression by targeting miR-142-5p. Additionally, circGFPT1 knockdown hampered tumorigenesis in vivo. CONCLUSION CircGFPT1 promoted ESCC cell growth and repressed apoptosis by up-regulating HAX1 through sponging miR-142-5p.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Tianyi Zhang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Shaoyi Cheng
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Xunliang Yin
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, No. 1, Xinsi Road, Baqiao District, Xi'an City, 710000, Shaanxi, China.
| |
Collapse
|
14
|
Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA, lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res 2023; 28:354. [PMID: 37717007 PMCID: PMC10504747 DOI: 10.1186/s40001-023-01309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/23/2023] [Indexed: 09/18/2023] Open
Abstract
Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Yuting Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiaotong University, Wujin Road No. 85, Shanghai, 200080, China.
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China.
| |
Collapse
|
15
|
Li X, Li M, Zhao T, Zhang J. The discovery of promising candidate biomarkers in kidney renal clear cell carcinoma: evidence from the in-depth analysis of high-throughput data. Am J Cancer Res 2023; 13:4288-4304. [PMID: 37818073 PMCID: PMC10560940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 10/12/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of renal tumor. The underlying mechanisms governing KIRC initiation and progression are less known. The present study aimed to reveal novel hub genes associated with the initiation and progression of KIRC, which may be utilized as novel molecular biomarkers and therapeutic targets for the treatment of KIRC. The GSE6344 dataset from the Gene Expression Omnibus (GEO) database was integrated to identify differentially expressed genes (DEGs) using the limma package. Then, hub genes were identified and UALCAN, GEPIA, OncoDB, DriverDBv3, GENT2, and HPA databases were employed for the expression, survival, and methylation analyses. cBioPortal tool was used to investigate the genetic alterations, while CancerSEA, TIMER, DAVID, ENCORI, DrugBank, and GSCAlite were utilized to explore a few more hub gene-associated parameters. Finally, targeted bisulfite sequencing (bisulfite-seq), and RT-qPCR techniques were used to validate the expression and methylation level of the hub genes using Human RCC cell line 786-O, A-498, and normal renal tubular epithelial cell line HK-2. In total, 7299 DEGs were found between KIRC and normal samples in the GSE6344 dataset. Using STRING and Cytohubba analysis, four hub genes including VEGFA (vascular endothelial growth factor), ALB (Albumin), ENO2 (enolase 2), and CAVI1 (Caveolin 1) were selected as the hub genes. Further, it was validated through extensive analysis of TCGA datasets that these VEGA, ENO2, and CAV1 hub genes were significantly up-regulated, while ALB was significantly down-regulated in KIRC samples compared to controls. The dysregulation of these genes was found to be associated with the overall survival (OS) of the KIRC patients. Moreover, this study also revealed some novel links between VEGA, ALB, ENO2, and CAV1 expression and genetic alterations, promoter methylation status, immune cell infiltration, miRNAs, gene enrichment terms, and various chemotherapeutic drugs. The present study revealed a panel of four hub genes, which contributed to improving our understanding of the underlying molecular mechanisms of KIRC development and can be utilized as promising novel biomarkers for KIRC diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Xue Li
- Central People's Hospital of Zhanjiang Zhanjiang, Guangdong, China
| | - Mingfeng Li
- Central People's Hospital of Zhanjiang Zhanjiang, Guangdong, China
| | - Tianyu Zhao
- Central People's Hospital of Zhanjiang Zhanjiang, Guangdong, China
| | - Jingyu Zhang
- Central People's Hospital of Zhanjiang Zhanjiang, Guangdong, China
| |
Collapse
|
16
|
NOKKEAW ARCHITTAPON, THAMJAMRASSRI PANNATHON, CHANTARAVISOOT NAPHAT, TANGKIJVANICH PISIT, ARIYACHET CHAIYABOOT. Long non-coding RNA H19 promotes proliferation in hepatocellular carcinoma cells via H19/miR-107/CDK6 axis. Oncol Res 2023; 31:989-1005. [PMID: 37744274 PMCID: PMC10513943 DOI: 10.32604/or.2023.030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer death worldwide; nevertheless, current therapeutic options are limited or ineffective for many patients. Therefore, elucidation of molecular mechanisms in HCC biology could yield important insights for the intervention of novel therapies. Recently, various studies have reported dysregulation of long non-coding RNAs (lncRNAs) in the initiation and progression of HCC, including H19; however, the biological function of H19 in HCC remains unclear. Here, we show that knockdown of H19 disrupted HCC cell growth, impaired the G1-to-S phase transition, and promoted apoptosis, while overexpression of H19 yielded the opposite results. Screening for expression of cell cycle-related genes revealed a significant downregulation of CDK6 at both RNA and protein levels upon H19 suppression. Bioinformatic analysis of the H19 sequence and the 3' untranslated region (3' UTR) of CDK6 transcripts showed several binding sites for microRNA-107 (miR-107), and the dual luciferase reporter assay confirmed their direct interaction with miR-107. Consistently, blockage of miR-107 activity alleviated the growth suppression phenotypes induced by H19 downregulation, suggesting that H19 serves as a molecular sponge for miR-107 to promote CDK6 expression and cell cycle progression. Together, this study demonstrates a mechanistic function of H19 in driving the proliferation of HCC cells and suggests H19 suppression as a novel approach for HCC treatment.
Collapse
Affiliation(s)
- ARCHITTAPON NOKKEAW
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - PANNATHON THAMJAMRASSRI
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Medical Biochemistry Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - NAPHAT CHANTARAVISOOT
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - PISIT TANGKIJVANICH
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - CHAIYABOOT ARIYACHET
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
18
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
19
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
20
|
Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM. Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1760. [PMID: 36063028 DOI: 10.1002/wrna.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bladder cancer is the most common malignancy of the urinary tract worldwide. The therapeutic options to tackle this disease comprise surgery, intravesical or systemic chemotherapy, and immunotherapy. Unfortunately, a wide number of patients ultimately become resistant to these treatments and develop aggressive metastatic disease, presenting a poor prognosis. Therefore, the identification of novel therapeutic approaches to tackle this devastating pathology is urgently needed. However, a significant limitation is that the progression and drug response of bladder cancer is strongly associated with its intrinsic molecular heterogeneity. In this sense, RNA splicing is recently gaining importance as a critical hallmark of cancer since can have a significant clinical value. In fact, a profound dysregulation of the splicing process has been reported in bladder cancer, especially in the expression of certain key splicing variants and circular RNAs with a potential clinical value as diagnostic/prognostic biomarkers or therapeutic targets in this pathology. Indeed, some authors have already evidenced a profound antitumor effect by targeting some splicing factors (e.g., PTBP1), mRNA splicing variants (e.g., PKM2, HYAL4-v1), and circular RNAs (e.g., circITCH, circMYLK), which illustrates new possibilities to significantly improve the management of this pathology. This review represents the first detailed overview of the splicing process and its alterations in bladder cancer, and highlights opportunities for the development of novel diagnostic/prognostic biomarkers and their clinical potential for the treatment of this devastating cancer type. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Enrique Gómez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Urology Service, HURS/IMIBIC, Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| |
Collapse
|
21
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
22
|
Digby B, Finn SP, Ó Broin P. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs. BMC Bioinformatics 2023; 24:27. [PMID: 36694127 PMCID: PMC9875403 DOI: 10.1186/s12859-022-05125-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of covalenty closed non-coding RNAs that have garnered increased attention from the research community due to their stability, tissue-specific expression and role as transcriptional modulators via sequestration of miRNAs. Currently, multiple quantification tools capable of detecting circRNAs exist, yet none delineate circRNA-miRNA interactions, and only one employs differential expression analysis. Efforts have been made to bridge this gap by way of circRNA workflows, however these workflows are limited by both the types of analyses available and computational skills required to run them. RESULTS We present nf-core/circrna, a multi-functional, automated high-throughput pipeline implemented in nextflow that allows users to characterise the role of circRNAs in RNA Sequencing datasets via three analysis modules: (1) circRNA quantification, robust filtering and annotation (2) miRNA target prediction of the mature spliced sequence and (3) differential expression analysis. nf-core/circrna has been developed within the nf-core framework, ensuring robust portability across computing environments via containerisation, parallel deployment on cluster/cloud-based infrastructures, comprehensive documentation and maintenance support. CONCLUSION nf-core/circrna reduces the barrier to entry for researchers by providing an easy-to-use, platform-independent and scalable workflow for circRNA analyses. Source code, documentation and installation instructions are freely available at https://nf-co.re/circrna and https://github.com/nf-core/circrna .
Collapse
Affiliation(s)
- Barry Digby
- grid.6142.10000 0004 0488 0789School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Pilib Ó Broin
- grid.6142.10000 0004 0488 0789School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Wu H, Zheng S, He Q, Li Y. Recent Advances of Circular RNAs as Biomarkers for Osteosarcoma. Int J Gen Med 2023; 16:173-183. [PMID: 36687163 PMCID: PMC9850833 DOI: 10.2147/ijgm.s380834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in young adult, which is prone to early metastasis and poor prognosis. The current treatment methods need to be improved. Circular RNA is a covalently blocked circular, non-coding RNA that plays an essential role in the occurrence, development, clinical diagnosis, and treatment of various diseases. Recently, an increasing number of circRNAs have been identified in osteosarcoma. Understanding its role in osteosarcoma is conducive to the early detection, diagnosis, and treatment of osteosarcoma. In this paper, we reviewed the mechanism of action of circular RNA in the occurrence and development of osteosarcoma and its clinical application in recent years.
Collapse
Affiliation(s)
- Hongliang Wu
- Department of Orthopedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China,Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, People’s Republic of China,Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Sihang Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Yan Li; Qun He, Email ;
| |
Collapse
|
24
|
Xiong Y, Luo Y, Yuwen T, Li J, Chen R, Shi F. The Regulatory Role of miR-107-Cdk6-Rb Pathway in Airway Smooth Muscle Cells in Asthma. J Asthma Allergy 2023; 16:433-445. [PMID: 37102069 PMCID: PMC10124628 DOI: 10.2147/jaa.s405457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Purpose Airway remodeling is a significant pathological change of asthma. This study aimed to detect differentially expressed microRNAs in the serum of asthma patients and airway smooth muscle cells (ASMCs) of asthmatic mice, exploring their role in the airway remodeling of asthma. Methods The differentially expressed microRNAs in the serum of mild and moderate-severe asthma patients compared to healthy subjects were revealed using the "limma" package. Gene Ontology (GO) analysis was used to annotate the functions of microRNA target genes. The relative expressions of miR-107 (miR-107-3p in mice sharing the same sequence) in the primary airway smooth muscle cells (ASMCs) of the asthma mice model were tested by RT-qPCR. Cyclin-dependent kinases 6 (Cdk6), a target gene of miR-107, was predicted by algorithms and validated by dual-luciferase reporter assay and Western blot. The roles of miR-107, Cdk6, and protein Retinoblastoma (Rb) in ASMCs were examined by transwell assay and EDU KIT in vitro. Results The expression of miR-107 was down-regulated in both mild and moderate-severe asthma patients. Intriguingly, the level of miR-107 was also decreased in ASMCs of the asthma mice model. Up-regulating miR-107 suppressed ASMCs' proliferation by targeting Cdk6 and the phosphorylation level of Rb. Increasing the expression of Cdk6 or suppressing Rb activity abrogated the proliferation inhibition effect of ASMCs induced by miR-107. In addition, miR-107 also inhibits ASMC migration by targeting Cdk6. Conclusion The expression of miR-107 is down-regulated in serums of asthma patients and ASMCs of asthmatic mice. It plays a critical role in regulating the proliferation and migration of ASMCs via targeting Cdk6.
Collapse
Affiliation(s)
- Yi Xiong
- Emergency Department, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yani Luo
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, People’s Republic of China
| | - Ting Yuwen
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jiana Li
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, People’s Republic of China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Correspondence: Rongchang Chen, Email
| | - Fei Shi
- Emergency Department, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Fei Shi, Email
| |
Collapse
|
25
|
Abstract
Circular RNAs (circRNAs) are closed-loop RNA transcripts formed by a noncanonical back splicing mechanism. circRNAs are expressed in various tissues and cell types in a temporospatially regulated manner and have diverse molecular functions including their ability to act as miRNA sponges, transcriptional and splicing regulators, protein traps, and even templates for polypeptide synthesis. Emerging evidence suggests that circRNAs are themselves dynamically regulated throughout development in various organisms, with a substantial accumulation during ageing. Their regulatory roles in cellular pathways associated with ageing and senescence, as well as their implications in ageing-related diseases, such as neurological disease, cancer, and cardiovascular disease, suggest that circRNAs are key molecular determinants of the ageing process. Their unique structure, expression specificity, and biological functions highlight a potential capacity for use as novel biomarkers for diagnosis, prognosis, and treatment outcomes in a variety of conditions including pathological ageing. CircRNA may also have potential as target for interventions that manipulate ageing and longevity. In this chapter, we discuss the most recent advances in circRNA changes in ageing and ageing-associated disease.
Collapse
|
26
|
Fang P, Jiang Q, Liu S, Gu J, Hu K, Wang Z. Circ_0002099 is a novel molecular therapeutic target for bladder cancer. Drug Dev Res 2022; 83:1890-1905. [DOI: 10.1002/ddr.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Fang
- Department of Oncology The 902nd Hospital of the PLA Joint Logistics Support Force Bengbu China
| | - Qingling Jiang
- Department of Oncology The PLA Navy Anqing Hospital Anqing China
| | - Sizhong Liu
- Department of Oncology The 902nd Hospital of the PLA Joint Logistics Support Force Bengbu China
| | - Jun Gu
- Department of Oncology The 902nd Hospital of the PLA Joint Logistics Support Force Bengbu China
| | - Kai Hu
- Department of Oncology, Radiotherapy and Chemotherapy Guangde Traditional Chinese Medicine Hospital Xuancheng China
| | - Zishu Wang
- Department of Medical Oncology The First Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
27
|
Peng L, Liu Q, Wu T, Li P, Cai Y, Wei X, Zeng Y, Ye J, Chen P, Huang J, Lin H. Hsa_circ_0087302, a circular RNA, affects the progression of osteosarcoma via the Wnt/β-catenin signaling pathway. Int J Med Sci 2022; 19:1377-1387. [PMID: 36035366 PMCID: PMC9413560 DOI: 10.7150/ijms.69501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Osteosarcoma is the most common malignant tumor in adolescent bone malignancies. It has the characteristics of a high metastasis rate, high mortality and poor prognosis. As a subclass of endogenous noncoding RNAs, circRNAs have been identified to be related to the occurrence, development and prognosis of different kinds of cancers, but the mechanism of their effect on osteosarcoma is not clear. In the present study, we identified a novel circRNA, hsa_circ_0087302, by RNA-seq, and we found that it was expressed at low levels in osteosarcoma. Using RT-PCR, we confirmed that the expression of hsa_circ_0087302 in osteosarcoma cells was lower than that in osteoblasts. Functional validation experiments revealed that hsa_circ_0087302 overexpression inhibited proliferation, cell cycle, migration, and invasion in osteosarcoma cells. Furthermore, Western blotting experiments demonstrated that hsa_circ_0087302 affected the expression of cell cycle- and Wnt/β-catenin signaling pathway-related proteins. For the first time, we identified that hsa_circ_0087302 may affect the malignant biological behavior of osteosarcoma cells through the Wnt/β-catenin signaling pathway. In summary, hsa_circ_0087302 may provide a new direction for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Lijiao Peng
- Oncology Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Qianzheng Liu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Peng Li
- Stem Cell Research and Cellular Therapy Center, Affifiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yixia Cai
- Oncology Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xinjian Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yuming Zeng
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Junhong Ye
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Peicong Chen
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Jing Huang
- Oncology Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| |
Collapse
|
28
|
Ren Q, Zhang W, Li P, Zhou J, Li Z, Zhou Y, Li M. Upregulation of osteoprotegerin inhibits tert-butyl hydroperoxide-induced apoptosis of human chondrocytes. Exp Ther Med 2022; 24:470. [PMID: 35747145 PMCID: PMC9204554 DOI: 10.3892/etm.2022.11397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Necrosis of the femoral head (NFH) is an orthopedic disease characterized by a severe lack of blood supply to the femoral head and a marked increase in intraosseous pressure. NFH is associated with numerous factors, such as alcohol consumption and hormone levels. The present study focused on the expression levels of osteoprotegerin (OPG) in NFH and the effect of OPG overexpression on chondrocyte apoptosis. The results demonstrated that OPG expression was markedly decreased in the femoral head of patients with NFH compared with normal femoral heads. Lentivirus-mediated overexpression of OPG in human chondrocytes reversed the decrease in cell viability and the increase in reactive oxygen species production induced by an oxidative stress-inducing factor, tert-butyl hydroperoxide. Flow cytometry and TUNEL assays revealed that OPG overexpression inhibited the apoptosis of chondrocytes. In addition, it was revealed that OPG exerted its anti-apoptotic effect mainly by promoting Bcl-2 expression and Akt phosphorylation and inhibiting caspase-3 cleavage and Bax expression. The present study revealed that OPG may be an important regulator of NFH.
Collapse
Affiliation(s)
- Qifeng Ren
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Wenfei Zhang
- Department of Clinical Psychology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Ping Li
- Department of Hematology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Jianli Zhou
- Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Zhonghao Li
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Yang Zhou
- Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ming Li
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
29
|
Akhbari MH, Zafari Z, Sheykhhasan M. Competing Endogenous RNAs (ceRNAs) in Colorectal Cancer: A Review. Expert Rev Mol Med 2022; 24:e27. [PMID: 35748050 DOI: 10.1017/erm.2022.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/β-catenin, mitogen-activated protein kinase and transforming growth factor-β signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.
Collapse
Affiliation(s)
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
30
|
The Expression and Bioinformatics Analysis of Circular RNAs in Endometritis Mouse Uterus Tissues. Molecules 2022; 27:molecules27123682. [PMID: 35744807 PMCID: PMC9230989 DOI: 10.3390/molecules27123682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that circular RNAs are directly or indirectly involved in the occurrence of various diseases by regulating gene expression. However, the acting mechanism of circular RNAs in endometritis remains unclear. In this study, we successfully established an endometritis model in mouse using Escherichia coli; endometrial integrity was destroyed, inflammatory cells infiltrated and the expression of IL-6, IL-1β, TNF-α was significantly up-regulated. We analyzed and screened the circular RNA expression profiles between healthy and endometritis-stricken mice by the Illumina HiSeq platform, and used qRT-PCR method to verify the different expressions of circular RNAs. Gene ontology (GO) analysis showed that circular RNAs were mainly involved in biological processes such as the positive regulation of transcription from RNA polymerase POL II promoter and the negative regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of circular RNAs target genes may be involved in the TGF-β signaling pathway. We verified the expression of TGF-β and its related factors; the mRNA of TGF-β1 and smad7 were significantly up-regulated in endometritis mouse (p < 0.01) and the protein expression level of p-smad3 was significantly decreased (p < 0.01). Finally, we constructed a circular RNAs−miRNA network to elucidate the potential regulatory relationship between two small molecules. This research may provide new ideas for circular RNAs in the treatment of endometritis.
Collapse
|
31
|
Zhang Z, Zhu X. MiR-103a-3p Contributes to the Progression of Colorectal Cancer by Regulating GREM2 Expression. Yonsei Med J 2022; 63:520-529. [PMID: 35619575 PMCID: PMC9171664 DOI: 10.3349/ymj.2022.63.6.520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Our research aimed to investigate the influence of miR-103a-3p on the growth and apoptosis of colorectal cancer (CRC) cells. MATERIALS AND METHODS Bioinformatics was employed to analyze differentially expressed microRNAs and predict target genes. qRT-PCR was applied to detect the expression of miR-103a-3p in CRC and normal cells. HCT116 and Caco-2 were chosen, and miR-103a-3p mimics, miR-103a-3p inhibitor, as well as specific siRNAs targeting GREM2, were constructed. We subsequently evaluated alternations in cell proliferation, cell cycle and cell cycle regulators, apoptosis, and related proteins (Bcl-2 and Bax) by CCK-8 testing, Western blotting, luciferase reporter, colony formation, and Annexin V-FITC/PI. Possible binding sites for miR-103a-3p on the 3'UTR of GREM2 were checked with luciferase assay, and the impact of GREM2 on miR-103a-3p activity was also validated with above biological function testing. Additionally, the effect of miR-103a-3p knockdown in CRC cells and the molecular mechanism of miR-103a-3p targeting GREM2 were also studied. RESULTS Bioinformatics analysis revealed that miR-103a-3p expression increased remarkably in CRC, and targeted regulatory correlation existed between miR-103a-3p and GREM2. MiR-103a-3p inhibitor significantly impeded proliferative capacity and caused cell cycle arrest, as well as apoptosis, in HCT116 and Caco-2 cells. Consistent with this finding, overexpression of GREM2 showed similar effects to miR-103a-3p inhibition. Moreover, we demonstrated that miR-103a-3p connected target GREM2 and GREM2 knockdown reversed the effects of miR-103a-3p inhibitor on HCT116 and Caco-2 cell proliferation, cell cycle, and apoptosis. Further study showed that miR-103a-3p targeting GREM2 appeared to affect CRC progression via the transforming growth factor-β pathway. CONCLUSION MiR-103a-3p could augment CRC progression by targeting GREM2 and that miR-103a-3p/GREM2 could be potential novel targets for CRC therapy.
Collapse
Affiliation(s)
- Zongxiang Zhang
- Department of General Surgery, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital/Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xiaolian Zhu
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China.
| |
Collapse
|
32
|
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs’ Sponges and Their Roles in Stem Cells. J Clin Med 2022; 11:jcm11102909. [PMID: 35629034 PMCID: PMC9145679 DOI: 10.3390/jcm11102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon–intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.
Collapse
Affiliation(s)
- Juan Xiao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Shija Joseph
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Mengwei Xia
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Feng Teng
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Rufeng Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
- Correspondence: (L.Z.); (W.D.)
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510060, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Zhangshu 336000, China
- Correspondence: (L.Z.); (W.D.)
| |
Collapse
|
33
|
Lin B, Nan J, Lu K, Zong Y, Fan W. Hsa_circ_0001982 promotes the proliferation, invasion, and multidrug resistance of osteosarcoma cells. J Clin Lab Anal 2022; 36. [PMID: 35576496 PMCID: PMC9279963 DOI: 10.1002/jcla.24493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone cancer mostly seen in people aged 10–25 years. This research aims to clarify the function of hsa_circ_0001982 in osteosarcoma (OS) and its effect on drug resistance, preliminarily exploring its mechanism. Methods The expression of hsa_circ_0001982 and miR‐143 in OS clinical tissues and cells was detected by real‐time fluorescence quantitative polymerase chain reaction (qRT‐PCR), MTT, colony formation assay, and transwell assay assessed cell proliferation, colony formation, migration, and invasion, respectively. The targeted relationship of hsa_circ_0001982 and miR‐143 was verified by a dual‐luciferase reporter assay. Result The expression of hsa_circ_0001982 was significantly increased in OS tissues and cells (MG63), as in well as chemoresistant OS tissues and cells (MG63/Dox). Overexpression of hsa_circ_0001982 promoted proliferation, colony formation, migration, invasion, and multidrug resistance in MG63 cells. By contrast, knockdown of hsa_circ_0001982 markedly reduced the resistance of MG63/Dox cells to doxorubicin (IC50 evidently reduced). Bioinformatic prediction showed that miR‐143 was a target miRNA of hsa_circ_0001982, and a dual‐luciferase reporter assay proved this. Further experiments revealed that miR‐143 expression was notably downregulated in OS tissues, chemoresistant OS tissues, and MG63/Dox cells. Moreover, miR‐143 was negatively correlated with hsa_circ_0001982 in OS cells and tissues. Conclusion The regulation of malignant behaviors such as proliferation, invasion, migration, and multidrug resistance of OS cells by hsa_circ_0001982 may be achieved by targeting miR‐143. Moreover, hsa_circ_0001982 is a potential target for early diagnosis and targeted therapy of OS.
Collapse
Affiliation(s)
- Bochuan Lin
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jing Nan
- Department of statistics, Long Nan Hospital, Daqing, Heilongjiang, China
| | - Kai Lu
- Department of vascular surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Yi Zong
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Wencan Fan
- Department of orthopedic surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
34
|
Huang Z, Shan R, Wen W, Li J, Zeng X, Wan R. The Emerging Roles of Circ-ABCB10 in Cancer. Front Cell Dev Biol 2022; 10:782938. [PMID: 35646916 PMCID: PMC9136031 DOI: 10.3389/fcell.2022.782938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) without 5′ caps and 3′ tails, which are formed from precursor mRNAs (pre-mRNAs) that are inversely back-spliced by exons. CircRNAs are characterized by a covalently closed circular structure and are abundantly expressed in eukaryotic cells. With the development of RNA-sequencing, it was discovered that circRNAs play important roles in the regulation of numerous human genes and are related to the occurrence, development, and prognosis of diseases. Studies in various cancers have revealed that circRNAs have both positive and negative effects on the occurrence and development of tumors. Circ-ABCB10, a circular RNA originating from exons of ABCB10 located on chromosome 1q42, has been proven to play an important role in different types of cancers. Here, we report the primary findings of recent research studies by many contributors about the roles of circ-ABCB10 in cancer and clearly formulate its influence and functions in different aspects of cancer biology, which gives us a broad picture of circ-ABCB10. Thus, this study aimed to generalize the roles of circ-ABCB10 in the diagnosis and treatment of different types of tumors and its related miRNA genes. In this way, we wish to provide a sufficient understanding and assess the future development direction of the research on circ-ABCB10.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- *Correspondence: Xiaohong Zeng, ; Renhua Wan,
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- *Correspondence: Xiaohong Zeng, ; Renhua Wan,
| |
Collapse
|
35
|
Emerging roles of circular RNAs in cancer: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
CircRNA Expression Profiles in Canine Mammary Tumours. Vet Sci 2022; 9:vetsci9050205. [PMID: 35622733 PMCID: PMC9145538 DOI: 10.3390/vetsci9050205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that the occurrence and development of tumours are associated with the expression of circular RNAs (circRNAs). However, the expression profile and clinical significance of circRNAs in canine mammary tumours remain unclear. In this paper, we collected tissue samples from three dogs with canine mammary tumours and analysed the expression profiles of circRNAs in these samples using high-throughput sequencing technology. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses revealed 14 biological processes associated with these genes, and 11 of these genes were selected for qRT-PCR to verify their authenticity. CircRNAs have sponge adsorption to miRNAs, so we constructed a circRNA-miRNA network map using Cytoscape software. As a result, we identified a total of 14,851 circRNAs in canine mammary tumours and its adjacent normal tissues. Of these, 106 were differentially expressed (fold change ≥ 2, p ≤ 0.05), and 64 were upregulated and 42 were downregulated. The GO analysis revealed that the biological processes involved were mainly in the regulation of the secretory pathway, the regulation of neurotransmitter secretion and the positive regulation of phagocytosis. Most of these biological pathways were associated with the cGMP-PKG (cyclic guanosine monophosphate) signalling pathway, the cAMP (cyclic adenosine monophosphate) signalling pathway and the oxytocin signalling pathway. After screening, source genes closely associated with canine mammary tumours were found to include RYR2, PDE4D, ROCK2, CREB3L2 and UBA3, and associated circRNAs included chr27:26618544-26687235-, chr26:8194880-8201833+ and chr17:7960861-7967766-. In conclusion, we reveals the expression profile of circRNAs in canine mammary tumours. In addition, some circRNAs might be used as potential biomarkers for molecular diagnosis.
Collapse
|
37
|
Choi SS, Kim SE, Oh SY, Ahn YH. Clinical Implications of Circulating Circular RNAs in Lung Cancer. Biomedicines 2022; 10:biomedicines10040871. [PMID: 35453621 PMCID: PMC9028053 DOI: 10.3390/biomedicines10040871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs with a covalently closed-loop structure that increases their stability; thus, they are more advantageous to use as liquid biopsy markers than linear RNAs. circRNAs are thought to be generated by back-splicing of pre-mRNA transcripts, which can be facilitated by reverse complementary sequences in the flanking introns and trans-acting factors, such as splicing regulatory factors and RNA-binding factors. circRNAs function as miRNA sponges, interact with target proteins, regulate the stability and translatability of other mRNAs, regulate gene expression, and produce microproteins. circRNAs are also found in the body fluids of cancer patients, including plasma, saliva, urine, and cerebrospinal fluid, and these “circulating circRNAs” can be used as cancer biomarkers. In lung cancer, some circulating circRNAs have been reported to regulate cancer progression and drug resistance. Circulating circRNAs have significant diagnostic value and are associated with the prognosis of lung cancer patients. Owing to their functional versatility, heightened stability, and practical applicability, circulating circRNAs represent promising biomarkers for lung cancer diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sae Seul Choi
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
| | - Sae Eun Kim
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
| | - Seon Young Oh
- Department of Molecular Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
- Department of Molecular Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-6268
| |
Collapse
|
38
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
39
|
Zhang Y, Yang Y, Ju H, He X, Sun P, Tian Y, Yang P, Song XX, Yu T, Jiang Z. Comprehensive profile of circRNAs in formaldehyde induced heart development. Food Chem Toxicol 2022; 162:112899. [PMID: 35231573 DOI: 10.1016/j.fct.2022.112899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel type of long non-coding RNAs that can regulate gene expression in heart development and heart disease. However, the expression pattern of circRNAs in congenital heart disease (CHD) induced by formaldehyde exposure is still unknown. We detected circRNAs expression profiles in heart tissue taken from six neonatal rat pups with formaldehyde exposure group and normal group using RNA-sequencing. Results revealed that a total of 54 circRNAs were dysregulated in the formaldehyde exposure group compared to the normal group. Among them, 31 were upregulated and 23 were downregulated (fold change = 2.0, p < 0.0 5). The qRT-qPCR results showed that expressions of 12:628708|632694, 18:77477060|77520779, 5:167486001|167526275 were significantly upregulated, while that of 7:41167312|4116775 and 20:50659751|5068786 were notably downregulated; the expression pattern was consistent with the RNA sequencing data. Bioinformatics analysis shows that the pathogenesis of formaldehyde exposure-induced CHD may involve Hippo-YAP pathway、Notch signaling pathway and other pathways. A key miRNA (rno-miR-665) was identified by constructing a circRNA-miRNA-mRNA co-expression network. In summary, the study illustrated that circRNAs differentially expressed in fetal heart tissues during formaldehyde exposure has potential biological functions and may be a biomarker or therapeutic target for CHD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Hui Ju
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Road No. 16 Jiangsu, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiao-Xia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, People's Republic of China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China.
| |
Collapse
|
40
|
Chen S, Hong K, Zhou L, Ran R, Huang J, Zheng Y, Xing M, Cai Y. Hsa_circRNA_0017620 regulated cell progression of non-small-cell lung cancer via miR-520a-5p/KRT5 axis. J Clin Lab Anal 2022; 36:e24347. [PMID: 35302673 PMCID: PMC8993624 DOI: 10.1002/jcla.24347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background CircRNA is a very important functional RNA that plays an important role in the development and metabolism of cancer. However, the study of circRNA in NSCLC has not been fully elucidated. Methods The expression of hsa_circ_0017620, SFMBT2, miR‐520a‐5p, and KRT5 was determined using qRT‐PCR. KRT5, Twist1, E‐cadherin, and Ki67 protein expression were measured with western blot. The positive expression rates of Ki67 and Vimentin were determined by immunohistochemistry assay. 5‐Ethynyl‐2’‐deoxyuridine (EdU), colony formation, and MTT assays were used to assess cell proliferation. Transwell migration and invasion assay were applied to determine cell migration and invasion. Dual‐luciferase reporter and RNA immunoprecipitation assays were used to verify the relationship among hsa_circ_0017620, miR‐520a‐5p, and KRT5. The animal experiment was used to ensure the effects of hsa_circ_0017620 on tumor growth in vivo. Results Hsa_circ_0017620 was upregulated in NSCLC cells and tissues. MiR‐520a‐5p had been verified to be a target miRNA of hsa_circ_0017620 and KRT5 had been verified to be a target mRNA of miR‐520a‐5p in NSCLC cells. Knockdown of hsa_circ_0017620 inhibited cell proliferation, migration, and invasion in NSCLC cells, which was reversed by downregulating miR‐520a‐5p or upregulating KRT5 in NSCLC. Overexpression of hsa_circ_0017620 had opposite effects in NSCLC. Moreover, hsa_circ_0017620 silencing inhibited tumor growth in vivo of NSCLC. Conclusion In this study, we found that hsa_circ_0017620 played an important role in NSCLC progression. Hsa_circ_0017620 regulated cell proliferation, invasion, and migration through targeting miR‐520a‐5p/KRT5 axis in NSCLC, providing a potential new target for the treatment and diagnosis of NSCLC.
Collapse
Affiliation(s)
- Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kelin Hong
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Long Zhou
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ruizhi Ran
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jinqi Huang
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yong Zheng
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Maohui Xing
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yanli Cai
- Department of Cardiothoracic Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
41
|
Zhang L, Wang M, Ren W, Li S, Zhi K, Gao L, Zheng J. Prognostic Significance of CircRNAs Expression in Oral Squamous Cell Carcinoma. Oral Dis 2022; 29:1439-1453. [PMID: 35286741 DOI: 10.1111/odi.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This systematic review was aimed to comprehensively evaluate the clinicopathological and prognostic value of dysregulated expression of circRNAs in OSCC. MATERIALS AND METHODS The research was carried out by searching mainstream electronic databases including PubMed, Embase, Web of Science, Scopus, LILACS and Cochrane Library to collect relevant studies on prognostic role of circRNAs in OSCC. Pooled hazard ratios (HRs) and odds ratios(ORs) with 95% confidence intervals(CIs) were calculated to assess the association between circRNAs expression, overall survival(OS), disease/recurrence/progression survival(DFS/RFS/PFS) and clinical parameters. RESULTS This research included 1813 patients from 26 selected articles. The pooled HR values(95% CIs) in OS were 2.38(1.92-2.93) for oncogenic circRNAs and 0.43(0.28-0.66) for tumor-suppressor circRNAs respectively, in DFS/RFS/PFS were 2.34(1.73-3.17). The meta-analysis on clinicopathology features showed higher level of oncogenic circRNAs is related to advanced TNM stage and tumor stage, worse histological differentiation, lymph node and distant metastasis, while enforced expression of tumor-suppressor circRNAs is related to inferior TNM stage tumor stage and lymphatic metastasis. CONCLUSION Our meta-analysis implies that circRNAs may be candidate biomarkers for the prognosis and clinicopathology of OSCC.
Collapse
Affiliation(s)
- Linfeng Zhang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Mingfei Wang
- Department of Stomatology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, Key Laboratory of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Zheng
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
43
|
Ghafouri-Fard S, Najafi S, Hussen BM, Basiri A, Hidayat HJ, Taheri M, Rashnoo F. The Role of Circular RNAs in the Carcinogenesis of Bladder Cancer. Front Oncol 2022; 12:801842. [PMID: 35296022 PMCID: PMC8918517 DOI: 10.3389/fonc.2022.801842] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of transcripts with enclosed configurations which can regulate gene expression. These transcripts have important roles in normal development and in the pathogenesis of disorders. Recent evidence has supported involvement of circRNAs in the development of bladder cancer. Several circRNAs such as circ_0058063, hsa-circRNA-403658, circPDSS1, circCASC15, circRNA-MYLK, and circRNA_103809 have been upregulated in bladder cancer samples. On the other hand, hsa_circ_0137606, BCRC-3, circFUT8, hsa_circ_001598, circSLC8A1, hsa_circ_0077837, hsa_circ_0004826, and circACVR2A are among downregulated circRNAs in bladder cancer. Numerous circRNAs have diagnostic or prognostic value in bladder cancer. In this review, we aim to outline the latest findings about the role of circRNAs in bladder cancer and introduce circRNAs for further investigations as therapeutic targets.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Fariborz Rashnoo,
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Fariborz Rashnoo,
| |
Collapse
|
44
|
Yi Q, Wei J, Li Y. Effects of miR-103a-3p Targeted Regulation of TRIM66 Axis on Docetaxel Resistance and Glycolysis in Prostate Cancer Cells. Front Genet 2022; 12:813793. [PMID: 35211152 PMCID: PMC8861206 DOI: 10.3389/fgene.2021.813793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: We aimed to study the expressions of miR-103a-3p and TRIM66 in prostate cancer (PCa) cells, explore the direct target genes of miR-103a-3p, and analyze the effects of miR-103a-3p targeted regulation of the TRIM66 axis on docetaxel (DTX) resistance and glycolysis of PCa cells. Methods: Human normal prostate cells and PCa cells were used to detect the expressions of miR-103a-3p and TRIM66 and analyze their relationship. DTX-resistant (DR) PCa cells were established and transfected with miR-103a-3p and TRIM66 plasmids. The MTT assay, the plate cloning assay, the wound healing assay, and the Transwell assay were used to detect cell viability, colony formation, cell migration, and cell invasion, respectively. Cell glycolysis was analyzed using a cell glycolysis kit. Results: The expression of miR-103a-3p was low and that of TRIM66 was high in PCa cells. MiR-103a-3p had a binding site with TRIM66, and the double luciferase report confirmed that they had a targeting relationship. Compared with the PCa group cells, the DTX-resistant group cells showed increased resistance to DTX. The resistance index was 13.33, and the doubling time of the DTX-resistant group cells was significantly longer than that of the PCa group cells. The DTX-resistant group showed more obvious low expression of miR-103a-3p and high expression of TRIM66. After the DTX-resistant group cells were transfected with miR-103a-3p and TRIM66 plasmids, the expression of miR-103a-3p increased significantly and that of TRIM66 decreased significantly. Upregulation of miR-103a-3p and interference with TRIM66 can inhibit the proliferation, metastasis, and glycolysis of DTX-resistant cells. Conclusion: The expression of miR-103a-3p was downregulated and that of TRIM66 was upregulated in the malignant progression of PCa, especially during DTX resistance. Upregulation of miR-103a-3p and interference with TRIM66 can inhibit DTX resistance and glycolysis of PCa cells. Targeting TRIM66 may provide potential application value in molecular therapy for PCa.
Collapse
Affiliation(s)
- Qiang Yi
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Junfeng Wei
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yangzhou Li
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
An Y, Xu B, Yan G, Wang N, Yang Z, Sun M. YAP derived circ-LECRC functions as a “brake signal” to suppress hyperactivation of oncogenic YAP signalling in colorectal cancer. Cancer Lett 2022; 532:215589. [DOI: 10.1016/j.canlet.2022.215589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
|
46
|
Wang J, Shao J, Lu Y, Su W, Dong H, Wang P, Lin Z, Feng J, Wang D, Zhao H, Tan J. Screening Differential CircRNAs Expression Profiles Reveals the Regulatory Role of the has_circTPT1_003-has-miR-218-5p-CCNE2/SMC4 Signaling Axis in Bladder Carcinoma Progression. DNA Cell Biol 2022; 41:128-141. [PMID: 35005988 DOI: 10.1089/dna.2021.0240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs closely related to the development and progression of various human cancers. However, it is unclear whether circRNAs play an important role in the development of bladder cancer. We utilized human circRNA array V2 microarrays to screen circRNA expression profiles in bladder cancer tissues. Bioinformatic tools including circBank, dbDEMC 2.0, miRCancer, TarBase v7.0, miRtarbase, TCGA-BLCA, Cytoscape-MCODE, String, ENCORI, and Venny 2.1 were then employed to construct the circRNA-miRNA-mRNA regulatory networks. In total, 105 upregulated circRNAs and 167 downregulated circRNAs (fold change >2 and p < 0.001) were filtered out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of filtered dysregulated circRNAs disclosed that the circRNAs regulatory network was closely related with mRNA processing and cell cycle, etc. Further excavation analysis showed that seven differentially overexpressed circRNAs including hsa_circ_0000133, hsa_circ_0023610, hsa_circ_0005615, hsa_circ_0030162, hsa_circ_0077007, hsa_circ_0001140, and hsa_circ_0107031 were associated with bladder cancer invasiveness, and the cell cycle signal axis. has_circTPT1_003-has-miR-218-5p-CCNE2/SMC4 was finally clarified as a possible mechanism for bladder cancer progression. Based on results derived from multiple approaches, we identified that has_circTPT1_003-has-miR-218-5p-CCNE2/SMC4 signal axis may be involved in the invasion process of bladder cancer.
Collapse
Affiliation(s)
- Jie Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
- Ningbo First Hospital Jiangbei Branch, Ningbo, Zhejiang, P.R. China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, P.R. China
| | - Yuan Lu
- Respiratory Department, Zhongda Hospital, Southeast University, Nanjing, P.R. China
| | - Weipeng Su
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
| | - Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
| | - Ping Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
| | - Zhijie Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jing Feng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, P.R. China
| | - Dong Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
| | - Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
- Department of General Surgery, 900 Hospital of the Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
47
|
The promotional effect of microRNA-103a-3p in cervical cancer cells by regulating the ubiquitin ligase FBXW7 function. Hum Cell 2022; 35:472-485. [PMID: 35094292 PMCID: PMC8866291 DOI: 10.1007/s13577-021-00649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have been reported to be involved in the initiation and progression of human tumors including cervical cancer (CC). However, the mechanisms underlying of their actions in CC remain to be fully elucidated. Herein, the differentially expressed miRNAs that were screened based on GSE55940 microarray data retrieved from Gene Expression Omnibus (GEO), and miR-103a-3p was significantly upregulated in CC tissues which was selected as the target miRNA for further research. We also found that high expression of miR-103a-3p was closely associated with histological grades, FIGO stage and distant metastasis as well as reflected poor overall survival. Moreover, miR-103a-3p inhibition decreased the growth capacity of SiHa and HeLa cells by inducing cell apoptosis. And F-box and WD repeat-domain containing protein 7 (FBXW7), a well-known tumor suppressor in many cancer types, was identified as a direct target of miR-103a-3p. It was further found that FBXW7 was significantly downregulated in CC tissues, and it was inversely correlated with miR-103a-3p expression levels. Further investigation demonstrated that FBXW7 upregulation could simulate the roles of miR-103a-3p knockdown in cell viability and apoptosis. Moreover, FBXW7 knockdown efficiently abrogated the influences of CC cells proliferation caused by miR-103a-3p inhibition. Notably, miR-103a-3p could block FBXW7 mediated the downstream transcription factor pathways. Taken together, these findings suggest that miR-103a-3p functions as an oncogene in CC by targeting FBXW7.
Collapse
|
48
|
Zhang Z, Zhao H, Zhou G, Han R, Sun Z, Zhong M, Jiang X. Circ_0002623 promotes bladder cancer progression by regulating the miR-1276/SMAD2 axis. Cancer Sci 2022; 113:1250-1263. [PMID: 35048477 PMCID: PMC8990873 DOI: 10.1111/cas.15274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Circular RNAs (circRNAs) are key regulatory factors in the development of multiple cancers. This study is targeted at exploring the effect of circ_0002623 on bladder cancer (BCa) progression and its mechanism. Circ_0002623 was screened out by analyzing the expression profile of circRNAs in BCa tissues. Circ_0002623, miR-1276 and SMAD2 mRNA expression levels in clinical sample tissues and cell lines were detected through quantitative real-time polymerase chain reaction (qRT-PCR). After circ_0002623 was overexpressed or silenced in BCa cells, the cell proliferation, migration and cell cycle were evaluated by CCK-8, BrdU, Transwell assay and flow cytometry. Tumor xenograft model was used to validate the biological function of circ_0002623 in vivo. Bioinformatics analysis and dual-luciferase reporter gene assay were conducted for analyzing and confirming, respectively, the targeted relationship between circ_0002623 and miR-1276, as well as between miR-1276 and SMAD2. The regulatory effects of circ_0002623 and miR-1276 on the expression levels of TGF-β, WNT1 and SMAD2 in BCa cells were detected by Western blot. We reported that, in BCa tissues and cell lines, circ_0002623 was up-regulated, whereas miR-1276 was down-regulated. Circ_0002623 positively regulated BCa cell proliferation, migration and cell cycle progression. Additionally, circ_0002623 could competitively bind with miR-1276 to increase the expression of SMAD2, the target gene of miR-1276. Furthermore, circ_0002623 could regulate the expression of TGF-β and WNT1 via modulating miR-1276 and SMAD2. This study helps to better understand the molecular mechanism underlying BCa progression.
Collapse
Affiliation(s)
- Zhaocun Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Haifeng Zhao
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Guanwen Zhou
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Ruoyan Han
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Zhuang Sun
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Minglei Zhong
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
49
|
hsa_circWDR37_016 Regulates Hypoxia-Induced Proliferation of Pulmonary Arterial Smooth Muscle Cells. Cardiovasc Ther 2022; 2022:7292034. [PMID: 35116078 PMCID: PMC8786516 DOI: 10.1155/2022/7292034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal remodeling of pulmonary vessel walls caused by excessive pulmonary arterial smooth muscle cell (PASMC) proliferation. Our previous clinical studies have demonstrated the importance of the downregulated circRNA in PAH. However, the role of upregulated circRNAs is still elusive. Here, we identified the upregulated circRNA in PAH patients, hsa_circWDR37_016 (circWDR37), as a key regulator of hypoxic proliferative disorder of pulmonary arterial smooth muscle cells (PASMCs). Quantitative real-time PCR (qRT-PCR) analysis validated that exposure to hypoxia markedly increased the circWDR37 level in cultured human PASMCs. As evidenced by flow cytometry, 5-ethynyl-2′-deoxyuridine (EdU) incorporation, wound healing, and Tunel assay, silencing of endogenous circWDR37 attenuated proliferation and cell-cycle progression in hypoxia-exposed human PASMCs in vitro. Furthermore, bioinformatics and Luciferase assay showed that circWDR37 directly sponged hsa-miR-138-5p (miR-138) and was involved in the immunoregulatory and inflammatory processes of PAH. Together, these studies suggested new insights into circRNA regulated the pathology of PAH, providing a new potential therapeutic target for PAH treatment.
Collapse
|
50
|
Shen H, Li H, Zhou J. Circular RNA hsa_circ_0032683 inhibits the progression of hepatocellular carcinoma by sponging microRNA-338-5p. Bioengineered 2022; 13:2321-2335. [PMID: 35030979 PMCID: PMC8974012 DOI: 10.1080/21655979.2021.2024961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recently, several studies have been conducted on circRNA (circular RNA). circRNA regulates gene expression and plays a vital role in the occurrence and development of various tumors. However, the role and mechanism of hsa_circ_0032683 in hepatocellular carcinoma (HCC) is not studied yet. In GEO (Gene Expression Omnibus) database, hsa_circ_0032683 expression was significantly lower in HCC tissues than in normal liver tissues. In vitro and in vivo functional tests revealed that hsa_circ_0032683 could inhibit HCC cells proliferation and promote their apoptosis. Mechanically, hsa_circ_0032683 primarily exists in the cytoplasm and competes with microRNA-338-5p (miR-338-5p) to regulate reticulon 4(RTN4). Our experiments revealed that hsa_circ_0032683 receded the proliferation ability of HCC via ceRNA (competing endogenous RNAs) mechanism, which provided potential biomarkers and therapeutic targets for HCC patients.Abbreviations: circRNAs: circular RNA; HCC: hepatocellular carcinoma; RTN4: reticulon 4; ceRNA: competing endogenous RNA; GEO: Gene Expression Omnibus; miRNA: microRNA; CSCD: Cancer-specific circRNA database; CRI: Circular RNA Interactome; TCGA: The Cancer Genome Atlas; qRT-PCR: quantitative real-time PCR; NEK9:NIMA-related kinase nine; CSMD1: CUB and Sushi multiple domains 1; Tob1: transducer of ERBB2, 1; miR: microRNA; sh: short hairpin; WT: wild type; MUT: mutant.
Collapse
Affiliation(s)
- Hao Shen
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Haifeng Li
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jiahua Zhou
- Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Hepatic-Biliary-Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|