1
|
Lv X, Sun C, Liu X, Liu G, Gong W, Qian H, Li Z, Wu J, Zhu X, Song J, Niu Y, Sun H, Han W, Chen GH, Jin K, Li B, Zuo Q. Key events in the process of sex determination and differentiation in early chicken embryos. Anim Biosci 2025; 38:1081-1104. [PMID: 40045623 PMCID: PMC12061580 DOI: 10.5713/ab.24.0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE Current understanding of sex determination and differentiation mechanisms during early chicken embryonic development remains incomplete. To address this, we applied RNA sequencing to identify male-female expression differences at critical developmental stages (E0 blastocysts, E3.5-E6.5 genital ridges, E18.5 gonads), focusing on glycolysis, histone acetylation, and DNA methylation. This approach aims to unravel key regulatory mechanisms and advance developmental biology insights. METHODS We analyzed molecular mechanisms of chicken sex determination at key stages (E0 blastocysts, E3.5-E6.5 genital ridges, E18.5 gonads) using RNA sequencing. Glycolysis, histone acetylation, and DNA methylation levels were assessed in embryonic stem cells and chicken embryonic fibroblasts. E18.5 gonads were treated with glycolytic activators (SB431542 and PD0325901 [2i]), a DNA demethylation activator (Vitamin C [Vc]), or an inhibitors of histone acetylation modification (valproic acid [VPA]). Sex-related gene expression, hormone levels, and gonad morphology were evaluated to determine treatment effects. RESULTS Key findings revealed that sex differences emerged as early as the blastocyst stage, intensified with embryonic development and were marked by a surge in sexually dimorphic gene expression. Gene Ontology and Kyoto encyclopedia of genes and genomes analyses highlighted the pivotal roles of energy metabolism and epigenetic modification process during this critical period. 2i, VC, or VPA interventions targeting E18.5 embryo gonads, induced a remarkable transformation of ovarian tissue into a testis-like structure, characterized by cortical thinning, medulla densification, downregulation of female-specific genes (FOXL2, WNT4), upregulation of male-specific genes (SOX9, AMH), and increased testosterone secretion. This phenotypic and molecular shift underscores the ability of metabolic and epigenetic modulators to reprogram ovarian development towards a male-like pattern, preserving male sexual characteristics. CONCLUSION Our study establishes energy metabolism and epigenetic regulation as central drivers of avian sex determination. These findings advance understanding of vertebrate developmental biology and provide a framework for dissecting regulatory networks in avian sexual development.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Changhua Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
- Department of Food Technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou,
China
| | - Xin Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Guanzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Hongwu Qian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Jun Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD,
USA
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Hongyan Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Wei Han
- Jiangsu Institute of Poultry Sciences/Poultry institute, Chinese Academy of Agricultural Sciences, Yangzhou,
China
| | - Guo hong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
- Department of Food Technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou,
China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
- Department of Food Technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou,
China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang,
China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou,
China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| |
Collapse
|
2
|
Nakamura M, Matsumoto Y, Yasuda K, Nagata M, Nakaki R, Okumura M, Yamazaki J. Unraveling the DNA methylation landscape in dog blood across breeds. BMC Genomics 2024; 25:1089. [PMID: 39548380 PMCID: PMC11566899 DOI: 10.1186/s12864-024-10963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND DNA methylation is a covalent bond modification that is observed mainly at cytosine bases in the context of CG pairs. DNA methylation patterns reflect the status of individual tissues, such as cell composition, age, and the local environment, in mammals. Genetic factors also impact DNA methylation, and the genetic diversity among various dog breeds provides a valuable platform for exploring this topic. Compared to those in the human genome, studies on the profiling of methylation in the dog genome have been less comprehensive. RESULTS Our study provides extensive profiling of DNA methylation in the whole blood of three dog breeds using whole-genome bisulfite sequencing. The difference in DNA methylation between breeds was moderate after removing CpGs overlapping with potential genetic variation. However, variance in methylation between individuals was common and often occurred in promoters and CpG islands (CGIs). Moreover, we adopted contextual awareness methodology to characterize DNA primary sequences using natural language processing (NLP). This method could be used to effectively separate unmethylated CGIs from highly methylated CGIs in the sequences that are identified by the conventional criteria. CONCLUSIONS This study presents a comprehensive DNA methylation landscape in the dog blood. Our observations reveal the similar methylation patterns across dog breeds, while CGI regions showed high variations in DNA methylation level between individuals. Our study also highlights the potential of NLP approach for analyzing low-complexity DNA sequences, such as CGIs.
Collapse
Affiliation(s)
- Miyuki Nakamura
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan.
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Kanagawa, Japan
- Data Science Center, Azabu University, Kanagawa, Japan
| | - Keiji Yasuda
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | - Masatoshi Nagata
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | | | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei Yamazaki
- Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan.
- Translational Research Unit, Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Kita 19 Nishi 10, Sapporo, Hokkaido, 060-0819, Japan.
- One Health Research Center, Cancer Research Unit, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Kumar C, Roy JK. Decoding the epigenetic mechanism of mammalian sex determination. Exp Cell Res 2024; 439:114011. [PMID: 38531506 DOI: 10.1016/j.yexcr.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Sex determination embodies a dynamic and intricate developmental process wielding significant influence over the destiny of bipotential gonads, steering them towards male or female gonads. Gonadal differentiation and the postnatal manifestation of the gonadal phenotype involve a sophisticated interplay of transcription factors such as SOX9 and FOXL2. Central to this interplay are chromatin modifiers regulating the mutual antagonism during this interplay. In this review, the key findings and knowledge gaps in DNA methylation, histone modification, and non-coding RNA-mediated control throughout mammalian gonadal development are covered. Furthermore, it explores the role of the developing brain in playing a pivotal role in the initiation of gonadogenesis and the subsequent involvement of gonadal hormone/hormone receptor in fine-tuning sexual differentiation. Based on promising facts, the role of the developing brain through the hypothalamic pituitary gonadal axis is explained and suggested as a novel hypothesis. The article also discusses the potential impact of ecological factors on the human epigenome in relation to sex determination and trans-generational epigenetics in uncovering novel genes and mechanisms involved in sex determination and gonadal differentiation. We have subtly emphasized the disruptions in epigenetic regulations contributing to sexual disorders, which further allows us to raise certain questions, decipher approaches for handling these questions and setting up the direction of future research.
Collapse
Affiliation(s)
- Cash Kumar
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Hossein MS, Son YB, Jeong YW, Jeong YI, Kang MN, Choi EJ, Park KB, Bae YR, Kim DY, Hwang WS. Production of transgenic first filial puppies expressing mutated human amyloid precursor protein gene. Front Vet Sci 2023; 10:1227202. [PMID: 37964915 PMCID: PMC10642565 DOI: 10.3389/fvets.2023.1227202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research.
Collapse
Affiliation(s)
| | - Young-Bum Son
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon Woo Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeon Ik Jeong
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Mi Na Kang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Eun Ji Choi
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Kang Bae Park
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Yu Ra Bae
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
| | - Dae Young Kim
- Department of Life Science, College of Bio-nano Technology, Gachon University, Seongnam, Republic of Korea
| | - Woo Suk Hwang
- UAE Biotech Research Centre, Abu Dhabi, United Arab Emirates
- Department of Biology, North-Eastern Federal University, Yakutsk, Russia
| |
Collapse
|
5
|
Suvá M, Arnold VH, Wiedenmann EA, Jordan R, Galvagno E, Martínez M, Vichera GD. First sex modification case in equine cloning. PLoS One 2023; 18:e0279869. [PMID: 36598913 PMCID: PMC9812313 DOI: 10.1371/journal.pone.0279869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is an asexual reproductive technique where cloned offspring contain the same genetic material as the original donor. Although this technique preserves the sex of the original animal, the birth of sex-reversed offspring has been reported in some species. Here, we report for the first time the birth of a female foal generated by SCNT of a male nuclear donor. After a single SCNT procedure, 16 blastocysts were obtained and transferred to eight recipient mares, resulting in the birth of two clones: one male and one female. Both animals had identical genetic profiles, as observed in the analysis of 15-horse microsatellite marker panel, which confirmed they are indeed clones of the same animal. Cytogenetic analysis and fluorescent in situ hybridization using X and Y specific probes revealed a 63,X chromosome set in the female offspring, suggesting a spontaneous Y chromosome loss. The identity of the lost chromosome in the female was further confirmed through PCR by observing the presence of X-linked markers and absence of Y-linked markers. Moreover, cytogenetic and molecular profiles were analyzed in blood and skin samples to detect a possible mosaicism in the female, but results showed identical chromosomal constitutions. Although the cause of the spontaneous chromosome loss remains unknown, the possibility of equine sex reversal by SCNT holds great potential for the preservation of endangered species, development of novel breeding techniques, and sportive purposes.
Collapse
Affiliation(s)
- Mariana Suvá
- Kheiron Biotech S.A., Pilar, Buenos Aires, Argentina
- * E-mail: (MS); (GDV)
| | | | | | | | | | - Marcela Martínez
- Laboratorio de Genética Aplicada, Sociedad Rural Argentina, Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Olsson PO, Jeong YW, Jeong Y, Kang M, Park GB, Choi E, Kim S, Hossein MS, Son YB, Hwang WS. Insights from one thousand cloned dogs. Sci Rep 2022; 12:11209. [PMID: 35778582 PMCID: PMC9249891 DOI: 10.1038/s41598-022-15097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Animal cloning has been popularized for more than two decades, since the birth of Dolly the Sheep 25 years ago in 1996. There has been an apparent waning of interest in cloning, evident by a reduced number of reports. Over 1500 dogs, representing approximately 20% of the American Kennel Club’s recognized breeds, have now been cloned, making the dog (Canis familiaris) one of the most successfully cloned mammals. Dogs have a unique relationship with humans, dating to prehistory, and a high degree of genome homology to humans. A number of phenotypic variations, rarely recorded in natural reproduction have been observed in in these more than 1000 clones. These observations differ between donors and their clones, and between clones from the same donor, indicating a non-genetic effect. These differences cannot be fully explained by current understandings but point to epigenetic and cellular reprograming effects of somatic cell nuclear transfer. Notably, some phenotypic variations have been reversed through further cloning. Here we summarize these observations and elaborate on the cloning procedure.
Collapse
Affiliation(s)
- P Olof Olsson
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Yeon Woo Jeong
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan-gun, 32713, Republic of Korea
| | - Yeonik Jeong
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Mina Kang
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Gang Bae Park
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Eunji Choi
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Sun Kim
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | | | - Young-Bum Son
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Woo Suk Hwang
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE. .,North Eastern Federal University, Republic of Sakha, Yakutia, Russia.
| |
Collapse
|
7
|
Ahmed SF, Alimusina M, Batista RL, Domenice S, Lisboa Gomes N, McGowan R, Patjamontri S, Mendonca BB. The Use of Genetics for Reaching a Diagnosis in XY DSD. Sex Dev 2022; 16:207-224. [DOI: 10.1159/000524881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Reaching a firm diagnosis is vital for the long-term management of a patient with a difference or disorder of sex development (DSD). This is especially the case in XY DSD where the diagnostic yield is particularly low. Molecular genetic technology is playing an increasingly important role in the diagnostic process, and it is highly likely that it will be used more often at an earlier stage in the diagnostic process. In many cases of DSD, the clinical utility of molecular genetics is unequivocally clear, but in many other cases there is a need for careful exploration of the benefit of genetic diagnosis through long-term monitoring of these cases. Furthermore, the incorporation of molecular genetics into the diagnostic process requires a careful appreciation of the strengths and weaknesses of the evolving technology, and the interpretation of the results requires a clear understanding of the wide range of conditions that are associated with DSD.
Collapse
|
8
|
Okashita N, Tachibana M. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY. Sex Dev 2021; 15:351-359. [PMID: 34583357 DOI: 10.1159/000519217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Mammalian male sex differentiation is triggered during embryogenesis by the activation of the Y-linked testis-determining gene SRY. Since insufficient or delayed expression of SRY results in XY gonadal sex reversal, accurate regulation of SRY is critical for male development in XY animals. In humans, dysregulation of SRY may cause disorders of sex development. Mouse Sry is the most intensively studied mammalian model of sex determination. Sry expression is controlled in a spatially and temporally stringent manner. Several transcription factors play a key role in sex determination as trans-acting factors for Sry expression. In addition, recent studies have shown that several epigenetic modifications of Sry are involved in sex determination as cis-acting factors for Sry expression. Herein, we review the current understanding of transcription factor- and epigenetic modifier-mediated regulation of SRY/Sry expression.
Collapse
Affiliation(s)
- Naoki Okashita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Syryn H, Van De Vijver K, Cools M. Ovotesticular Difference of Sex Development: Genetic Background, Histological Features, and Clinical Management. Horm Res Paediatr 2021; 96:180-189. [PMID: 34469891 DOI: 10.1159/000519323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ovotesticular disorder/difference of sex development (DSD) refers to the co-presence of testicular and ovarian tissue in one individual. Childhood management is challenging as there are many uncertainties regarding etiology, gonadal function, and gender outcome. SUMMARY Ovotesticular DSD should mainly be considered in 46,XX children with atypical genitalia and normal adrenal steroid profiles. Various underlying genetic mechanisms have been described. Histological assessment of ovotestes requires expert revision and has many pitfalls. Neonatal sex assignment is essential, but as gender outcome is unpredictable, this should be regarded as provisional until a stable gender identity has developed. Therefore, it is crucial not to perform any irreversible medical or surgical procedure in affected individuals until adolescents can give their full informed consent. Gonadal function mostly allows for spontaneous pubertal development; however, fertility is compromised, especially in boys. Specific long-term outcome data for ovotesticular DSD are lacking but can be extrapolated from studies in other DSD populations. Key Messages: Management of ovotesticular DSD has changed in recent years, prioritizing the child's future right for autonomy and self-determination. The benefits and pitfalls of this new approach have not been documented yet and require intensive monitoring on an international scale.
Collapse
Affiliation(s)
- Hannes Syryn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University and Pediatric Endocrinology Service, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Feng Y, Liu X, Liu Y, Tang B, Bai X, Li C, Wang X, Deng Y, Gao F, Liu M. Comparative Epigenomics Reveals Host Diversity of the Trichinella Epigenomes and Their Effects on Differential Parasitism. Front Cell Dev Biol 2021; 9:681839. [PMID: 34179010 PMCID: PMC8226246 DOI: 10.3389/fcell.2021.681839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Comparative epigenomics provides new insights on evolutionary biology in relation with complex interactions between species and their environments. In the present study, we focus on deciphering the conservation and divergence of DNA methylomes during Trichinella evolution. Whole-genome bisulfite sequencing and RNA-seq were performed on the two clades of Trichinella species, in addition to whole-genome sequencing. We demonstrate that methylation patterns of sing-copy orthologous genes (SCOs) of the 12 Trichinella species are host-related and can mirror known phylogenetic relationships. Among these SCOs, we identify a panel of genes exhibiting hyper-/hypo-methylated features in gene-bodies or respective promoters that play pivotal roles in transcriptome regulation. These hyper-/hypo-methylated SCOs are also of functional significance across developmental stages, as they are highly enriched species-specific and stage-specific expressed genes both in Ad and ML stages. We further identify a set of parasitism-related functional genes that exhibit host-related differential methylation and expression among those SCOs, including p53-like transcription factor and Cdc37 that are of functional significance for elucidating differential parasitology between the two clades of Trichinella. This comparative epigenome study can help to decipher the environmental effects on differential adaptation and parasitism of the genus Trichinella.
Collapse
Affiliation(s)
- Yayan Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuqi Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fei Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
12
|
García-Acero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Curr Urol 2020; 13:169-178. [PMID: 31998049 DOI: 10.1159/000499274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Disorders of sexual development (DSD) are conditions with an atypical chromosomal, gonadal or phenotypic sex, which leads to differences in the development of the urogenital tract and different clinical phenotypes. Some genes have been implicated in the sex development during gonadal and functional differentiation where the maintenance of the somatic sex of the gonad as either male or female is achieved by suppression of the alternate route. The diagnosis of DSD requires a structured approach, involving a multidisciplinary team and different molecular techniques. We discuss the dimorphic genes and the specific pathways involved in gonadal differentiation, as well as new techniques for genetic analysis and their diagnostic value including epigenetic mechanisms, expanding the evidence in the diagnostic approach of individuals with DSD to increase knowledge of the etiology.
Collapse
Affiliation(s)
- Mary García-Acero
- Human Genetic Institute, Medicine Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Olga Moreno
- Human Genetic Institute, Medicine Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Suárez
- Human Genetic Institute, Medicine Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Rojas
- Human Genetic Institute, Medicine Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
14
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
15
|
Abstract
Mammalian sex determination is triggered by activation of the mammalian sex-determining gene, Sry, in a spatially and temporally controlled manner. Because reduced or delayed Sry expression results in male-to-female sex reversal, male development is highly dependent on the accurate transcription of Sry. SRY dysregulation is a potential cause of human disorders of sex development (DSD). In addition to changes in DNA sequences, gene expression is regulated by epigenetic mechanisms. Epigenetic regulation ensures spatial and temporal accuracy of the expression of developmentally regulated genes. Epigenetic regulation such as histone tail modification, DNA methylation, chromatin remodeling, and non-coding RNA regulation engages several biological processes in multicellular organisms. In recent years, it has been revealed that various types of epigenetic regulation are involved in accurate gonadal differentiation in mammals. In particular, histone modification plays an integral part in sex determination, which is the first step of gonadal differentiation. Here, we focus on the findings on the epigenetic modifications that regulate Sry expression. Finally, we discuss the role of metabolism that potentially alters the epigenetic state in response to environmental cues.
Collapse
Affiliation(s)
- Shingo Miyawaki
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
16
|
Yang Y, Workman S, Wilson MJ. The molecular pathways underlying early gonadal development. J Mol Endocrinol 2019; 62:R47-R64. [PMID: 30042122 DOI: 10.1530/jme-17-0314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/30/2022]
Abstract
The body of knowledge surrounding reproductive development spans the fields of genetics, anatomy, physiology and biomedicine, to build a comprehensive understanding of the later stages of reproductive development in humans and animal models. Despite this, there remains much to learn about the bi-potential progenitor structure that the ovary and testis arise from, known as the genital ridge (GR). This tissue forms relatively late in embryonic development and has the potential to form either the ovary or testis, which in turn produce hormones required for the development of the rest of the reproductive tract. It is imperative that we understand the genetic networks underpinning GR development if we are to begin to understand abnormalities in the adult. This is particularly relevant in the contexts of disorders of sex development (DSDs) and infertility, two conditions that many individuals struggle with worldwide, with often no answers as to their aetiology. Here, we review what is known about the genetics of GR development. Investigating the genetic networks required for GR formation will not only contribute to our understanding of the genetic regulation of reproductive development, it may in turn open new avenues of investigation into reproductive abnormalities and later fertility issues in the adult.
Collapse
Affiliation(s)
- Yisheng Yang
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie Workman
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Garcia-Moreno SA, Plebanek MP, Capel B. Epigenetic regulation of male fate commitment from an initially bipotential system. Mol Cell Endocrinol 2018; 468:19-30. [PMID: 29410272 PMCID: PMC6084468 DOI: 10.1016/j.mce.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
A fundamental goal in biology is to understand how distinct cell types containing the same genetic information arise from a single stem cell throughout development. Sex determination is a key developmental process that requires a unidirectional commitment of an initially bipotential gonad towards either the male or female fate. This makes sex determination a unique model to study cell fate commitment and differentiation in vivo. We have focused this review on the accumulating evidence that epigenetic mechanisms contribute to the bipotential state of the fetal gonad and to the regulation of chromatin accessibility during and immediately downstream of the primary sex-determining switch that establishes the male fate.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|