1
|
Choi S, Park JW, Cho H, Shin JW, Kim K, Kwon OE, Yang JH, Kang CM, Byun CW, Jung SD. Biocompatible Multilayered Encapsulation for Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25534-25545. [PMID: 40256803 DOI: 10.1021/acsami.4c22567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Organic light-emitting diodes (OLEDs) have tremendous potential in biotechnology, but their vulnerability to oxygen and moisture presents a significant challenge in encapsulation. In this study, we developed a multilayer thin-film encapsulation consisting of dual inorganic layers and Parylene-C, offering excellent protection and biocompatibility. This encapsulation enhances the suitability of OLEDs for flexible substrates and biological applications. The multilayer structure, composed of Al2O3/SiOxNy/Parylene-C, was fabricated entirely below 100 °C to ensure compatibility with temperature-sensitive OLEDs. The encapsulation also exhibited high transparency in the visible spectrum, making it ideal for top-emission OLEDs. We confirmed the stability of the OLED by immersing it in a biologically relevant environment, specifically 37 °C PBS solution, and demonstrated its excellent durability. Through direct cell growth experiments and MTT assay tests, the multilayer encapsulated OLEDs demonstrated high biocompatibility. To advance this work toward optogenetic applications, we fabricated flexible OLED-sensing electrode integrated devices on a polyimide substrate, incorporating 13 sensing electrodes and 12 OLEDs. The Al2O3/SiOxNy/Parylene-C encapsulation provided sufficient stability during the selective etching of the sensing electrode region while maintaining OLED protection. The device demonstrated stable operation after immersion in PBS at 37 °C and supported direct cell growth on its surface. Additionally, the OLED arrays remained well functional even when the polyimide substrate was bent. These results highlight the potential of our flexible OLED-sensing electrode integrated device as a promising platform for future optogenetic applications.
Collapse
Affiliation(s)
- Sukyung Choi
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Jeong Won Park
- Diagnostic & Therapeutic Systems Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Hyunsu Cho
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Jin-Wook Shin
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Kukjoo Kim
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - O Eun Kwon
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Jong-Heon Yang
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Chan-Mo Kang
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Chun-Won Byun
- Reality Display Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Sang-Don Jung
- CyberBrain Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
| |
Collapse
|
2
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
3
|
Murawski C, Pulver SR, Gather MC. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes. Nat Commun 2020; 11:6248. [PMID: 33288763 PMCID: PMC7721879 DOI: 10.1038/s41467-020-20013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Optogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.
Collapse
Affiliation(s)
- Caroline Murawski
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., Kurt-Schwabe-Str. 4, 04736, Waldheim, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience and Centre of Biophotonics, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Malte C Gather
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Köln, Germany.
| |
Collapse
|
4
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics. Sci Rep 2020; 10:17614. [PMID: 33077824 PMCID: PMC7572528 DOI: 10.1038/s41598-020-74448-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Invertebrates such as Drosophila melanogaster have proven to be a valuable model organism for studies of the nervous system. In order to control neuronal activity, optogenetics has evolved as a powerful technique enabling non-invasive stimulation using light. This requires light sources that can deliver patterns of light with high temporal and spatial precision. Currently employed light sources for stimulation of small invertebrates, however, are either limited in spatial resolution or require sophisticated and bulky equipment. In this work, we used smartphone displays for optogenetic control of Drosophila melanogaster. We developed an open-source smartphone app that allows time-dependent display of light patterns and used this to activate and inhibit different neuronal populations in both larvae and adult flies. Characteristic behavioural responses were observed depending on the displayed colour and brightness and in agreement with the activation spectra and light sensitivity of the used channelrhodopsins. By displaying patterns of light, we constrained larval movement and were able to guide larvae on the display. Our method serves as a low-cost high-resolution testbench for optogenetic experiments using small invertebrate species and is particularly appealing to application in neuroscience teaching labs.
Collapse
|
7
|
Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc Natl Acad Sci U S A 2020; 117:21138-21146. [PMID: 32817422 DOI: 10.1073/pnas.2007395117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic electronic devices implemented on flexible thin films are attracting increased attention for biomedical applications because they possess extraordinary conformity to curved surfaces. A neuronal device equipped with an organic light-emitting diode (OLED), used in combination with animals that are genetically engineered to include a light-gated ion channel, would enable cell type-specific stimulation to neurons as well as conformal contact to brain tissue and peripheral soft tissue. This potential application of the OLEDs requires strong luminescence, well over the neuronal excitation threshold in addition to flexibility. Compatibility with neuroimaging techniques such as MRI provides a method to investigate the evoked activities in the whole brain. Here, we developed an ultrathin, flexible, MRI-compatible OLED device and demonstrated the activation of channelrhodopsin-2-expressing neurons in animals. Optical stimulation from the OLED attached to nerve fibers induced contractions in the innervated muscles. Mechanical damage to the tissues was significantly reduced because of the flexibility. Owing to the MRI compatibility, neuronal activities induced by direct optical stimulation of the brain were visualized using MRI. The OLED provides an optical interface for modulating the activity of soft neuronal tissues.
Collapse
|
8
|
Sridharan A, Shah A, Kumar SS, Kyeh J, Smith J, Blain-Christen J, Muthuswamy J. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs). Biomed Phys Eng Express 2020; 6:025003. [DOI: 10.1088/2057-1976/ab6fb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Montazeri L, El Zarif N, Trenholm S, Sawan M. Optogenetic Stimulation for Restoring Vision to Patients Suffering From Retinal Degenerative Diseases: Current Strategies and Future Directions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1792-1807. [PMID: 31689206 DOI: 10.1109/tbcas.2019.2951298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optogenetic strategies for vision restoration involve photosensitizing surviving retinal neurons following retinal degeneration, using emerging optogenetic techniques. This approach opens the door to a minimally-invasive retinal vision restoration approach. Moreover, light stimulation has the potential to offer better spatial and temporal resolution than conventional retinal electrical prosthetics. Although proof-of-concept studies in animal models have demonstrated the possibility of restoring vision using optogenetic techniques, and initial clinical trials are underway, there are still hurdles to pass before such an approach restores naturalistic vision in humans. One limitation is the development of light stimulation devices to activate optogenetic channels in the retina. Here we review recent progress in the design and implementation of optogenetic stimulation devices and outline the corresponding technological challenges. Finally, while most work to date has focused on providing therapy to patients suffering from retinitis pigmentosa, we provide additional insights into strategies for applying optogenetic vision restoration to patients suffering from age-related macular degeneration.
Collapse
|
10
|
Matarèse BFE, Feyen PLC, de Mello JC, Benfenati F. Sub-millisecond Control of Neuronal Firing by Organic Light-Emitting Diodes. Front Bioeng Biotechnol 2019; 7:278. [PMID: 31750295 PMCID: PMC6817475 DOI: 10.3389/fbioe.2019.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Optogenetics combines optics and genetics to enable minimally invasive cell-type-specific stimulation in living tissue. For the purposes of bio-implantation, there is a need to develop soft, flexible, transparent and highly biocompatible light sources. Organic semiconducting materials have key advantages over their inorganic counterparts, including low Young's moduli, high strain resistances, and wide color tunability. However, until now it has been unclear whether organic light emitting diodes (OLEDs) are capable of providing sufficient optical power for successful neuronal stimulation, while still remaining within a biologically acceptable temperature range. Here we investigate the use of blue polyfluorene- and orange poly(p-phenylenevinylene)-based OLEDs as stimuli for blue-light-activated Sustained Step Function Opsin (SFFO) and red-light-activated ChrimsonR opsin, respectively. We show that, when biased using high frequency (multi-kHz) drive schemes, the OLEDs permit safe and controlled photostimulation of opsin-expressing neurons and were able to control neuronal firing with high temporal-resolution at operating temperatures lower than previously demonstrated.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Paul L. C. Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- Section of Physiology, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - John C. de Mello
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
- Centre for Organic Electronic Materials, Department of Chemistry, Trondheim, Norway
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
11
|
Murawski C, Mischok A, Booth J, Kumar JD, Archer E, Tropf L, Keum CM, Deng YL, Yoshida K, Samuel IDW, Schubert M, Pulver SR, Gather MC. Narrowband Organic Light-Emitting Diodes for Fluorescence Microscopy and Calcium Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903599. [PMID: 31486161 DOI: 10.1002/adma.201903599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Fluorescence imaging is an indispensable tool in biology, with applications ranging from single-cell to whole-animal studies and with live mapping of neuronal activity currently receiving particular attention. To enable fluorescence imaging at cellular scale in freely moving animals, miniaturized microscopes and lensless imagers are developed that can be implanted in a minimally invasive fashion; but the rigidity, size, and potential toxicity of the involved light sources remain a challenge. Here, narrowband organic light-emitting diodes (OLEDs) are developed and used for fluorescence imaging of live cells and for mapping of neuronal activity in Drosophila melanogaster via genetically encoded Ca2+ indicators. In order to avoid spectral overlap with fluorescence from the sample, distributed Bragg reflectors are integrated onto the OLEDs to block their long-wavelength emission tail, which enables an image contrast comparable to conventional, much bulkier mercury light sources. As OLEDs can be fabricated on mechanically flexible substrates and structured into arrays of cell-sized pixels, this work opens a new pathway for the development of implantable light sources that enable functional imaging and sensing in freely moving animals.
Collapse
Affiliation(s)
- Caroline Murawski
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Andreas Mischok
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Jonathan Booth
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Jothi Dinesh Kumar
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Emily Archer
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Laura Tropf
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Chang-Min Keum
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Ya-Li Deng
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Kou Yoshida
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Marcel Schubert
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Malte C Gather
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| |
Collapse
|
12
|
Morton A, Murawski C, Deng Y, Keum C, Miles GB, Tello JA, Gather MC. Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes. ACTA ACUST UNITED AC 2019; 3:e1800290. [DOI: 10.1002/adbi.201800290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew Morton
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Caroline Murawski
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Yali Deng
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Changmin Keum
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Gareth B. Miles
- School of Psychology and Neuroscience University of St Andrews St Mary's Quad, South Street KY16 9JP St Andrews UK
| | - Javier A. Tello
- School of Medicine University of St Andrews Medical and Biological Sciences Building North Haugh KY16 9TF St Andrews UK
| | - Malte C. Gather
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| |
Collapse
|
13
|
Robinson JT, Pohlmeyer E, Gather MC, Kemere C, Kitching JE, Malliaras GG, Marblestone A, Shepard KL, Stieglitz T, Xie C. Developing Next-generation Brain Sensing Technologies - A Review. IEEE SENSORS JOURNAL 2019; 19:10.1109/jsen.2019.2931159. [PMID: 32116472 PMCID: PMC7047830 DOI: 10.1109/jsen.2019.2931159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these bioelectronic devices, it is necessary to understand the capabilities of emerging technologies and identify the best strategies to translate these technologies into products and therapies that will improve the lives of patients with neurological and other disorders. Here we discuss emerging technologies for sensing brain activity, anticipated challenges for translation, and perspectives for how to best transition these technologies from academic research labs to useful products for neuroscience researchers and human patients.
Collapse
Affiliation(s)
- Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Malte C. Gather
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS Scotland, UK
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - John E. Kitching
- Time and Frequency Division, NIST, 325 Broadway, Boulder, Colorado 80305, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Adam Marblestone
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Thomas Stieglitz
- Institute of Microsystem Technology, Laboratory for Biomedical Microtechnology, D-79110 Freiburg, Germany
- Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Abstract
Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.
Collapse
|
15
|
Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics. Behav Pharmacol 2018; 28:598-609. [PMID: 29099403 DOI: 10.1097/fbp.0000000000000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics was the method of the year in 2010 according to Nature Neuroscience. Since then, this method has become widespread, the use of virally delivered genetic tools has extended to other fields such as pharmacogenetics, and optogenetic techniques have become frequently applied in genetically manipulated animals for in-vivo circuit analysis and behavioral studies. However, several issues should be taken into consideration when planning such experiments. We aimed to summarize the critical points concerning optogenetic manipulation of a specific brain area in mutant mice. First, the appropriate vector should be chosen to allow optimal optogenetic manipulation. Adeno-associated viral vectors are the most common carriers with different available serotypes. Light-sensitive channels are available in many forms, and the expression of the delivered genetic material can be influenced in many ways. Second, selecting the adequate stimulation protocol is also essential. The pattern, intensity, and timing could be determinative parameters. Third, the mutant strain might have a phenotype that influences the observed behavior. In conclusion, detailed preliminary experiments and numerous control groups are required to choose the best vector and stimulation protocol and to ensure that the mutant animals do not have a specific phenotype that can influence the examined behavior.
Collapse
|
16
|
Xu H, Yin L, Liu C, Sheng X, Zhao N. Recent Advances in Biointegrated Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800156. [PMID: 29806115 DOI: 10.1002/adma.201800156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/06/2018] [Indexed: 05/09/2023]
Abstract
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.
Collapse
Affiliation(s)
- Huihua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xing Sheng
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
17
|
Matarèse BFE, Feyen PLC, Falco A, Benfenati F, Lugli P, deMello JC. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Sci Rep 2018; 8:5560. [PMID: 29615634 PMCID: PMC5882823 DOI: 10.1038/s41598-018-21755-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/26/2018] [Indexed: 01/09/2023] Open
Abstract
Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2AY, UK
| | - Paul L C Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genoa, Italy
| | - Aniello Falco
- Faculty of Science and Technology, Free University of Bolzano - Bozen, 39100, Bolzano, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bolzano - Bozen, 39100, Bolzano, Italy
| | - John C deMello
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2AY, UK.
| |
Collapse
|
18
|
Bazaka K, Destefani R, Jacob MV. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics. Sci Rep 2016; 6:38571. [PMID: 27934916 PMCID: PMC5146940 DOI: 10.1038/srep38571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023] Open
Abstract
This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.
Collapse
Affiliation(s)
- Kateryna Bazaka
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 Australia.,Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia.,CSIRO-QUT Joint Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P.O.Box 218, Lindfield, NSW 2070, Australia
| | - Ryan Destefani
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| |
Collapse
|