1
|
Gui L, Zhang Z, Song L, Feng C, Yu H, Pan L, Fu J, Liang W, Huang Q, El-Sappah AH, Shi L, Wan L, Wei S. Mitogenome of Uncaria rhynchophylla: genome structure, characterization, and phylogenetic relationships. BMC Genomics 2025; 26:199. [PMID: 40012082 PMCID: PMC11866583 DOI: 10.1186/s12864-025-11372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Uncaria rhynchophylla is listed in the Chinese pharmacopoeia as one of the five botanical sources of the traditional medicine Gou-Teng, which has been utilized for the treatment of mental and cardiovascular disorders. This particular species is well-known in China for its hook-like structures originating from the leaf axils. Despite available reports on its chloroplast genome, there persists a notable lack of understanding concerning the structural variations and evolution of its mitochondrial genome. This knowledge gap hinders our ability to fully comprehend its genetic attributes. RESULTS We successfully assembled the mitochondrial genome of U. rhynchophylla by seamlessly integrating Illumina short reads with Nanopore long reads, resulting in a non-circular genome comprising 1 circular contig and 2 linear contigs. The total length of this genome is 421,660 bp, encompassing 36 PCGs. The identification of 4 distinct pairs of repeats has unveiled their pivotal role in repeat-mediated recombination. Of the 28 homologous fragments derived from chloroplasts, the majority were observed to have been transferred from the inverted repeat (IR) regions of the chloroplast genome to the mitochondrial genome. The mitochondrial DNA provides a distinctive resolution for the positioning of several species within the Gentianales phylogenetic framework, which remains unresolved by chloroplast DNA. CONCLUSION By utilizing a newly assembled, high-quality mitochondrial genome of U. rhynchophylla, we have elucidated its intricate genomic structure, distinctive sequence characteristics, and potential for phylogenetic analysis. These findings mark significant strides in advancing our comprehension of the genetics of Uncaria.
Collapse
Affiliation(s)
- Lingjian Gui
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Lisha Song
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | | | - Haixia Yu
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Limei Pan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jine Fu
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Wenjing Liang
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Lijun Shi
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shugen Wei
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Guangxi Traditional Chinese Medicine Breeding Technology Innovation Center, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
2
|
Li Y, Li S, Hua X, Xu Y, Chen S, Yu Z, Zhuang G, Lan Y, Yao W, Chen B, Zhang M, Zhang J. Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane. BMC Genomics 2025; 26:28. [PMID: 39794692 PMCID: PMC11724576 DOI: 10.1186/s12864-025-11210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars. Mitochondria, often referred to as the intracellular "energy factories", provide energy for plant life activities, and are also implicated in cytoplasmic male sterility (CMS). RESULTS We performed mitochondrial genome assembly and structural analysis of two Saccharum founding species. We discovered that the proportions of repeat sequences are the primary factor contributing to the variations in mitochondrial genome structure and size between the two Saccharum species. Heterologous expression of the mitochondrial chimeric gene ORF113, which is highly expressed in male-sterile S. officinarum flowers, significantly inhibits growth and ATP synthesis in yeast cells, making it a key candidate CMS-related gene in sugarcane. Furthermore, we developed two co-dominant simple sequence repeat (SSR) markers based on the mitochondrial genome, which can effectively distinguish the cytoplasmic types of the two Saccharum species. CONCLUSION In this study, we identified structural variants and developed SSR molecular markers in the mitochondrial genomes of both S. officinarum and S. spontaneum. We also identified a novel mitochondrial chimeric ORF as a key candidate CMS-related gene. These findings offer valuable insights into variety identification, genetic resource development, and cross-breeding strategies in sugarcane.
Collapse
Affiliation(s)
- Yihan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuangyu Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yi Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuqi Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zehuai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Gui Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Song J, Zhang X, Jones T, Wang ML, Ming R. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum. PLANT REPRODUCTION 2024; 37:489-506. [PMID: 38844561 DOI: 10.1007/s00497-024-00503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
KEY MESSAGE Candidate male sterility genes were identified in sugarcane, which interacts with kinase-related proteins, transcription factors, and plant hormone signaling pathways to regulate stamen and anther development. Saccharum officinarum is a cultivated sugarcane species that its predominant feature is high sucrose content in stems. Flowering is necessary for breeding new cultivars but will terminate plant growth and reduce sugar yield. The wild sugarcane species Saccharum spontaneum has robust and viable pollen, whereas most S. officinarum accessions are male sterile, which is a desirable trait of a maternal parent in sugarcane breeding. To study male sterility and related regulatory pathways in sugarcane, we carried out RNAseq using flowers in different developmental stages between male-sterile S. officinarum accession 'LA Purple' and fertile S. spontaneum accession 'SES208'. Gene expression profiles were used to detect how genes are differentially expressed between male sterile and fertile flowers and to identify candidate genes for male sterility. Weighted gene correlation networks analysis (WGCNA) was conducted to investigate the regulatory networks. Transcriptomic analyses showed that 988 genes and 2888 alleles were differentially expressed in S. officinarum compared to S. spontaneum. Ten differentially expressed genes and thirty alleles were identified as candidate genes and alleles for male sterility in sugarcane. The gene Sspon.03G0007630 and two alleles of the gene Sspon.08G0002270, Sspon.08G0002270-2B and Sspon.08G0014700-1A, were involved in the early stamen or carpel development stages, while the remaining genes were classified into the post-meiosis stage. Gibberellin, auxin, and jasmonic acid signaling pathways are involved in the stamen development in sugarcane. The results expanded our knowledge of male sterility-related genes in sugarcane and generated genomic resources to facilitate the selection of ideal maternal parents to improve breeding efficiency.
Collapse
Affiliation(s)
- Jinjin Song
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaodan Zhang
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Tyler Jones
- Hawaii Agriculture Research Center, Waipahu, HI, 96797, USA
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Waipahu, HI, 96797, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
4
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
5
|
Li S, Wang Z, Jing Y, Duan W, Yang X. Graph-based mitochondrial genomes of three foundation species in the Saccharum genus. PLANT CELL REPORTS 2024; 43:191. [PMID: 38977492 DOI: 10.1007/s00299-024-03277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/24/2024] [Indexed: 07/10/2024]
Abstract
KEY MESSAGE We reported the graph-based mitochondrial genomes of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) for the first time. The results revealed pan-structural variation and evolutionary processes in the mitochondrial genomes within Saccharum. Saccharum belongs to the Andropogoneae, and cultivars species in Saccharum contribute nearly 80% of sugar production in the world. To explore the genomic studies in Saccharum, we assembled 15 complete mitochondrial genomes (mitogenome) of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) using Illumina and Oxford Nanopore Technologies sequencing data. The mitogenomes of the three species were divided into a total of eight types based on contig numbers and linkages. All mitogenomes in the three species encoded 51 unique genes, including 32 protein-coding, 3 ribosomal RNA (rRNA) and 16 transfer RNA (tRNA) genes. The existence of long and short-repeat-mediated recombinations in the mitogenome of S. officinarum and S. robustum was revealed and confirmed through PCR validation. Furthermore, employing comparative genomics and phylogenetic analyses of the organelle genomes, we unveiled the evolutionary relationships and history of the major interspecific lineages in Saccharum genus. Phylogenetic analyses of homologous fragments between S. officinarum and S. robustum showed that S. officinarum and S. robustum are phylogenetically distinct and that they were likely parallel rather than domesticated. The variations between ancient (S. sinense and S. barberi) and modern cultivated species (S. hybrid) possibly resulted from hybridization involving different S. officinarum accessions. Lastly, this project reported the first graph-based mitogenomes of three Saccharum species, and a systematic comparison of the structural organization, evolutionary processes, and pan-structural variation of the Saccharum mitogenomes revealed the differential features of the Saccharum mitogenomes.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Zhen Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yanfen Jing
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming, 650221, China
| | - Weixing Duan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences /Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China.
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
7
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
8
|
Yang Y, Duan C. Mitochondrial genome features and systematic evolution of diospyros kaki thunb 'Taishuu'. BMC Genomics 2024; 25:285. [PMID: 38500026 PMCID: PMC10946091 DOI: 10.1186/s12864-024-10199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND 'Taishuu' has a crisp texture, abundant juice, and sweet flavor with hints of cantaloupe. The availability of mitochondrial genome data of Diospyros species is far from the known number of species. RESULTS The sequencing data were assembled into a closed circular mitochondrial chromosome with a 421,308 bp length and a 45.79% GC content. The mitochondrial genome comprised 40 protein-coding, 24 tRNA, and three rRNA genes. The most common codons for arginine (Arg), proline (Pro), glycine (Gly), tryptophan (Trp), valine (Val), alanine (Ala), and leucine (Leu) were AGA, CCA, GGA, UGG, GUA, GCA, and CUA, respectively. The start codon for cox1 and nad4L protein-coding genes was ACG (ATG), whereas the remaining protein-coding genes started with ATG. There are four types of stop codons: CGA, TAA, TAG, and TGA, with TAA being the most frequently used stop codon (45.24%). In the D. kaki Thunb. 'Taishuu' mitochondrial genome, a total of 645 repeat sequences were identified, including 125 SSRs, 7 tandem repeats, and 513 dispersed repeats. Collinearity analysis revealed a close relationship between D. kaki Thunb. 'Taishuu' and Diospyros oleifera, with conserved homologous gene fragments shared among these species in large regions of the mitochondrial genome. The protein-coding genes ccmB and nad4L were observed to undergo positive selection. Analysis of homologous sequences between chloroplasts and mitochondria identified 28 homologous segments, with a total length of 24,075 bp, accounting for 5.71% of the mitochondrial genome. These homologous segments contain 8 annotated genes, including 6 tRNA genes and 2 protein-coding genes (rrn18 and ccmC). There are 23 homologous genes between chloroplasts and nuclei. Mitochondria, chloroplasts, and nuclei share two homologous genes, which are trnV-GAC and trnW-CCA. CONCLUSION In conclusion, a high-quality chromosome-level draft genome for D. kaki was generated in this study, which will contribute to further studies of major economic traits in the genus Diospyros.
Collapse
Affiliation(s)
- Yunliang Yang
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Chao Duan
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China.
| |
Collapse
|
9
|
Feng G, Jiao Y, Ma H, Bian H, Nie G, Huang L, Xie Z, Ran Q, Fan W, He W, Zhang X. The first two whole mitochondrial genomes for the genus Dactylis species: assembly and comparative genomics analysis. BMC Genomics 2024; 25:235. [PMID: 38438835 PMCID: PMC10910808 DOI: 10.1186/s12864-024-10145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjuan Jiao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huizhen Ma
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Haoyang Bian
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifan Ran
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Wenwen Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei He
- Grassland Research Institute, Chongqing Academy of Animal Science, Chongqing, 402460, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Zhou S, Wei N, Jost M, Wanke S, Rees M, Liu Y, Zhou R. The Mitochondrial Genome of the Holoparasitic Plant Thonningia sanguinea Provides Insights into the Evolution of the Multichromosomal Structure. Genome Biol Evol 2023; 15:evad155. [PMID: 37603455 PMCID: PMC10476698 DOI: 10.1093/gbe/evad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of the plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum, and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multichromosomal structure of 18 circular chromosomes of 8.7-19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome; however, no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multichromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination, and repeat degradation.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Mathew Rees
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Khachaturyan M, Reusch TBH, Dagan T. Worldwide Population Genomics Reveal Long-Term Stability of the Mitochondrial Genome Architecture in a Keystone Marine Plant. Genome Biol Evol 2023; 15:evad167. [PMID: 37708410 PMCID: PMC10538256 DOI: 10.1093/gbe/evad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondrial genomes (mitogenomes) of flowering plants are composed of multiple chromosomes. Recombination within and between the mitochondrial chromosomes may generate diverse DNA molecules termed isoforms. The isoform copy number and composition can be dynamic within and among individual plants due to uneven replication and homologous recombination. Nonetheless, despite their functional importance, the level of mitogenome conservation within species remains understudied. Whether the ontogenetic variation translates to evolution of mitogenome composition over generations is currently unknown. Here we show that the mitogenome composition of the seagrass Zostera marina is conserved among worldwide populations that diverged ca. 350,000 years ago. Using long-read sequencing, we characterized the Z. marina mitochondrial genome and inferred the repertoire of recombination-induced configurations. To characterize the mitochondrial genome architecture worldwide and study its evolution, we examined the mitogenome in Z. marina meristematic region sampled in 16 populations from the Pacific and Atlantic oceans. Our results reveal a striking similarity in the isoform relative copy number, indicating a high conservation of the mitogenome composition among distantly related populations and within the plant germline, despite a notable variability during individual ontogenesis. Our study supplies a link between observations of dynamic mitogenomes at the level of plant individuals and long-term mitochondrial evolution.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Li J, Chen Y, Liu Y, Wang C, Li L, Chao Y. Complete mitochondrial genome of Agrostis stolonifera: insights into structure, Codon usage, repeats, and RNA editing. BMC Genomics 2023; 24:466. [PMID: 37596544 PMCID: PMC10439588 DOI: 10.1186/s12864-023-09573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.
Collapse
Affiliation(s)
- Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, 010010, China
| | - Chen Wang
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Ling Li
- Mentougou District Bureau of Ecological and Environment of Beijing Municipality, Beijing, 102300, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Zhong F, Ke W, Li Y, Chen X, Zhou T, Xu B, Qi L, Yan Z, Ma Y. Comprehensive analysis of the complete mitochondrial genomes of three Coptis species ( C. chinensis, C. deltoidea and C. omeiensis): the important medicinal plants in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1166420. [PMID: 37313257 PMCID: PMC10258346 DOI: 10.3389/fpls.2023.1166420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 06/15/2023]
Abstract
Coptis plants (Ranunculaceae) contain high levels of isoquinoline alkaloids and have a long history of medicinal use. Coptis species are of great value in pharmaceutical industries and scientific research. Mitochondria are considered as one of the central units for receiving stress signals and arranging immediate responses. Comprehensive characterizations of plant mitogenomes are imperative for revealing the relationship between mitochondria, elucidating biological functions of mitochondria and understanding the environmental adaptation mechanisms of plants. Here, the mitochondrial genomes of C. chinensis, C. deltoidea and C. omeiensis were assembled through the Nanopore and Illumina sequencing platform for the first time. The genome organization, gene number, RNA editing sites, repeat sequences, gene migration from chloroplast to mitochondria were compared. The mitogenomes of C. chinensis, C. deltoidea and C. omeiensis have six, two, two circular-mapping molecules with the total length of 1,425,403 bp, 1,520,338 bp and 1,152,812 bp, respectively. The complete mitogenomes harbors 68-86 predicted functional genes including 39-51 PCGs, 26-35 tRNAs and 2-5 rRNAs. C. deltoidea mitogenome host the most abundant repeat sequences, while C. chinensis mitogenome has the largest number of transferred fragments from its chloroplasts. The large repeat sequences and foreign sequences in the mitochondrial genomes of Coptis species were related to substantial rearrangements, changes in relative position of genes and multiple copy genes. Further comparative analysis illustrated that the PCGs under selected pressure in mitochondrial genomes of the three Coptis species mainly belong to the mitochondrial complex I (NADH dehydrogenase). Heat stress adversely affected the mitochondrial complex I and V, antioxidant enzyme system, ROS accumulation and ATP production of the three Coptis species. The activation of antioxidant enzymes, increase of T-AOC and maintenance of low ROS accumulation in C. chinensis under heat stress were suggested as the factors for its thermal acclimation and normal growth at lower altitudes. This study provides comprehensive information on the Coptis mitogenomes and is of great importance to elucidate the mitochondrial functions, understand the different thermal acclimation mechanisms of Coptis plants, and breed heat-tolerant varieties.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjia Ke
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjie Xu
- Innovative institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health, State Administration of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
He W, Xiang K, Chen C, Wang J, Wu Z. Master graph: an essential integrated assembly model for the plant mitogenome based on a graph-based framework. Brief Bioinform 2023; 24:bbac522. [PMID: 36644898 DOI: 10.1093/bib/bbac522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 01/17/2023] Open
Abstract
Unlike the typical single circular structure of most animal mitochondrial genomes (mitogenome), the drastic structural variation of plant mitogenomes is a result of a mixture of molecules of various sizes and structures. Obtaining the full panoramic plant mitogenome is still considered a roadblock in evolutionary biology. In this study, we developed a graph-based sequence assembly toolkit (GSAT) to construct the pan-structural landscape of plant mitogenome with high-quality mitochondrial master graphs (MMGs) for model species including rice (Oryza sativa) and thale cress (Arabidopsis thaliana). The rice and thale cress MMGs have total lengths of 346 562 and 358 041 bp, including 9 and 6 contigs and 12 and 8 links, respectively, and could be further divided into 6 and 3 minimum master circles and 4 and 2 minimum secondary circles separately. The nuclear mitochondrial DNA segments (NUMTs) in thale cress strongly affected the frequency evaluation of the homologous structures in the mitogenome, while the effects of NUMTs in rice were relatively weak. The mitochondrial plastid DNA segments (MTPTs) in both species had no effects on the assessment of the MMGs. All potential recombinant structures were evaluated, and the findings revealed that all, except for nuclear-homologous structures, MMG structures are present at a much higher frequency than non-MMG structures are. Investigations of potential circular and linear molecules further supported multiple dominant structures in the mitogenomes and could be completely summarized in the MMG. Our study provided an efficient and accurate model for assembling and applying graph-based plant mitogenomes to assess their pan-structural variations.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kunli Xiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Caijin Chen
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China
| |
Collapse
|
16
|
Li J, Tang H, Luo H, Tang J, Zhong N, Xiao L. Complete mitochondrial genome assembly and comparison of Camellia sinensis var. Assamica cv. Duntsa. FRONTIERS IN PLANT SCIENCE 2023; 14:1117002. [PMID: 36743486 PMCID: PMC9893290 DOI: 10.3389/fpls.2023.1117002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Camellia sinensis var. Assamica cv. Duntsa (C.duntsa), a valuable Theaceae from Hunan Province, has been looked at as a precious tea resource by local farmers because of its economic and ecological value. Genomics study on C.duntsa is essential for the domestication and enhancement of tea tree varieties. In the present study, we used a hybrid approach based on Illumina and PacBio data to sequence and assemble the mitochondrial genome of C.duntsa. The mitochondrial genome of C.duntsa was estimated to be 1,081,996 base pairs (bp) and eighty-one genes consisting of one pseudogene, three ribosomal RNA (rRNA) genes, thirty transfer RNA (tRNA) genes, and forty-seven protein-coding genes (PCGs). Tetramer repetitions made up 43.90% of simple sequence repeats (SSRs). The codon usage bias of the Theaceae mitochondrial gene atp9 was altered by mutation, but the codon usage of other genes was shaped by natural selection. Besides, there are eighteen gene-containing homologous regions between the chloroplast and mitochondrial genomes of C. duntsa.Some genomes including atp8, cox1, cox3, nad7, nad9, rpl16, rpl2, rps19, rps4, and sdh4 are absent in the mitochondrial genome of several Theaceae plant. However, C. duntsa maintains these genes integrity and functionality. Another gene, rps16, is either lacking from the mitochondrial genome of C. duntsa or is present as a pseudogene. C. duntsa and C. sinensis (OM809792) are very similar, as shown by a collinear match across four species of Theaceae; the most conservative genes are nad5, atp9, cox2, rps3, trnA-TGC, trnI-GAT, rrn18, trnV-GAC, and ccmFN. Similarly, the genome's phylogenetic trees revealed that C. duntsa was the sister species to C. sinensis. The results confirmed that the C. duntsa and C. sinensis (OM809792) mitochondrial genome underwent gene rearrangement.In general, our results shows that genomic information from organelles can help us understand plant phylogeny and can also be used to make molecular markers and study how genetic traits change over time. Our research will contribute to the population genetics and evolution of tea plant.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry, Changsha, China
- Institute of Tea Research, Shaoyang Academy of Agricultural Sciences, Shaoyang, China
| | - Han Tang
- Institute of Tea Research, Shaoyang Academy of Agricultural Sciences, Shaoyang, China
| | - Hua Luo
- Institute of Tea Research, Shaoyang Academy of Agricultural Sciences, Shaoyang, China
| | - Jun Tang
- Institute of Tea Research, Shaoyang Academy of Agricultural Sciences, Shaoyang, China
| | - Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry, Changsha, China
- Institute of Tea Research, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry, Changsha, China
| |
Collapse
|
17
|
Sharbrough J, Bankers L, Cook E, Fields PD, Jalinsky J, McElroy KE, Neiman M, Logsdon JM, Boore JL. Single-molecule Sequencing of an Animal Mitochondrial Genome Reveals Chloroplast-like Architecture and Repeat-mediated Recombination. Mol Biol Evol 2023; 40:6980790. [PMID: 36625177 PMCID: PMC9874032 DOI: 10.1093/molbev/msad007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.
Collapse
Affiliation(s)
| | - Laura Bankers
- Department of Biology, University of Iowa, Iowa City, IA
| | - Emily Cook
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Peter D Fields
- Zoologisches Institut, University of Basel, Basel, Switzerland
| | | | - Kyle E McElroy
- Department of Biology, University of Iowa, Iowa City, IA,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, IA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jeffrey L Boore
- Phenome Health and Institute for Systems Biology, Seattle, WA
| |
Collapse
|
18
|
De Novo Hybrid Assembly of the Salvia miltiorrhiza Mitochondrial Genome Provides the First Evidence of the Multi-Chromosomal Mitochondrial DNA Structure of Salvia Species. Int J Mol Sci 2022; 23:ijms232214267. [PMID: 36430747 PMCID: PMC9694629 DOI: 10.3390/ijms232214267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected that this conformation does not accurately represent the complexity of the S. miltiorrhiza mitogenome. In the current study, we assembled the mitogenome of S. miltiorrhiza using the PacBio and Illumina sequencing technologies. The primary structure of the mitogenome contained two mitochondrial chromosomes (MC1 and MC2), which corresponded to two major conformations, namely, Mac1 and Mac2, respectively. Using two approaches, including (1) long reads mapping and (2) polymerase chain reaction amplification followed by Sanger sequencing, we observed nine repeats that can mediate recombination. We predicted 55 genes, including 33 mitochondrial protein-coding genes (PCGs), 3 rRNA genes, and 19 tRNA genes. Repeat analysis identified 112 microsatellite repeats and 3 long-tandem repeats. Phylogenetic analysis using the 26 shared PCGs resulted in a tree that was congruent with the phylogeny of Lamiales species in the APG IV system. The analysis of mitochondrial plastid DNA (MTPT) identified 16 MTPTs in the mitogenome. Moreover, the analysis of nucleotide substitution rates in Lamiales showed that the genes atp4, ccmB, ccmFc, and mttB might have been positively selected. The results lay the foundation for future studies on the evolution of the Salvia mitogenome and the molecular breeding of S. miltiorrhiza.
Collapse
|
19
|
Shen J, Li X, Li M, Cheng H, Huang X, Jin S. Characterization, comparative phylogenetic, and gene transfer analyses of organelle genomes of Rhododendron × pulchrum. FRONTIERS IN PLANT SCIENCE 2022; 13:969765. [PMID: 36212362 PMCID: PMC9532937 DOI: 10.3389/fpls.2022.969765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Rhododendron × pulchrum, an important horticultural species, is widely distributed in Europe, Asia, and North America. To analyze the phylogenetic and organelle genome information of R. × pulchrum and its related species, the organelle genome of R. × pulchrum was sequenced and assembled. The complete mitochondrial genome showed lineage DNA molecules, which were 816,410 bp long and contained 64 genes, namely 24 transfer RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes, and 37 protein-coding genes. The chloroplast genome of R. × pulchrum was reassembled and re-annotated; the results were different from those of previous studies. There were 42 and 46 simple sequence repeats (SSR) identified from the mitochondrial and chloroplast genomes of R. × pulchrum, respectively. Five genes (nad1, nad2, nad4, nad7, and rps3) were potentially useful molecular markers. The R. × pulchrum mitochondrial genome collinear alignment among five species of the Ericaceae showed that the mitochondrial genomes of these related species have a high degree of homology with R. × pulchrum in this gene region, and the most conservative genes were trnC-GCA, trnD-GUC, trnM-CAU, trnN-GUU, trnY-GUA, atp4, nad4, nad2, nad5, ccmC, and rrn26. The phylogenetic trees of mitochondrial genome showed that R. simsii was a sister to R. × pulchrum. The results verified that there was gene rearrangement between R. × pulchrum and R. simsii mitochondrial genomes. The codon usage bias of 10 Ericaceae mitochondrial genes and 7 Rhododendron chloroplast genes were influenced by mutation, while other genes codon usages had undergone selection. The study identified 13 homologous fragments containing gene sequences between the chloroplast and mitochondrial genomes of R. × pulchrum. Overall, our results illustrate the organelle genome information could explain the phylogenetics of plants and could be used to develop molecular markers and genetic evolution. Our study will facilitate the study of population genetics and evolution in Rhododendron and other genera in Ericaceae.
Collapse
Affiliation(s)
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Department of Life Science and Health, Huzhou College, Huzhou, Zhejiang, China
| | - Mingzhi Li
- Bio and Data Biotechnology Co., Ltd., Guangzhou, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Department of Life Science and Health, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
20
|
Sun M, Zhang M, Chen X, Liu Y, Liu B, Li J, Wang R, Zhao K, Wu J. Rearrangement and domestication as drivers of Rosaceae mitogenome plasticity. BMC Biol 2022; 20:181. [PMID: 35986276 PMCID: PMC9392253 DOI: 10.1186/s12915-022-01383-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrion is an important cellular component in plants and that functions in producing vital energy for the cell. However, the evolution and structure of mitochondrial genomes (mitogenomes) remain unclear in the Rosaceae family. In this study, we assembled 34 Rosaceae mitogenomes and characterized genome variation, rearrangement rate, and selection signal variation within these mitogenomes. Results Comparative analysis of six genera from the Amygdaloideae and five from the Rosoideae subfamilies of Rosaceae revealed that three protein-coding genes were absent from the mitogenomes of five Rosoideae genera. Positive correlations between genome size and repeat content were identified in 38 Rosaceae mitogenomes. Twenty repeats with high recombination frequency (> 50%) provided evidence for predominant substoichiometric conformation of the mitogenomes. Variations in rearrangement rates were identified between eleven genera, and within the Pyrus, Malus, Prunus, and Fragaria genera. Based on population data, phylogenetic inferences from Pyrus mitogenomes supported two distinct maternal lineages of Asian cultivated pears. A Pyrus-specific deletion (DEL-D) in selective sweeps was identified based on the assembled genomes and population data. After the DEL-D sequence fragments originally arose, they may have experienced a subsequent doubling event via homologous recombination and sequence transfer in the Amygdaloideae; afterwards, this variant sequence may have significantly expanded to cultivated groups, thereby improving adaptation during the domestication process. Conclusions This study characterizes the variations in gene content, genome size, rearrangement rate, and the impact of domestication in Rosaceae mitogenomes and provides insights into their structural variation patterns and phylogenetic relationships. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01383-3.
Collapse
|
21
|
Ishida JK, Bini AP, Creste S, Van Sluys MA. Towards defining the core Saccharum microbiome: input from five genotypes. BMC Microbiol 2022; 22:193. [PMID: 35941528 PMCID: PMC9358853 DOI: 10.1186/s12866-022-02598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
Background Plant microbiome and its manipulation inaugurate a new era for plant biotechnology with the potential to benefit sustainable crop production. Here, we used the large-scale 16S rDNA sequencing analysis to unravel the dynamic, structure, and composition of exophytic and endophytic microbial communities in two hybrid commercial cultivars of sugarcane (R570 and SP80–3280), two cultivated genotypes (Saccharum officinarum and Saccharum barberi) and one wild species (Saccharum spontaneum). Results Our analysis identified 1372 amplicon sequence variants (ASVs). The microbial communities’ profiles are grouped by two, root and bulk soils and stem and leave when these four components are compared. However, PCoA-based data supports that endophytes and epiphytes communities form distinct groups, revealing an active host-derived mechanism to select the resident microbiota. A strong genotype-influence on the assembly of microbial communities in Saccharum ssp. is documented. A total of 220 ASVs persisted across plant cultivars and species. The ubiquitous bacteria are two potential beneficial bacteria, Acinetobacter ssp., and Serratia symbiotica. Conclusions The results presented support the existence of common and cultivar-specific ASVs in two commercial hybrids, two cultivated canes and one species of Saccharum across tissues (leaves, stems, and roots). Also, evidence is provided that under the experimental conditions described here, each genotype bears its microbial community with little impact from the soil conditions, except in the root system. It remains to be demonstrated which aspect, genotype, environment or both, has the most significant impact on the microbial selection in sugarcane fields. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02598-8.
Collapse
Affiliation(s)
- Juliane K Ishida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.,Present address: Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Andressa P Bini
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
22
|
Fischer A, Dotzek J, Walther D, Greiner S. Graph-based models of the Oenothera mitochondrial genome capture the enormous complexity of higher plant mitochondrial DNA organization. NAR Genom Bioinform 2022; 4:lqac027. [PMID: 35372837 PMCID: PMC8969700 DOI: 10.1093/nargab/lqac027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondrial genomes display an enormous structural complexity, as recombining repeat-pairs lead to the generation of various sub-genomic molecules, rendering these genomes extremely challenging to assemble. We present a novel bioinformatic data-processing pipeline called SAGBAC (Semi-Automated Graph-Based Assembly Curator) that identifies recombinogenic repeat-pairs and reconstructs plant mitochondrial genomes. SAGBAC processes assembly outputs and applies our novel ISEIS (Iterative Sequence Ends Identity Search) algorithm to obtain a graph-based visualization. We applied this approach to three mitochondrial genomes of evening primrose (Oenothera), a plant genus used for cytoplasmic genetics studies. All identified repeat pairs were found to be flanked by two alternative and unique sequence-contigs defining so-called 'double forks', resulting in four possible contig-repeat-contig combinations for each repeat pair. Based on the inferred structural models, the stoichiometry of the different contig-repeat-contig combinations was analyzed using Illumina mate-pair and PacBio RSII data. This uncovered a remarkable structural diversity of the three closely related mitochondrial genomes, as well as substantial phylogenetic variation of the underlying repeats. Our model allows predicting all recombination events and, thus, all possible sub-genomes. In future work, the proposed methodology may prove useful for the investigation of the sub-genome organization and dynamics in different tissues and at various developmental stages.
Collapse
Affiliation(s)
- Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jana Dotzek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephan Greiner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene 2022; 823:146342. [PMID: 35219813 DOI: 10.1016/j.gene.2022.146342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The mitochondria ofCucumis genus contain several intriguing features such as paternal inheritance and three-ring genome structure. However, the evolutionary relationships of mitochondria inCucumisremain elusive. Here, we assembled the mitochondrial genome ofC. hystrixand performed a comparative genomic analysis with other crops inthe Cucurbitaceae. The mitochondrial genome ofC. hystrixhas three circular-mapping chromosomes of lengths 1,113,461 bp, 110,683 bp, and 92,288 bp, which contain 73 genes including 38 protein-coding genes, 31tRNAgenes, and 4rRNAgenes. Repeat sequences, RNA editing, and horizontal gene transfer events were identified. The results of phylogenetic analyses, collinearity and gene clusters revealed thatC. hystrixis closer toC. sativus than to C. melo. Meanwhile, wedemonstrated mitochondrial paternal inheritance inC. hystrixbymolecular markers. In comparison with other cucurbitcrops, wefound amarker foridentification of germplasm resources ofCucumis. Collectively, our findings provide a tool to help clarify the paternal lineage within that genus in the evolution of Cucumis.
Collapse
|
24
|
Niu Y, Lu Y, Song W, He X, Liu Z, Zheng C, Wang S, Shi C, Liu J. Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla). PLoS One 2022; 17:e0263545. [PMID: 35503755 PMCID: PMC9064092 DOI: 10.1371/journal.pone.0263545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Macadamia is a true dicotyledonous plant that thrives in a mild, humid, low wind environment. It is cultivated and traded internationally due to its high-quality nuts thus, has significant development prospects and scientific research value. However, information on the genetic resources of Macadamia spp. remains scanty. RESULTS The mitochondria (mt) genomes of three economically important Macadamia species, Macadamia integrifolia, M. ternifolia and M. tetraphylla, were assembled through the Illumina sequencing platform. The results showed that each species has 71 genes, including 42 protein-coding genes, 26 tRNAs, and 3 rRNAs. Repeated sequence analysis, RNA editing site prediction, and analysis of genes migrating from chloroplast (cp) to mt were performed in the mt genomes of the three Macadamia species. Phylogenetic analysis based on the mt genome of the three Macadamia species and 35 other species was conducted to reveal the evolution and taxonomic status of Macadamia. Furthermore, the characteristics of the plant mt genome, including genome size and GC content, were studied through comparison with 36 other plant species. The final non-synonymous (Ka) and synonymous (Ks) substitution analysis showed that most of the protein-coding genes in the mt genome underwent negative selections, indicating their importance in the mt genome. CONCLUSION The findings of this study provide a better understanding of the Macadamia genome and will inform future research on the genus.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yongjie Lu
- Qingdao University of Science & Technology, Qingdao, China
| | - Weicai Song
- Qingdao University of Science & Technology, Qingdao, China
| | - Xiyong He
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Shuo Wang
- Qingdao University of Science & Technology, Qingdao, China
| | - Chao Shi
- Qingdao University of Science & Technology, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| |
Collapse
|
25
|
Characterization and Phylogenetic Analyses of the Complete Mitochondrial Genome of Sugarcane (Saccharum spp. Hybrids) Line A1. DIVERSITY 2022. [DOI: 10.3390/d14050333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Modern sugarcane cultivars are highly polyploid with complex nuclear genomic genetic background, while their mitochondrion (mt) genomes are much simpler, smaller and more manageable and could provide useful phylogenetic information. In this study, the mt genome of a modern commercial cultivar A1 was sequenced via Illumina Hiseq XTen and PacBio Sequel platform. The assembled and annotated mitochondrial genomes of A1 were composed of two circular DNA molecules, one large and one small, which were named Chromosome 1 and Chromosome 2. The two distinct circular chromosomes of mitogenome construct is consisted with other sugarcane cultivars i.e., Saccharum officinarum Khon Kaen 3 and Saccharum spp. hybrids ROC22 and FN15. The Chromosome 1 of A1 mitogenome is 300,822 bp in length with the GC content of 43.94%, and 7.14% of Chromosome 1 sequences (21,468 nucleotides) are protein coding genes (PCGs) while 92.86% (279,354 nucleotides) are intergenic region. The length of Chromosome 2 is 144,744 bp with the GC content of 43.57%, and 8.20% of Chromosome 2 sequences (11,865 nucleotides) are PCGs while 91.80% (132,879 nucleotides) are intergenic region. A total of 43 genes are located on Chromosome 1, which contains 22 PCGs (six nad genes, four rps genes, four atp genes, three ccm genes, three cox genes, one mat gene and one mtt gene) and 21 non-coding genes including 15 tRNAs and 6 rRNAs. Chromosome 2 includes 18 genes in total, which contains 13 PCGs (four nad genes, three rps genes, two atp genes, one ccm gene, one cob gene, one cox gene and one rpl gene) and five non-coding genes (tRNA genes). Analysis of codon usage of 35 PCGs showed that codon ending in A/U was preferred. Investigation of gene composition indicated that the types and copy numbers of CDS genes, tRNAs and rRNAs of A1 and FN15 were identical. The cox1 gene has two copies and the trnP gene has one copy in A1, FN15 and ROC22 three lines, while there is only one copy of cox1 and two copies of trnP in S. officinarum Khon Kaen 3. In addition, S. officinarum Khon Kaen 3 have no nad1 gene and rps7 gene. 100 sequence repeats, 38 SSRs and 444 RNA editing sites in A1 mt genome were detected. Moreover, the maximum likelihood phylogenetic analysis found that A1 were more closely related to S. spp. hybrid (ROC22 and FN15) and S. officinarum (Khon Kaen 3). Herein, the complete mt genome of A1 will provide essential DNA molecular information for further phylogenetic and evolutionary analysis for Saccharum and Poaceae.
Collapse
|
26
|
Chen L, Ren W, Zhang B, Chen W, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Zhang Y. Organelle Comparative Genome Analysis Reveals Novel Alloplasmic Male Sterility with orf112 in Brassica oleracea L. Int J Mol Sci 2021; 22:ijms222413230. [PMID: 34948024 PMCID: PMC8703919 DOI: 10.3390/ijms222413230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
B. oleracea Ogura CMS is an alloplasmic male-sterile line introduced from radish by interspecific hybridization and protoplast fusion. The introduction of alien cytoplasm resulted in many undesirable traits, which affected the yield of hybrids. Therefore, it is necessary to identify the composition and reduce the content of alien cytoplasm in B. oleracea Ogura CMS. In the present study, we sequenced, assembled, and compared the organelle genomes of Ogura CMS cabbage and its maintainer line. The chloroplast genome of Ogura-type cabbage was completely derived from normal-type cabbage, whereas the mitochondrial genome was recombined from normal-type cabbage and Ogura-type radish. Nine unique regions derived from radish were identified in the mitochondrial genome of Ogura-type cabbage, and the total length of these nine regions was 35,618 bp, accounting for 13.84% of the mitochondrial genome. Using 32 alloplasmic markers designed according to the sequences of these nine regions, one novel sterile source with less alien cytoplasm was discovered among 305 materials and named Bel CMS. The size of the alien cytoplasm in Bel CMS was 21,587 bp, accounting for 8.93% of its mtDNA, which was much less than that in Ogura CMS. Most importantly, the sterility gene orf138 was replaced by orf112, which had a 78-bp deletion, in Bel CMS. Interestingly, Bel CMS cabbage also maintained 100% sterility, although orf112 had 26 fewer amino acids than orf138. Field phenotypic observation showed that Bel CMS was an excellent sterile source with stable 100% sterility and no withered buds at the early flowering stage, which could replace Ogura CMS in cabbage heterosis utilization.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wendi Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- Correspondence:
| |
Collapse
|
27
|
Liu H, Yu J, Yu X, Zhang D, Chang H, Li W, Song H, Cui Z, Wang P, Luo Y, Wang F, Wang D, Li Z, Huang Z, Fu A, Xu M. Structural variation of mitochondrial genomes sheds light on evolutionary history of soybeans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1456-1472. [PMID: 34587339 DOI: 10.1111/tpj.15522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar 'Williams 82' (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace 'Aiganhuang' (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa-GSe and G1-G5; 'Williams 82' and 'Aiganhuang' belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1-G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.
Collapse
Affiliation(s)
- Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Junping Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dan Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Han Chang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haifeng Song
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yixin Luo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dagang Wang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Zhi Li
- Fuyang Academy of Agricultural Sciences, Fuyang, Anhui, 236000, China
| | - Zhiping Huang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
28
|
Masutani B, Arimura SI, Morishita S. Investigating the mitochondrial genomic landscape of Arabidopsis thaliana by long-read sequencing. PLoS Comput Biol 2021; 17:e1008597. [PMID: 33434206 PMCID: PMC7833223 DOI: 10.1371/journal.pcbi.1008597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/25/2021] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Plant mitochondrial genomes have distinctive features compared to those of animals; namely, they are large and divergent, with sizes ranging from hundreds of thousands of to a few million bases. Recombination among repetitive regions is thought to produce similar structures that differ slightly, known as "multipartite structures," which contribute to different phenotypes. Although many reference plant mitochondrial genomes represent almost all the genes in mitochondria, the full spectrum of their structures remains largely unknown. The emergence of long-read sequencing technology is expected to yield this landscape; however, many studies aimed to assemble only one representative circular genome, because properly understanding multipartite structures using existing assemblers is not feasible. To elucidate multipartite structures, we leveraged the information in existing reference genomes and classified long reads according to their corresponding structures. We developed a method that exploits two classic algorithms, partial order alignment (POA) and the hidden Markov model (HMM) to construct a sensitive read classifier. This method enables us to represent a set of reads as a POA graph and analyze it using the HMM. We can then calculate the likelihood of a read occurring in a given cluster, resulting in an iterative clustering algorithm. For synthetic data, our proposed method reliably detected one variation site out of 9,000-bp synthetic long reads with a 15% sequencing-error rate and produced accurate clustering. It was also capable of clustering long reads from six very similar sequences containing only slight differences. For real data, we assembled putative multipartite structures of mitochondrial genomes of Arabidopsis thaliana from nine accessions sequenced using PacBio Sequel. The results indicated that there are recurrent and strain-specific structures in A. thaliana mitochondrial genomes.
Collapse
Affiliation(s)
- Bansho Masutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail:
| | - Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
29
|
Yang W, Zou J, Yu Y, Long W, Li S. Repeats in mitochondrial and chloroplast genomes characterize the ecotypes of the Oryza. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:7. [PMID: 37309528 PMCID: PMC10236085 DOI: 10.1007/s11032-020-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/28/2020] [Indexed: 06/14/2023]
Abstract
Mitochondria and chloroplast are very important organelles for organism, participating in basic life activity. Their genomes contain many repeats which can lead to a variation of genome structure. Oryza is an important genus for human beings' nutrition. Several mitochondrial and chloroplast genomes of Oryza have been sequenced, which help us to insight the distribution and evolution of the repeats in Oryza species. In this paper, we compared six mitochondrial and 13 chloroplast genomes of Oryza and found that the structures of mitochondrial genomes were more diverse than chloroplast genomes. Since repeats can change the structure of the genome, resulting in the structural diversity of the genome, we analyzed all repeats and found 31 repeats in mitochondrial and 13 repeats in chloroplast genomes. Further, we developed 21 pairs of MRS molecular markers and 12 pairs of CRS molecular markers based on mitochondrial repeats and chloroplast repeats, respectively. These molecular markers can be used to detect the repeat-mediated recombination in Oryza mitochondrial and chloroplast genomes by PCR or fluorescence quantification. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-020-01198-6.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Yajie Yu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
30
|
Roulet ME, Garcia LE, Gandini CL, Sato H, Ponce G, Sanchez-Puerta MV. Multichromosomal structure and foreign tracts in the Ombrophytum subterraneum (Balanophoraceae) mitochondrial genome. PLANT MOLECULAR BIOLOGY 2020; 103:623-638. [PMID: 32440763 DOI: 10.1007/s11103-020-01014-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Horizontal gene transfer (HGT) is frequent in parasitic plant mitochondria as a result of vascular connections established in host-parasite relationships. Recent studies of the holoparasitic plant Lophophytum mirabile (Balanophoraceae) revealed the unprecedented acquisition of a large amount of mitochondrial sequences from its legume host. We focused on a close relative, the generalist holoparasite Ombrophytum subterraneum, to examine the incidence of HGT events in the mitochondrial genome (mtDNA). The mtDNA of O. subterraneum assembles into 54 circular chromosomes, only 34 of which contain the 51 full-length coding regions. Numerous foreign tracts (totaling almost 100 kb, ~ 14% of the mtDNA), including 12 intact genes, were acquired by HGT from the Asteraceae hosts. Nine chromosomes concentrate most of those regions and eight are almost entirely foreign. Native homologs of each foreign gene coexist in the mtDNA and are potentially functional. A large proportion of shorter regions were related to the Fabaceae (a total of ~ 110 kb, 15.4%), some of which were shared with L. mirabile. We also found evidence of foreign sequences donated by angiosperm lineages not reported as hosts (Apocynaceae, Euphorbiaceae, Lamiaceae, and Malvales). We propose an evolutionary hypothesis that involves ancient transfers from legume hosts in the common ancestor of Ombrophytum and Lophophytum followed by more recent transfer events in L. mirabile. Besides, the O. subterraneum mtDNA was also subjected to additional HGT events from diverse angiosperm lineages, including large and recent transfers from the Asteraceae, and also from Lamiaceae.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Carolina L Gandini
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Hector Sato
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Cátedra de Botánica General-Herbario JUA, Alberdi 47, 4600, San Salvador de Jujuy, Jujuy, Argentina
| | - Gabriela Ponce
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
31
|
Nawae W, Shearman JR, Tangphatsornruang S, Punpee P, Yoocha T, Sangsrakru D, Naktang C, Sonthirod C, Wirojsirasak W, Ukoskit K, Sriroth K, Klomsa-Ard P, Pootakham W. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ 2020; 8:e9608. [PMID: 33240580 PMCID: PMC7676377 DOI: 10.7717/peerj.9608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 01/17/2023] Open
Abstract
Sugarcane contributes 80% of global sugar production and to bioethanol generation for the bioenergy industry. Its productivity is threatened by drought that can cause up to 60% yield loss. This study used RNA-Seq to gain a better understanding of the underlying mechanism by which drought-tolerant sugarcane copes with water stress. We compared gene expression in KPS01-12 (drought-tolerant genotype) and UT12 (drought-sensitive genotype) that have significantly different yield loss rates under drought conditions. We treated KPS01-12 and UT12 with mild and moderate water stress and found differentially expressed genes in various biological processes. KPS01-12 had higher expression of genes that were involved in water retention, antioxidant secondary metabolite biosynthesis, and oxidative and osmotic stress response than UT12. In contrast, the sensitive genotype had more down-regulated genes that were involved in photosynthesis, carbon fixation and Calvin cycle than the tolerant genotype. Our obtained expression profiles suggest that the tolerant sugarcane has a more effective genetic response than the sensitive genotype at the initiation of drought stress. The knowledge gained from this study may be applied in breeding programs to improve sugarcane production in drought conditions.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Jeremy R Shearman
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Prapat Punpee
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Warodom Wirojsirasak
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand.,Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Klanarong Sriroth
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Peeraya Klomsa-Ard
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
32
|
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y. Zygnema circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3361-3373. [PMID: 32206790 DOI: 10.1093/jxb/eraa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.
Collapse
Affiliation(s)
- Lauren M Orton
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Elisabeth Fitzek
- Biology/Computational Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld, Germany
| | - Xuehuan Feng
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - W Scott Grayburn
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Yanbin Yin
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
33
|
Logacheva MD, Schelkunov MI, Fesenko AN, Kasianov AS, Penin AA. Mitochondrial Genome of Fagopyrum esculentum and the Genetic Diversity of Extranuclear Genomes in Buckwheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E618. [PMID: 32408719 PMCID: PMC7285332 DOI: 10.3390/plants9050618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022]
Abstract
Fagopyrum esculentum (common buckwheat) is an important agricultural non-cereal grain plant. Despite extensive genetic studies, the information on its mitochondrial genome is still lacking. Using long reads generated by single-molecule real-time technology coupled with circular consensus sequencing (CCS) protocol, we assembled the buckwheat mitochondrial genome and detected that its prevalent form consists of 10 circular chromosomes with a total length of 404 Kb. In order to confirm the presence of a multipartite structure, we developed a new targeted assembly tool capable of processing long reads. The mitogenome contains all genes typical for plant mitochondrial genomes and long inserts of plastid origin (~6.4% of the total mitogenome length). Using this new information, we characterized the genetic diversity of mitochondrial and plastid genomes in 11 buckwheat cultivars compared with the ancestral subspecies, F. esculentum ssp. ancestrale. We found it to be surprisingly low within cultivars: Only three to six variations in the mitogenome and one to two in the plastid genome. In contrast, the divergence with F. esculentum ssp. ancestrale is much higher: 220 positions differ in the mitochondrial genome and 159 in the plastid genome. The SNPs in the plastid genome are enriched in non-synonymous substitutions, in particular in the genes involved in photosynthesis: psbA, psbC, and psbH. This presumably reflects the selection for the increased photosynthesis efficiency as a part of the buckwheat breeding program.
Collapse
Affiliation(s)
- Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Aleksey N. Fesenko
- Federal Scientific Center of Legumes and Groat Crops, 302502 Orel, Russia;
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| |
Collapse
|
34
|
The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms. PLoS One 2020; 15:e0231020. [PMID: 32294100 PMCID: PMC7159230 DOI: 10.1371/journal.pone.0231020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial genomes of flowering plants are well known for their large size, variable coding-gene set and fluid genome structure. The available mitochondrial genomes of the early angiosperms show extreme genetic diversity in genome size, structure, and sequences, such as rampant HGTs in Amborella mt genome, numerous repeated sequences in Nymphaea mt genome, and conserved gene evolution in Liriodendron mt genome. However, currently available early angiosperm mt genomes are still limited, hampering us from obtaining an overall picture of the mitogenomic evolution in angiosperms. Here we sequenced and assembled the draft mitochondrial genome of Magnolia biondii Pamp. from Magnoliaceae (magnoliids) using Oxford Nanopore sequencing technology. We recovered a single linear mitochondrial contig of 967,100 bp with an average read coverage of 122 × and a GC content of 46.6%. This draft mitochondrial genome contains a rich 64-gene set, similar to those of Liriodendron and Nymphaea, including 41 protein-coding genes, 20 tRNAs, and 3 rRNAs. Twenty cis-spliced and five trans-spliced introns break ten protein-coding genes in the Magnolia mt genome. Repeated sequences account for 27% of the draft genome, with 17 out of the 1,145 repeats showing recombination evidence. Although partially assembled, the approximately 1-Mb mt genome of Magnolia is still among the largest in angiosperms, which is possibly due to the expansion of repeated sequences, retention of ancestral mtDNAs, and the incorporation of nuclear genome sequences. Mitochondrial phylogenomic analysis of the concatenated datasets of 38 conserved protein-coding genes from 91 representatives of angiosperm species supports the sister relationship of magnoliids with monocots and eudicots, which is congruent with plastid evidence.
Collapse
|
35
|
Omelchenko DO, Makarenko MS, Kasianov AS, Schelkunov MI, Logacheva MD, Penin AA. Assembly and Analysis of the Complete Mitochondrial Genome of Capsella bursa-pastoris. PLANTS (BASEL, SWITZERLAND) 2020; 9:E469. [PMID: 32276324 PMCID: PMC7238199 DOI: 10.3390/plants9040469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
Shepherd's purse (Capsella bursa-pastoris) is a cosmopolitan annual weed and a promising model plant for studying allopolyploidization in the evolution of angiosperms. Though plant mitochondrial genomes are a valuable source of genetic information, they are hard to assemble. At present, only the complete mitogenome of C. rubella is available out of all species of the genus Capsella. In this work, we have assembled the complete mitogenome of C. bursa-pastoris using high-precision PacBio SMRT third-generation sequencing technology. It is 287,799 bp long and contains 32 protein-coding genes, 3 rRNAs, 25 tRNAs corresponding to 15 amino acids, and 8 open reading frames (ORFs) supported by RNAseq data. Though many repeat regions have been found, none of them is longer than 1 kbp, and the most frequent structural variant originated from these repeats is present in only 4% of the mitogenome copies. The mitochondrial DNA sequence of C. bursa-pastoris differs from C. rubella, but not from C. orientalis, by two long inversions, suggesting that C. orientalis could be its maternal progenitor species. In total, 377 C to U RNA editing sites have been detected. All genes except cox1 and atp8 contain RNA editing sites, and most of them lead to non-synonymous changes of amino acids. Most of the identified RNA editing sites are identical to corresponding RNA editing sites in A. thaliana.
Collapse
Affiliation(s)
- Denis O. Omelchenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
| | - Maxim S. Makarenko
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (A.S.K.); (M.I.S.); (M.D.L.); (A.A.P.)
| |
Collapse
|
36
|
Wang W, Lanfear R. Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants. Genome Biol Evol 2019; 11:3372-3381. [PMID: 31750905 PMCID: PMC7145664 DOI: 10.1093/gbe/evz256] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labor-intensive, and this phenomenon remains understudied. Here, we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms, and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. We also show that the relative abundance of the two structural haplotypes remains constant across multiple samples from a single individual plant, suggesting that the process which maintains equal frequency of the two haplotypes operates rapidly, consistent with the hypothesis that flip-flop recombination mediates chloroplast structural heteroplasmy. Our results suggest that previous claims of differences in chloroplast genome structure between species may need to be revisited.
Collapse
Affiliation(s)
- Weiwen Wang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
37
|
Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT, Gaiarsa JW, Diniz AL, Oliveira MDM, Ferreira SDS, Nishiyama MY, ten-Caten F, Ragagnin GT, Andrade PDM, de Souza RF, Nicastro GG, Pandya R, Kim C, Guo H, Durham AM, Carneiro MS, Zhang J, Zhang X, Zhang Q, Ming R, Schatz MC, Davidson B, Paterson AH, Heckerman D. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience 2019; 8:giz129. [PMID: 31782791 PMCID: PMC6884061 DOI: 10.1093/gigascience/giz129] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Collapse
Affiliation(s)
- Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Carolina Gimiliani Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Hayan Lee
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CACA94598, United States of America
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Jonas Weissmann Gaiarsa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Augusto Lima Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauro de Medeiros Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sávio de Siqueira Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Milton Yutaka Nishiyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP05503-900, Brazil
| | - Felipe ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Geovani Tolfo Ragagnin
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Pablo de Morais Andrade
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Gianlucca Gonçalves Nicastro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Ravi Pandya
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
- Department of Crop Science, Chungnam National University, 99 Daehak Ro Yuseong Gu, Deajeon,34134, South Korea
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - Alan Mitchell Durham
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, SP 05508-090, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, Araras, SP 13.565-905, Brazil
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Qing Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 201 W. Gregory Dr. Urbana, Urbana, Illinois 61801, United States of America
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 North Charles Street,Baltimore, MD 21218-2608, United States of America
| | - Bob Davidson
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - David Heckerman
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| |
Collapse
|
38
|
Varré JS, D'Agostino N, Touzet P, Gallina S, Tamburino R, Cantarella C, Ubrig E, Cardi T, Drouard L, Gualberto JM, Scotti N. Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. Int J Mol Sci 2019; 20:E4788. [PMID: 31561566 PMCID: PMC6801519 DOI: 10.3390/ijms20194788] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
Collapse
Affiliation(s)
- Jean-Stéphane Varré
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France.
| | - Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - José Manuel Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| |
Collapse
|
39
|
Lloyd Evans D, Hlongwane TT, Joshi SV, Riaño Pachón DM. The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics. PeerJ 2019; 7:e7558. [PMID: 31579570 PMCID: PMC6764373 DOI: 10.7717/peerj.7558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chloroplast genomes provide insufficient phylogenetic information to distinguish between closely related sugarcane cultivars, due to the recent origin of many cultivars and the conserved sequence of the chloroplast. In comparison, the mitochondrial genome of plants is much larger and more plastic and could contain increased phylogenetic signals. We assembled a consensus reference mitochondrion with Illumina TruSeq synthetic long reads and Oxford Nanopore Technologies MinION long reads. Based on this assembly we also analyzed the mitochondrial transcriptomes of sugarcane and sorghum and improved the annotation of the sugarcane mitochondrion as compared with other species. METHODS Mitochondrial genomes were assembled from genomic read pools using a bait and assemble methodology. The mitogenome was exhaustively annotated using BLAST and transcript datasets were mapped with HISAT2 prior to analysis with the Integrated Genome Viewer. RESULTS The sugarcane mitochondrion is comprised of two independent chromosomes, for which there is no evidence of recombination. Based on the reference assembly from the sugarcane cultivar SP80-3280 the mitogenomes of four additional cultivars (R570, LCP85-384, RB72343 and SP70-1143) were assembled (with the SP70-1143 assembly utilizing both genomic and transcriptomic data). We demonstrate that the sugarcane plastome is completely transcribed and we assembled the chloroplast genome of SP80-3280 using transcriptomic data only. Phylogenomic analysis using mitogenomes allow closely related sugarcane cultivars to be distinguished and supports the discrimination between Saccharum officinarum and Saccharum cultum as modern sugarcane's female parent. From whole chloroplast comparisons, we demonstrate that modern sugarcane arose from a limited number of Saccharum cultum female founders. Transcriptomic and spliceosomal analyses reveal that the two chromosomes of the sugarcane mitochondrion are combined at the transcript level and that splice sites occur more frequently within gene coding regions than without. We reveal one confirmed and one potential cytoplasmic male sterility (CMS) factor in the sugarcane mitochondrion, both of which are transcribed. CONCLUSION Transcript processing in the sugarcane mitochondrion is highly complex with diverse splice events, the majority of which span the two chromosomes. PolyA baited transcripts are consistent with the use of polyadenylation for transcript degradation. For the first time we annotate two CMS factors within the sugarcane mitochondrion and demonstrate that sugarcane possesses all the molecular machinery required for CMS and rescue. A mechanism of cross-chromosomal splicing based on guide RNAs is proposed. We also demonstrate that mitogenomes can be used to perform phylogenomic studies on sugarcane cultivars.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- Cambridge Sequence Services (CSS), Waterbeach, Cambridgeshire, UK
- Department of Computer Sciences, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | | | - Shailesh V. Joshi
- Plant Breeding, South African Sugarcane Research Institute, Durban, KwaZulu-Natal, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Diego M. Riaño Pachón
- Computational, Evolutionary and Systems Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
40
|
Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen AC. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet 2019; 15:e1008373. [PMID: 31469821 PMCID: PMC6742443 DOI: 10.1371/journal.pgen.1008373] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/12/2019] [Accepted: 08/16/2019] [Indexed: 01/27/2023] Open
Abstract
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
Collapse
Affiliation(s)
- Alexander Kozik
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Beth A. Rowan
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Lidija Berke
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - M. Eric Schranz
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - Richard W. Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Alan C. Christensen
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
41
|
Wu Z, Sloan DB. Recombination and intraspecific polymorphism for the presence and absence of entire chromosomes in mitochondrial genomes. Heredity (Edinb) 2019; 122:647-659. [PMID: 30356223 PMCID: PMC6461862 DOI: 10.1038/s41437-018-0153-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/08/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
Although mitochondrial genomes are typically thought of as single circular molecules, these genomes are fragmented into multiple chromosomes in many eukaryotes, raising intriguing questions about inheritance and (in)stability of mtDNA in such systems. A previous comparison of mitochondrial genomes from two different individuals of the angiosperm species Silene noctiflora found variation in the presence of entire mitochondrial chromosomes. Here, we expand on this work with a geographically diverse sampling of 25 S. noctiflora populations and the closely related species S. turkestanica and S. undulata. Using a combination of deep sequencing and PCR-based screening for the presence of 22 different mitochondrial chromosomes, we found extensive variation in the complement of chromosomes across individuals. Much of this variation could be attributed to recent chromosome loss events, suggesting that the massively expanded and fragmented mitochondrial genomes of S. noctiflora may have entered a phase of genome reduction in which they are losing entire chromosomes at a rapid rate. Sequence analysis of mitochondrial and plastid genomes revealed genealogical differences both between these organelles and within the mitochondrial genome, indicating a history of recombination. Evidence that recombination has generated novel combinations of alleles was more frequent between loci on different mitochondrial chromosomes than it was within chromosomes. Therefore, the fragmentation of mitochondrial genomes and the assortment of chromosomes during mitochondrial inheritance appears to have contributed to a history of sexual-like recombination in the mtDNA of this species.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
42
|
Wang S, Li D, Yao X, Song Q, Wang Z, Zhang Q, Zhong C, Liu Y, Huang H. Evolution and Diversification of Kiwifruit Mitogenomes through Extensive Whole-Genome Rearrangement and Mosaic Loss of Intergenic Sequences in a Highly Variable Region. Genome Biol Evol 2019; 11:1192-1206. [PMID: 30895302 PMCID: PMC6482417 DOI: 10.1093/gbe/evz063] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Angiosperm mitochondrial genomes (mitogenomes) are notable for their extreme diversity in both size and structure. However, our current understanding of this diversity is limited, and the underlying mechanism contributing to this diversity remains unclear. Here, we completely assembled and compared the mitogenomes of three kiwifruit (Actinidia) species, which represent an early divergent lineage in asterids. We found conserved gene content and fewer genomic repeats, particularly large repeats (>1 kb), in the three mitogenomes. However, sequence transfers such as intracellular events are variable and dynamic, in which both ancestral shared and recently species-specific events as well as complicated transfers of two plastid-derived sequences into the nucleus through the mitogenomic bridge were detected. We identified extensive whole-genome rearrangements among kiwifruit mitogenomes and found a highly variable V region in which fragmentation and frequent mosaic loss of intergenic sequences occurred, resulting in greatly interspecific variations. One example is the fragmentation of the V region into two regions, V1 and V2, giving rise to the two mitochondrial chromosomes of Actinidia chinensis. Finally, we compared the kiwifruit mitogenomes with those of other asterids to characterize their overall mitogenomic diversity, which identified frequent gain/loss of genes/introns across lineages. In addition to repeat-mediated recombination and import-driven hypothesis of genome size expansion reported in previous studies, our results highlight a pattern of dynamic structural variation in plant mitogenomes through global genomic rearrangements and species-specific fragmentation and mosaic loss of intergenic sequences in highly variable regions on the basis of a relatively large ancestral mitogenome.
Collapse
Affiliation(s)
- Shuaibin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaohong Yao
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qingwei Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zupeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Plant Germplasm Enhancement and Specially Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
43
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
44
|
Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution. G3-GENES GENOMES GENETICS 2019; 9:549-559. [PMID: 30563833 PMCID: PMC6385970 DOI: 10.1534/g3.118.200948] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plant mitochondrial genomes have excessive size relative to coding capacity, a low mutation rate in genes and a high rearrangement rate. They also have abundant non-tandem repeats often including pairs of large repeats which cause isomerization of the genome by recombination, and numerous repeats of up to several hundred base pairs that recombine only when the genome is stressed by DNA damaging agents or mutations in DNA repair pathway genes. Early work on mitochondrial genomes led to the suggestion that repeats in the size range from several hundred to a few thousand base pair are underrepresented. The repeats themselves are not well-conserved between species, and are not always annotated in mitochondrial sequence assemblies. We systematically identified and compared these repeats, which are important clues to mechanisms of DNA maintenance in mitochondria. We developed a tool to find and curate non-tandem repeats larger than 50bp and analyzed the complete mitochondrial sequences from 157 plant species. We observed an interesting difference between taxa: the repeats are larger and more frequent in the vascular plants. Analysis of closely related species also shows that plant mitochondrial genomes evolve in dramatic bursts of breakage and rejoining, complete with DNA sequence gain and loss. We suggest an adaptive explanation for the existence of the repeats and their evolution.
Collapse
|
45
|
Dong S, Zhao C, Chen F, Liu Y, Zhang S, Wu H, Zhang L, Liu Y. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 2018; 19:614. [PMID: 30107780 PMCID: PMC6092842 DOI: 10.1186/s12864-018-4991-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as 'fossilized'. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms. RESULTS Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome. CONCLUSIONS The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.
Collapse
Affiliation(s)
- Shanshan Dong
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chaoxian Zhao
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouzhou Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
46
|
Tsujimura M, Kaneko T, Sakamoto T, Kimura S, Shigyo M, Yamagishi H, Terachi T. Multichromosomal structure of the onion mitochondrial genome and a transcript analysis. Mitochondrion 2018; 46:179-186. [PMID: 30006008 DOI: 10.1016/j.mito.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022]
Abstract
The structures of plant mitochondrial genomes are more complex than those of animals. One of the reasons for this is that plant mitochondrial genomes typically have many long and short repeated sequences and intra- and intermolecular recombination may create various DNA molecules in this organelle. Recombination may sometimes create a novel gene that causes cytoplasmic male sterility (CMS). The onion has several cytoplasm types, with some causing CMS while others do not. The complete mitochondrial genome sequence of the onion was reported for an inbred line with CMS-S cytoplasm; however, the number of differences between onion strains remains unclear, and studies on purified mitochondrial DNA (mtDNA) have not yet been performed. Furthermore, analyses of transcripts in the mitochondrial genome have not been conducted. In the present study, we examined the mitochondrial genome of the onion variety "Momiji-3" (Allium cepa L.) possessing CMS-S-type cytoplasm using next-generation sequencing (NGS). The "Momiji-3" mitochondrial genome mainly exists as three circles as a result of recombination through repeated sequences and we herein succeeded for the first time in visualizing its structure using pulsed field gel electrophoresis (PFGE). The ability to clarify the structure of the mitochondrial genome is rare in plant mitochondria; therefore, "Momiji-3" represents a good example for elucidating complex plant mitochondrial genomes. We also mapped transcript data to the mitochondrial genome in order to identify the RNA-editing positions in all gene-coding regions and estimate the expression levels of genes. We identified 635 editing positions in gene-coding regions. Start and stop codons were created by RNA editing in six genes (nad1, nad4L, atp6, atp9, ccmFC, and orf725). The transcript amounts of novel open reading frames (ORFs) were all markedly lower than those of functional genes. These results suggest that a new functional gene was not present in the mitochondrial genome of "Momiji-3", and that the candidate gene for CMS is orf725, as previously reported.
Collapse
Affiliation(s)
- Mai Tsujimura
- Plant Organelle Genome Research Center, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Tomoaki Sakamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan; Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroshi Yamagishi
- Plant Organelle Genome Research Center, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toru Terachi
- Plant Organelle Genome Research Center, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan; Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
47
|
Thirugnanasambandam PP, Hoang NV, Henry RJ. The Challenge of Analyzing the Sugarcane Genome. FRONTIERS IN PLANT SCIENCE 2018; 9:616. [PMID: 29868072 PMCID: PMC5961476 DOI: 10.3389/fpls.2018.00616] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/18/2018] [Indexed: 05/04/2023]
Abstract
Reference genome sequences have become key platforms for genetics and breeding of the major crop species. Sugarcane is probably the largest crop produced in the world (in weight of crop harvested) but lacks a reference genome sequence. Sugarcane has one of the most complex genomes in crop plants due to the extreme level of polyploidy. The genome of modern sugarcane hybrids includes sub-genomes from two progenitors Saccharum officinarum and S. spontaneum with some chromosomes resulting from recombination between these sub-genomes. Advancing DNA sequencing technologies and strategies for genome assembly are making the sugarcane genome more tractable. Advances in long read sequencing have allowed the generation of a more complete set of sugarcane gene transcripts. This is supporting transcript profiling in genetic research. The progenitor genomes are being sequenced. A monoploid coverage of the hybrid genome has been obtained by sequencing BAC clones that cover the gene space of the closely related sorghum genome. The complete polyploid genome is now being sequenced and assembled. The emerging genome will allow comparison of related genomes and increase understanding of the functioning of this polyploidy system. Sugarcane breeding for traditional sugar and new energy and biomaterial uses will be enhanced by the availability of these genomic resources.
Collapse
Affiliation(s)
- Prathima P. Thirugnanasambandam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- ICAR - Sugarcane Breeding Institute, Coimbatore, India
| | - Nam V. Hoang
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
48
|
Hoang NV, Furtado A, Thirugnanasambandam PP, Botha FC, Henry RJ. De novo assembly and characterizing of the culm-derived meta-transcriptome from the polyploid sugarcane genome based on coding transcripts. Heliyon 2018; 4:e00583. [PMID: 29862346 PMCID: PMC5968133 DOI: 10.1016/j.heliyon.2018.e00583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Sugarcane biomass has been used for sugar, bioenergy and biomaterial production. The majority of the sugarcane biomass comes from the culm, which makes it important to understand the genetic control of biomass production in this part of the plant. A meta-transcriptome of the culm was obtained in an earlier study by using about one billion paired-end (150 bp) reads of deep RNA sequencing of samples from 20 diverse sugarcane genotypes and combining de novo assemblies from different assemblers and different settings. Although many genes could be recovered, this resulted in a large combined assembly which created the need for clustering to reduce transcript redundancy while maintaining gene content. Here, we present a comprehensive analysis of the effect of different assembly settings and clustering methods on de novo assembly, annotation and transcript profiling focusing especially on the coding transcripts from the highly polyploid sugarcane genome. The new coding sequence-based transcript clustering resulted in a better representation of transcripts compared to the earlier approach, having 121,987 contigs, which included 78,052 main and 43,935 alternative transcripts. About 73%, 67%, 61% and 10% of the transcriptome was annotated against the NCBI NR protein database, GO terms, orthologous groups and KEGG orthologies, respectively. Using this set for a differential gene expression analysis between the young and mature sugarcane culm tissues, a total of 822 transcripts were found to be differentially expressed, including key transcripts involved in sugar/fiber accumulation in sugarcane. In the context of the lack of a whole genome sequence for sugarcane, the availability of a well annotated culm-derived meta-transcriptome through deep sequencing provides useful information on coding genes specific to the sugarcane culm and will certainly contribute to understanding the process of carbon partitioning, and biomass accumulation in the sugarcane culm.
Collapse
Affiliation(s)
- Nam V. Hoang
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Prathima P. Thirugnanasambandam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- ICAR - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- Sugar Research Australia, Indooroopilly, Queensland, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
49
|
Miller JR, Dilley KA, Harkins DM, Torralba MG, Moncera KJ, Beeri K, Goglin K, Stockwell TB, Sutton GG, Shabman RS. Initial genome sequencing of the sugarcane CP 96-1252 complex hybrid. F1000Res 2017; 6:688. [PMID: 28721204 PMCID: PMC5497815 DOI: 10.12688/f1000research.11629.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
The CP 96-1252 cultivar of sugarcane is a complex hybrid of commercial importance. DNA was extracted from lab-grown leaf tissue and sequenced. The raw Illumina DNA sequencing results provide 101 Gbp of genome sequence reads. The dataset is available from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA345486/.
Collapse
Affiliation(s)
| | - Kari A Dilley
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | | | | | - Karen Beeri
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned--a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution--the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|