1
|
Craig GE, Ramos L, Essig SR, Eagles NJ, Jaffe AE, Martinowich K, Hallock HL. Stimulation of Locus Ceruleus Inputs to the Prelimbic Cortex in Mice Induces Cell Type-Specific Expression of the Apoe Gene. eNeuro 2024; 11:ENEURO.0328-24.2024. [PMID: 39632090 PMCID: PMC11675532 DOI: 10.1523/eneuro.0328-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The medial frontal cortex (mFC) and locus ceruleus (LC) are two brain areas that have been implicated in a range of cognitive phenomena, such as attention, memory, and decision-making. Regulators of these brain regions at the molecular level are not well understood but might help to elucidate underlying mechanisms of disorders that present with deficits in these cognitive domains. To probe this, we used chemogenetic stimulation of neurons in the LC with axonal projections to the prelimbic subregion (PrL) of the mFC and subsequent bulk RNA sequencing from the mouse PrL. We found that stimulation of this circuit caused an increase in transcription of a host of genes, including the Apoe gene. To investigate cell type-specific expression of Apoe in the PrL, we used a dual-virus approach to express either the excitatory DREADD receptor hM3Dq in LC neurons with projections to the PrL or a control virus and found that increases in Apoe expression in the PrL following depolarization of LC inputs is enriched in GABAergic neurons in a sex-dependent manner. The results of these experiments yield insights into how Apoe expression affects function in a cortical microcircuit that is important for attention, memory, and decision-making and point to interneuron-specific expression of Apoe as a potential biomarker for circuit function in disorders such as attention-deficit hyperactivity disorder, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, Pennsylvania 18042
| | - Samuel R Essig
- Neuroscience Program, Lafayette College, Easton, Pennsylvania 18042
| | - Nicholas J Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Henry L Hallock
- Neuroscience Program, Lafayette College, Easton, Pennsylvania 18042
| |
Collapse
|
2
|
Sansalone L, Evans RC, Twedell E, Zhang R, Khaliq ZM. Corticonigral projections recruit substantia nigra pars lateralis dopaminergic neurons for auditory threat memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621665. [PMID: 39574768 PMCID: PMC11580856 DOI: 10.1101/2024.11.04.621665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Dopaminergic neurons (DANs) in the lateral substantia nigra project to the tail of striatum (TS), which is involved in threat conditioning. Auditory cortex also contributes to threatening behaviors, but whether it directly interacts with midbrain DANs and how these interactions might influence threat conditioning remain unclear. Here, functional mapping revealed robust excitatory input from auditory and temporal association cortexes to substantia nigra pars lateralis (SNL) DANs, but not to pars compacta (SNc) DANs. SNL DANs exhibited unique firing patterns, with irregular pacemaking and higher maximal firing, reflecting different channel complements than SNc DANs. Behaviorally, inhibiting cortex to SNL projections impaired memory retrieval during auditory threat conditioning. Thus, we demonstrate robust corticonigral projections to SNL DANs, contrasting with previous observations of sparse cortical input to substantia nigra DANs. These findings distinguish SNL DANs from other nigral populations, highlighting their role in threatening behaviors and expanding knowledge of cortex to midbrain interactions.
Collapse
Affiliation(s)
- Lorenzo Sansalone
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Rebekah C. Evans
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
| | - Emily Twedell
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
3
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially resolved transcriptomic signatures of hippocampal subregions and Arc-expressing ensembles in active place avoidance memory. Front Mol Neurosci 2024; 17:1386239. [PMID: 39544521 PMCID: PMC11560897 DOI: 10.3389/fnmol.2024.1386239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc + and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc + and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Shwetha Phatarpekar
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victoria Sook Keng Tung
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alejandro Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Oleg V. Evgrafov
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
4
|
Joy MT, Carmichael ST. Activity-dependent transcriptional programs in memory regulate motor recovery after stroke. Commun Biol 2024; 7:1048. [PMID: 39183218 PMCID: PMC11345429 DOI: 10.1038/s42003-024-06723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Stroke causes death of brain tissue leading to long-term deficits. Behavioral evidence from neurorehabilitative therapies suggest learning-induced neuroplasticity can lead to beneficial outcomes. However, molecular and cellular mechanisms that link learning and stroke recovery are unknown. We show that in a mouse model of stroke, which exhibits enhanced recovery of function due to genetic perturbations of learning and memory genes, animals display activity-dependent transcriptional programs that are normally active during formation or storage of new memories. The expression of neuronal activity-dependent genes are predictive of recovery and occupy a molecular latent space unique to motor recovery. With motor recovery, networks of activity-dependent genes are co-expressed with their transcription factor targets forming gene regulatory networks that support activity-dependent transcription, that are normally diminished after stroke. Neuronal activity-dependent changes at the circuit level are influenced by interactions with microglia. At the molecular level, we show that enrichment of activity-dependent programs in neurons lead to transcriptional changes in microglia where they differentially interact to support intercellular signaling pathways for axon guidance, growth and synaptogenesis. Together, these studies identify activity-dependent transcriptional programs as a fundamental mechanism for neural repair post-stroke.
Collapse
Affiliation(s)
- Mary T Joy
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Craig GE, Ramos L, Essig SR, Eagles NJ, Jaffe AE, Martinowich K, Hallock HL. Stimulation of locus coeruleus inputs to the frontal cortex in mice induces cell type-specific expression of the Apoe gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604695. [PMID: 39091890 PMCID: PMC11291023 DOI: 10.1101/2024.07.22.604695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Deficits in attention are common across a range of neuropsychiatric disorders. A multitude of brain regions, including the frontal cortex (FC) and locus coeruleus (LC), have been implicated in attention. Regulators of these brain regions at the molecular level are not well understood, but might elucidate underlying mechanisms of disorders with attentional deficits. To probe this, we used chemogenetic stimulation of neurons in the LC with axonal projections to the FC, and subsequent bulk RNA-sequencing from the mouse FC. We found that stimulation of this circuit caused an increase in transcription of the Apoe gene. To investigate cell type-specific expression of Apoe in the FC, we used a dual-virus approach to express either the excitatory DREADD receptor hM3Dq in LC neurons with projections to the FC, or a control virus, and found that increases in Apoe expression in the FC following depolarization of LC inputs is enriched in GABAergic neurons in a sex-dependent manner. The results of these experiments yield insights into how Apoe expression affects function in cortical microcircuits that are important for attention-guided behavior, and point to interneuron-specific expression of Apoe as a potential target for the amelioration of attention symptoms in disorders such as attention-deficit hyperactivity disorder (ADHD), schizophrenia, and Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | - Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Samuel R. Essig
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | |
Collapse
|
6
|
Wang YZ, Castillon CCM, Gebis KK, Bartom ET, d'Azzo A, Contractor A, Savas JN. Notch receptor-ligand binding facilitates extracellular vesicle-mediated neuron-to-neuron communication. Cell Rep 2024; 43:113680. [PMID: 38241148 PMCID: PMC10976296 DOI: 10.1016/j.celrep.2024.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte C M Castillon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kamil K Gebis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially Resolved Transcriptomic Signatures of Hippocampal Subregions and Arc-Expressing Ensembles in Active Place Avoidance Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573225. [PMID: 38260257 PMCID: PMC10802250 DOI: 10.1101/2023.12.30.573225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc+ and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc+ and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Shwetha Phatarpekar
- Institute of Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Victoria Sook Keng Tung
- School of Graduates Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - A. Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Oleg V. Evgrafov
- Institute of Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- School of Graduates Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural & Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
8
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. Hear Res 2023; 438:108878. [PMID: 37659220 PMCID: PMC10529106 DOI: 10.1016/j.heares.2023.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. Using an animal model of adult, male Sprague-Dawley rats, this report is the first to identify genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie long-lasting discriminative memory formation of acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects. Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG rno04725), extra-cellular matrix receptor interaction (KEGG rno04512), and neuroactive receptor interaction (KEGG rno04080) among the top biological pathways are likely to be important for auditory discrimination learning. The findings characterize candidate effectors underlying the early stages of changes in cortical and behavioral function to ultimately support the formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate experiences that induce long-lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M S Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - K L Knudtson
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ, USA; Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ, USA; Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ, USA; Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Graham G, Chimenti MS, Knudtson KL, Grenard DN, Co L, Sumner M, Tchou T, Bieszczad KM. Learning induces unique transcriptional landscapes in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536914. [PMID: 37090563 PMCID: PMC10120736 DOI: 10.1101/2023.04.15.536914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Learning can induce neurophysiological plasticity in the auditory cortex at multiple timescales. Lasting changes to auditory cortical function that persist over days, weeks, or even a lifetime, require learning to induce de novo gene expression. Indeed, transcription is the molecular determinant for long-term memories to form with a lasting impact on sound-related behavior. However, auditory cortical genes that support auditory learning, memory, and acquired sound-specific behavior are largely unknown. This report is the first to identify in young adult male rats (Sprague-Dawley) genome-wide changes in learning-induced gene expression within the auditory cortex that may underlie the formation of long-lasting discriminative memory for acoustic frequency cues. Auditory cortical samples were collected from animals in the initial learning phase of a two-tone discrimination sound-reward task known to induce sound-specific neurophysiological and behavioral effects (e.g., Shang et al., 2019). Bioinformatic analyses on gene enrichment profiles from bulk RNA sequencing identified cholinergic synapse (KEGG 04725), extra-cellular matrix receptor interaction (KEGG 04512) , and neuroactive ligand-receptor interaction (KEGG 04080) as top biological pathways for auditory discrimination learning. The findings characterize key candidate effectors underlying changes in cortical function that support the initial formation of long-term discriminative auditory memory in the adult brain. The molecules and mechanisms identified are potential therapeutic targets to facilitate lasting changes to sound-specific auditory function in adulthood and prime for future gene-targeted investigations.
Collapse
Affiliation(s)
- G Graham
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M S Chimenti
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - K L Knudtson
- Iowa Institute of Human Genetics, Univ. of Iowa Carver College of Medicine, Iowa City, IA
| | - D N Grenard
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - L Co
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - M Sumner
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - T Tchou
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
| | - K M Bieszczad
- Neuroscience Graduate Program, Rutgers Univ., Piscataway, NJ
- Behavioral and Systems Neuroscience, Dept. of Psychology, Rutgers Univ., Piscataway, NJ
- Rutgers Center for Cognitive Science, Rutgers Univ., Piscataway, NJ
- Dept. of Otolaryngology-Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
11
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
12
|
Sardoo AM, Zhang S, Ferraro TN, Keck TM, Chen Y. Decoding brain memory formation by single-cell RNA sequencing. Brief Bioinform 2022; 23:6713514. [PMID: 36156112 PMCID: PMC9677489 DOI: 10.1093/bib/bbac412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
To understand how distinct memories are formed and stored in the brain is an important and fundamental question in neuroscience and computational biology. A population of neurons, termed engram cells, represents the physiological manifestation of a specific memory trace and is characterized by dynamic changes in gene expression, which in turn alters the synaptic connectivity and excitability of these cells. Recent applications of single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) are promising approaches for delineating the dynamic expression profiles in these subsets of neurons, and thus understanding memory-specific genes, their combinatorial patterns and regulatory networks. The aim of this article is to review and discuss the experimental and computational procedures of sc/snRNA-seq, new studies of molecular mechanisms of memory aided by sc/snRNA-seq in human brain diseases and related mouse models, and computational challenges in understanding the regulatory mechanisms underlying long-term memory formation.
Collapse
Affiliation(s)
- Atlas M Sardoo
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Thomas M Keck
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA,Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Corresponding author. Yong Chen, Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA. Tel.: +1 856 256 4500; E-mail:
| |
Collapse
|
13
|
Zhang S, Xie L, Cui Y, Carone BR, Chen Y. Detecting Fear-Memory-Related Genes from Neuronal scRNA-seq Data by Diverse Distributions and Bhattacharyya Distance. Biomolecules 2022; 12:biom12081130. [PMID: 36009024 PMCID: PMC9405875 DOI: 10.3390/biom12081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The detection of differentially expressed genes (DEGs) is one of most important computational challenges in the analysis of single-cell RNA sequencing (scRNA-seq) data. However, due to the high heterogeneity and dropout noise inherent in scRNAseq data, challenges in detecting DEGs exist when using a single distribution of gene expression levels, leaving much room to improve the precision and robustness of current DEG detection methods. Here, we propose the use of a new method, DEGman, which utilizes several possible diverse distributions in combination with Bhattacharyya distance. DEGman can automatically select the best-fitting distributions of gene expression levels, and then detect DEGs by permutation testing of Bhattacharyya distances of the selected distributions from two cell groups. Compared with several popular DEG analysis tools on both large-scale simulation data and real scRNA-seq data, DEGman shows an overall improvement in the balance of sensitivity and precision. We applied DEGman to scRNA-seq data of TRAP; Ai14 mouse neurons to detect fear-memory-related genes that are significantly differentially expressed in neurons with and without fear memory. DEGman detected well-known fear-memory-related genes and many novel candidates. Interestingly, we found 25 DEGs in common in five neuron clusters that are functionally enriched for synaptic vesicles, indicating that the coupled dynamics of synaptic vesicles across in neurons plays a critical role in remote memory formation. The proposed method leverages the advantage of the use of diverse distributions in DEG analysis, exhibiting better performance in analyzing composite scRNA-seq datasets in real applications.
Collapse
Affiliation(s)
- Shaoqiang Zhang
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Linjuan Xie
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yaxuan Cui
- Department of Computer Science, College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Benjamin R. Carone
- Department of Biology and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Department of Biology and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
- Correspondence: ; Tel.: +1-856-256-4500
| |
Collapse
|
14
|
Luo B, Li J, Liu J, Li F, Gu M, Xiao H, Lei S, Xiao Z. Frequency-Dependent Plasticity in the Temporal Association Cortex Originates from the Primary Auditory Cortex, and Is Modified by the Secondary Auditory Cortex and the Medial Geniculate Body. J Neurosci 2022; 42:5254-5267. [PMID: 35613891 PMCID: PMC9236291 DOI: 10.1523/jneurosci.1481-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022] Open
Abstract
The brain areas that mediate the formation of auditory threat memory and perceptual decisions remain uncertain to date. Candidates include the primary (A1) and secondary (A2) auditory cortex, the medial division of the medial geniculate body (MGm), amygdala, and the temporal association cortex. We used chemogenetic and optogenetic manipulations with in vivo and in vitro patch-clamp recordings to assess the roles of these brain regions in threat memory learning in female mice. We found that conditioned sound (CS) frequency-dependent plasticity resulted in the formation of auditory threat memory in the temporal association cortex. This neural correlated auditory threat memory depended on CS frequency information from A1 glutamatergic subthreshold monosynaptic inputs, CS lateral inhibition from A2 glutamatergic disynaptic inputs, and non-frequency-specific facilitation from MGm glutamatergic monosynaptic inputs. These results indicate that the A2 and MGm work together in an inhibitory-facilitative role.SIGNIFICANCE STATEMENT: The ability to recognize specific sounds to avoid predators or seek prey is a useful survival tool. Improving this ability through experiential learning is an added advantage requiring neural plasticity. As an example, humans must learn to distinguish the sound of a car horn, and thus avoid oncoming traffic. Our research discovered that the temporal association cortex can encode this kind of auditory information through tonal receptive field plasticity. In addition, the results revealed the underlying synaptic mechanisms of this process. These results extended our understanding of how meaningful auditory information is processed in an animal's brain.
Collapse
Affiliation(s)
- Bingmin Luo
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Li
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingpeng Liu
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Funi Li
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Miaoqing Gu
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haoran Xiao
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Shujun Lei
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Key Laboratory of Psychiatric Disorders of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
- General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| |
Collapse
|
15
|
The Influence of Stomach Back-Shu and Front-Mu Points on Insular Functional Connectivity in Functional Dyspepsia Rat Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2771094. [PMID: 34621320 PMCID: PMC8490795 DOI: 10.1155/2021/2771094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Functional Dyspepsia (FD) is a common functional gastrointestinal disease, which can reduce the quality of life in patients. Prior research has indicated that insula is closely related to FD and that acupuncture can regulate the functional connectivity (FC) of FD. Therefore, we hypothesized that acupuncture on FD was effected through the insular pathway. To test our hypothesis, we performed electroacupuncture (EA) on FD rat models and then examined the FC between insula and other brain regions through resting-state functional magnetic resonance imaging (rs-fMRI). Seven-day-old male infant Sprague-Dawley (SD) rats were randomly divided into control group, FD model group, and FD acupuncture group, with twelve rats per group (n = 36). Upon establishing successful models, the FD acupuncture group was subjected to EA intervention using Stomach back-shu (BL-21) and front-mu (RN-12) points for ten consecutive days for durations of 20 minutes each day. After intervention, each group was subject to rs-fMRI. The digital image data obtained were analyzed using FC analysis methods. Subsequently, gastric ligation was performed to measure gastric emptying rates. Before EA intervention, the FD model group exhibited decreased functional connections between the insula and a number of brain regions. After EA intervention, FD acupuncture group exhibited increasing FC between insula and regions when compared to the FD model group, such as the primary somatosensory cortex (S1), hippocampal CA3 (CA3), polymorphic layer of dentate gyrus (PoDG), caudate putamen (CPu), and oral pontine reticular nuclei (PnO) (P < 0.05); decreasing FC was also exhibited between insula and regions such as the bilateral primary and secondary motor cortexes (M1/2), paraventricular hypothalamic nucleus (PVA), and limbic cortex (LC). These findings indicate that the effective treatment of FD using EA may be through regulating the abnormal FC between insula and several brain regions, in particular CA3, PoDG, and PVA.
Collapse
|
16
|
Fuentes-Ramos M, Alaiz-Noya M, Barco A. Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research. Neurosci Biobehav Rev 2021; 127:865-875. [PMID: 34097980 DOI: 10.1016/j.neubiorev.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Transcription and epigenetic changes are integral components of the neuronal response to stimulation and have been postulated to be drivers or substrates for enduring changes in animal behavior, including learning and memory. Memories are thought to be deposited in neuronal assemblies called engrams, i.e., groups of cells that undergo persistent physical or chemical changes during learning and are selectively reactivated to retrieve the memory. Despite the research progress made in recent years, the identity of specific epigenetic changes, if any, that occur in these cells and subsequently contribute to the persistence of memory traces remains unknown. The analysis of these changes is challenging due to the difficulty of exploring molecular alterations that only occur in a relatively small percentage of cells embedded in a complex tissue. In this review, we discuss the recent advances in this field and the promise of next-generation sequencing (NGS) and epigenome editing methods for overcoming these challenges and address long-standing questions concerning the role of epigenetic mechanisms in memory encoding, maintenance and expression.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta Alaiz-Noya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
17
|
Persistent transcriptional programmes are associated with remote memory. Nature 2020; 587:437-442. [DOI: 10.1038/s41586-020-2905-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
18
|
Tyssowski KM, Letai KC, Rendall SD, Tan C, Nizhnik A, Kaeser PS, Gray JM. Firing Rate Homeostasis Can Occur in the Absence of Neuronal Activity-Regulated Transcription. J Neurosci 2019; 39:9885-9899. [PMID: 31672790 PMCID: PMC6978944 DOI: 10.1523/jneurosci.1108-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023] Open
Abstract
Despite dynamic inputs, neuronal circuits maintain relatively stable firing rates over long periods. This maintenance of firing rate, or firing rate homeostasis, is likely mediated by homeostatic mechanisms such as synaptic scaling and regulation of intrinsic excitability. Because some of these homeostatic mechanisms depend on transcription of activity-regulated genes, including Arc and Homer1a, we hypothesized that activity-regulated transcription would be required for firing rate homeostasis. Surprisingly, however, we found that cultured mouse cortical neurons from both sexes grown on multi-electrode arrays homeostatically adapt their firing rates to persistent pharmacological stimulation even when activity-regulated transcription is disrupted. Specifically, we observed firing rate homeostasis in Arc knock-out neurons, as well as knock-out neurons lacking the activity-regulated transcription factors AP1 and SRF. Firing rate homeostasis also occurred normally during acute pharmacological blockade of transcription. Thus, firing rate homeostasis in response to increased neuronal activity can occur in the absence of neuronal-activity-regulated transcription.SIGNIFICANCE STATEMENT Neuronal circuits maintain relatively stable firing rates even in the face of dynamic circuit inputs. Understanding the molecular mechanisms that enable this firing rate homeostasis could potentially provide insight into neuronal diseases that present with an imbalance of excitation and inhibition. It has long been proposed that activity-regulated transcription could underlie firing rate homeostasis because activity-regulated genes turn on when neurons are above their target firing rates and include many genes that could regulate firing rate. Surprisingly, despite this prediction, we found that cortical neurons can undergo firing rate homeostasis in the absence of activity-regulated transcription, indicating that firing rate homeostasis can be controlled by non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | | | | | - Chao Tan
- Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Pascal S Kaeser
- Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
19
|
de la Fuente V, Medina C, Falasco G, Urrutia L, Kravitz AV, Urbano FJ, Vázquez S, Pedreira ME, Romano A. The lateral neocortex is critical for contextual fear memory reconsolidation. Sci Rep 2019; 9:12157. [PMID: 31434945 PMCID: PMC6704072 DOI: 10.1038/s41598-019-48340-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Memories are a product of the concerted activity of many brain areas. Deregulation of consolidation and reprocessing of mnemonic traces that encode fearful experiences might result in fear-related psychopathologies. Here, we assessed how pre-established memories change with experience, particularly the labilization/reconsolidation of memory, using the whole-brain analysis technique of positron emission tomography in male mice. We found differences in glucose consumption in the lateral neocortex, hippocampus and amygdala in mice that underwent labilization/reconsolidation processes compared to animals that did not reactivate a fear memory. We used chemogenetics to obtain insight into the role of cortical areas in these phases of memory and found that the lateral neocortex is necessary for fear memory reconsolidation. Inhibition of lateral neocortex during reconsolidation altered glucose consumption levels in the amygdala. Using an optogenetic/neuronal recording-based strategy we observed that the lateral neocortex is functionally connected with the amygdala, which, along with retrograde labeling using fluorophore-conjugated cholera toxin subunit B, support a monosynaptic connection between these areas and poses this connection as a hot-spot in the circuits involved in reactivation of fear memories.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Candela Medina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Germán Falasco
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - Alexxai V Kravitz
- National Institute of Diabetes and Kidney and Digestive Diseases, Bethesda, MD, 20814, USA
| | - Francisco J Urbano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Silvia Vázquez
- Centro de Imágenes Moleculares, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Escobar, Buenos Aires, Argentina
| | - María Eugenia Pedreira
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Arturo Romano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
20
|
Chevée M, Robertson JDJ, Cannon GH, Brown SP, Goff LA. Variation in Activity State, Axonal Projection, and Position Define the Transcriptional Identity of Individual Neocortical Projection Neurons. Cell Rep 2019; 22:441-455. [PMID: 29320739 DOI: 10.1016/j.celrep.2017.12.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Single-cell RNA sequencing has generated catalogs of transcriptionally defined neuronal subtypes of the brain. However, the cellular processes that contribute to neuronal subtype specification and transcriptional heterogeneity remain unclear. By comparing the gene expression profiles of single layer 6 corticothalamic neurons in somatosensory cortex, we show that transcriptional subtypes primarily reflect axonal projection pattern, laminar position within the cortex, and neuronal activity state. Pseudotemporal ordering of 1,023 cellular responses to sensory manipulation demonstrates that changes in expression of activity-induced genes both reinforced cell-type identity and contributed to increased transcriptional heterogeneity within each cell type. This is due to cell-type biased choices of transcriptional states following manipulation of neuronal activity. These results reveal that axonal projection pattern, laminar position, and activity state define significant axes of variation that contribute both to the transcriptional identity of individual neurons and to the transcriptional heterogeneity within each neuronal subtype.
Collapse
Affiliation(s)
- Maxime Chevée
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Johanna De Jong Robertson
- Human Genetics Training Program, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle Heather Cannon
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Loyal Andrew Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Engram-specific transcriptome profiling of contextual memory consolidation. Nat Commun 2019; 10:2232. [PMID: 31110186 PMCID: PMC6527697 DOI: 10.1038/s41467-019-09960-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10−13), including Atf3 (P = 2.4 × 10−41), Penk (P = 1.3 × 10−15), and Kcnq3 (P = 3.1 × 10−12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory. The molecular mechanisms underlying contextual fear memory consolidation by sparse dentate gyrus (DG) neuronal populations remain unclear. Here using unbiased RNA sequencing of DG engram neurons the authors identify persistent transcriptome modifications during memory consolidation, in which CREB-dependent transcription features prominently
Collapse
|
22
|
Pollack GA, Bezek JL, Lee SH, Scarlata MJ, Weingast LT, Bergstrom HC. Cued fear memory generalization increases over time. Learn Mem 2018; 25:298-308. [PMID: 29907637 PMCID: PMC6004064 DOI: 10.1101/lm.047555.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Fear memory is a highly stable and durable form of memory, even over vast (remote) time frames. Nevertheless, some elements of fear memory can be forgotten, resulting in generalization. The purpose of this study is to determine how cued fear memory generalizes over time and measure underlying patterns of cortico-amygdala synaptic plasticity. We established generalization gradients at recent (1-d) and remote (30-d) retention intervals following auditory cued fear conditioning in adult male C57BL/6 mice. Results revealed a flattening of the generalization gradient (increased generalization) that was dissociated from contextual fear generalization, indicating a specific influence of time on cued fear memory performance. This effect reversed after a brief exposure to the novel stimulus soon after learning. Measurements from cortico-amygdala imaging of the activity-regulated cytoskeletal Arc/arg 3.1 (Arc) protein using immunohistochemistry after cued fear memory retrieval revealed a stable pattern of Arc expression in the dorsolateral amygdala, but temporally dynamic expression in the cortex. Over time, increased fear memory generalization was associated with a reduction in Arc expression in the agranular insular and infralimbic cortices while discrimination learning was associated with increased Arc expression in the prelimbic cortex. These data identify the dorsolateral amygdala, medial prefrontal, and insular cortices as loci for synaptic plasticity underlying cued fear memory generalization over time.
Collapse
Affiliation(s)
- Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Serena H Lee
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Miranda J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Leah T Weingast
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| |
Collapse
|
23
|
Tyssowski KM, DeStefino NR, Cho JH, Dunn CJ, Poston RG, Carty CE, Jones RD, Chang SM, Romeo P, Wurzelmann MK, Ward JM, Andermann ML, Saha RN, Dudek SM, Gray JM. Different Neuronal Activity Patterns Induce Different Gene Expression Programs. Neuron 2018; 98:530-546.e11. [PMID: 29681534 PMCID: PMC5934296 DOI: 10.1016/j.neuron.2018.04.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
A vast number of different neuronal activity patterns could each induce a different set of activity-regulated genes. Mapping this coupling between activity pattern and gene induction would allow inference of a neuron's activity-pattern history from its gene expression and improve our understanding of activity-pattern-dependent synaptic plasticity. In genome-scale experiments comparing brief and sustained activity patterns, we reveal that activity-duration history can be inferred from gene expression profiles. Brief activity selectively induces a small subset of the activity-regulated gene program that corresponds to the first of three temporal waves of genes induced by sustained activity. Induction of these first-wave genes is mechanistically distinct from that of the later waves because it requires MAPK/ERK signaling but does not require de novo translation. Thus, the same mechanisms that establish the multi-wave temporal structure of gene induction also enable different gene sets to be induced by different activity durations.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Cho
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carissa J Dunn
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA
| | - Robert G Poston
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA
| | - Crista E Carty
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Richard D Jones
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah M Chang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Palmyra Romeo
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mary K Wurzelmann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ramendra N Saha
- Molecular Cell Biology Unit, University of California Merced, Merced, CA 95343, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Okamoto M, Aoki S, Ishihara T. Postnatal development of GABAergic interneurons and perineuronal nets in mouse temporal cortex subregions. Int J Dev Neurosci 2017; 63:27-37. [PMID: 28859888 DOI: 10.1016/j.ijdevneu.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022] Open
Abstract
In human neuropsychiatric disorders, there are functional and anatomical abnormalities of GABAergic interneurons in each temporal cortex subregion. Furthermore, accumulation of amyloid-β is observed in the temporal cortex in the early stages of Alzheimer's disease. Each subregion of the temporal cortex has an important role in coordinating the input and output of the hippocampus. When subregions of the temporal cortex are impaired, memory and learning ability decrease. GABAergic interneurons control excitatory neurons, forming the cortico-cortical and cortico-hippocampal networks. However, in temporal cortex subregions, details of the distribution and developmental processes of GABAergic interneurons and perineuronal nets (PNNs) have not been elucidated. Here we examined the development of GABAergic interneurons and PNNs in mouse temporal cortex subregions. Results indicate that temporal cortex GABAergic interneurons have developmental stages different to those of the primary sensory cortex. In addition, the density of PNNs in the temporal cortex is lower than that in the sensory cortex. Furthermore, we found that the Wisteria floribunda agglutinin-reactive extracellular matrix molecule is present in the upper level of layer 1 of the temporal cortex. These results support the idea that mouse temporal cortex subregions develop differently from other cortical regions and have region-specific characteristics after maturation. The present study results suggested that the structure of the temporal cortex is significantly different from the sensory cortex and that temporal cortex may be highly vulnerable to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan; Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, kitaku, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, kitaku, Okayama, 700-8558, Japan.
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
25
|
Cambiaghi M, Renna A, Milano L, Sacchetti B. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval. Front Behav Neurosci 2017; 11:138. [PMID: 28790901 PMCID: PMC5524669 DOI: 10.3389/fnbeh.2017.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023] Open
Abstract
Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy.,Institute of NeuroscienceTurin, Italy
| |
Collapse
|
26
|
Yamada D, Koppensteiner P, Odagiri S, Eguchi M, Yamaguchi S, Yamada T, Katagiri H, Wada K, Sekiguchi M. Common Hepatic Branch of Vagus Nerve-Dependent Expression of Immediate Early Genes in the Mouse Brain by Intraportal L-Arginine: Comparison with Cholecystokinin-8. Front Neurosci 2017; 11:366. [PMID: 28701913 PMCID: PMC5487424 DOI: 10.3389/fnins.2017.00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Information from the peripheral organs is thought to be transmitted to the brain by humoral factors and neurons such as afferent vagal or spinal nerves. The common hepatic branch of the vagus (CHBV) is one of the main vagus nerve branches, and consists of heterogeneous neuronal fibers that innervate multiple peripheral organs such as the bile duct, portal vein, paraganglia, and gastroduodenal tract. Although, previous studies suggested that the CHBV has a pivotal role in transmitting information on the status of the liver to the brain, the details of its central projections remain unknown. The purpose of the present study was to investigate the brain regions activated by the CHBV. For this purpose, we injected L-arginine or anorexia-associated peptide cholecystokinin-8 (CCK), which are known to increase CHBV electrical activity, into the portal vein of transgenic Arc-dVenus mice expressing the fluorescent protein Venus under control of the activity-regulated cytoskeleton-associated protein (Arc) promotor. The brain slices were prepared from these mice and the number of Venus positive cells in the slices was counted. After that, c-Fos expression in these slices was analyzed by immunohistochemistry using the avidin-biotin-peroxidase complex method. Intraportal administration of L-arginine increased the number of Venus positive or c-Fos positive cells in the insular cortex. This action of L-arginine was not observed in CHBV-vagotomized Arc-dVenus mice. In contrast, intraportal administration of CCK did not increase the number of c-Fos positive or Venus positive cells in the insular cortex. Intraportal CCK induced c-Fos expression in the dorsomedial hypothalamus, while intraportal L-arginine did not. This action of CCK was abolished by CHBV vagotomy. Intraportal L-arginine reduced, while intraportal CCK increased, the number of c-Fos positive cells in the nucleus tractus solitarii in a CHBV-dependent manner. The present results suggest that the CHBV can activate different brain regions depending on the nature of the peripheral stimulus.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Peter Koppensteiner
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Saori Odagiri
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| | - Megumi Eguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu UniversityGifu, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu UniversityGifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu UniversityGifu, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology AgencySaitama, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku UniversityMiyagi, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku UniversityMiyagi, Japan.,CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan.,CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Center of Neurology and Psychiatry, National Institute of NeuroscienceTokyo, Japan
| |
Collapse
|
27
|
Cho JH, Rendall SD, Gray JM. Brain-wide maps of Fos expression during fear learning and recall. ACTA ACUST UNITED AC 2017; 24:169-181. [PMID: 28331016 PMCID: PMC5362696 DOI: 10.1101/lm.044446.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue.
Collapse
Affiliation(s)
- Jin-Hyung Cho
- Genetics Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sam D Rendall
- Genetics Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jesse M Gray
- Genetics Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|