1
|
Jabloñski M, Luque GM, Gomez Elias M, Sanchez Cardenas C, Xu X, de La Vega Beltran JL, Corkidi G, Linares A, Abonza V, Arenas-Hernandez A, Ramos-Godinez MDP, López-Saavedra A, Krapf D, Krapf D, Darszon A, Guerrero A, Buffone MG. Reorganization of the flagellum scaffolding induces a sperm standstill during fertilization. eLife 2024; 13:RP93792. [PMID: 39535529 PMCID: PMC11560130 DOI: 10.7554/elife.93792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.
Collapse
Affiliation(s)
- Martina Jabloñski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Matias Gomez Elias
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| | - Claudia Sanchez Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Xinran Xu
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State UniversityFort CollinsUnited States
| | - Jose L de La Vega Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Alejandro Linares
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Victor Abonza
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | | | - María DP Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología Unidad de Investigación Biomédica en CáncerMexicoMexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología Unidad de Investigación Biomédica en CáncerMexicoMexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico CityMexico
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR)RosarioArgentina
| | - Diego Krapf
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State UniversityFort CollinsUnited States
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Adán Guerrero
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosMexico
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET)Buenos AiresArgentina
| |
Collapse
|
2
|
Jabloñski M, Luque GM, Gómez-Elías MD, Sanchez-Cardenas C, Xu X, de la Vega-Beltran JL, Corkidi G, Linares A, Abonza Amaro VX, Arenas-Hernandez A, Del Pilar Ramos-Godinez M, López-Saavedra A, Krapf D, Krapf D, Darszon A, Guerrero A, Buffone MG. Reorganization of the Flagellum Scaffolding Induces a Sperm Standstill During Fertilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546073. [PMID: 37904966 PMCID: PMC10614747 DOI: 10.1101/2023.06.22.546073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after AE and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.
Collapse
|
3
|
Safaefar F, Karamdel J, Veladi H, Maleki M. Design and implementation of a lab-on-a-chip for assisted reproductive technologies. BIOIMPACTS : BI 2023; 14:28902. [PMID: 39104621 PMCID: PMC11298026 DOI: 10.34172/bi.2023.28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 08/07/2024]
Abstract
Introduction The microfluidic device is highly optimized to remove oocytes from the cumulus-corona cell mass surrounding them. Additionally, it effectively captures and immobilizes the oocytes, aiding in assessing their quality and facilitating the injection of sperm into the oocyte. In this study, a novel microfluidic chip was designed and manufactured using conventional soft lithography methods. Methods This research proposes the utilization of a microfluidic chip as a substitute for the conventional manual procedures involved in oocyte denudation, trapping, and immobilization. The microfluidic chip was modeled and simulated using COMSOL Multiphysics® 5.2 software to optimize and enhance its design and performance. The microfluidic chip was fabricated using conventional injection molding techniques on a polydimethylsiloxane substrate by employing soft lithography methods. Results A hydrostatic force was applied to guide the oocyte through predetermined pathways to eliminate the cumulus cells surrounding the oocyte. The oocyte was subsequently confined within the designated trap region by utilizing hydraulic resistance along the paths and immobilized by applying vacuum force. Conclusion The application of this chip necessitates a lower level of operator expertise compared to enzymatic and mechanical techniques. Moreover, it is feasible to continuously monitor the oocyte's state throughout the procedure. There is a reduced need for cultural media compared to more standard approaches.
Collapse
Affiliation(s)
- Firooz Safaefar
- Department of Biomedical Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Karamdel
- Department of Electrical Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Veladi
- Department of Biomedical Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Microsystem Fabrication Laboratory, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Masoud Maleki
- Department of Biomedical Engineering, Faculty of Technical and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| |
Collapse
|
4
|
Shukla SK, Gaudriault P, Corbera A. Lab-on-chip (LoC) application for quality sperm selection: An undelivered promise? OPEN RESEARCH EUROPE 2023; 3:188. [PMID: 38645796 PMCID: PMC11031645 DOI: 10.12688/openreseurope.16671.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 04/23/2024]
Abstract
Quality sperm selection is essential to ensure the effectiveness of assisted reproductive techniques (ART). However, the methods employed for sperm selection in ART often yield suboptimal outcomes, contributing to lower success rates. In recent years, microfluidic devices have emerged as a promising avenue for investigating the natural swimming behavior of spermatozoa and developing innovative approaches for quality sperm selection. Despite their potential, the commercial translation of microfluidic-based technologies has remained limited. This comprehensive review aims to critically evaluate the inherent potential of lab-on-chip technology in unraveling sophisticated mechanisms encompassing rheotaxis, thermotaxis, and chemotaxis. By reviewing the current state-of-the-art associated with microfluidic engineering and the swimming of spermatozoa, the goal is to shed light on the multifaceted factors that have impeded the broader commercialization of these cutting-edge technologies and recommend a commercial that can surmount the prevailing constraints. Furthermore, this scholarly exploration seeks to enlighten and actively engage reproductive clinicians in the profound potential and implications of microfluidic methodologies within the context of human infertility.
Collapse
Affiliation(s)
- Shiva K Shukla
- Research and Development Unit, Beez Biotech SAS, RENNES, Ille-et-Villain, 35000, France
| | - Pierre Gaudriault
- Research and Development Unit, Cherry Biotech SAS, Paris, 93100, France
| | - Antoni Corbera
- Research and Development Unit, Cherry Biotech SAS, Paris, 93100, France
| |
Collapse
|
5
|
Acharya D, Das DK. A novel Human Conception Optimizer for solving optimization problems. Sci Rep 2022; 12:21631. [PMID: 36517488 PMCID: PMC9751073 DOI: 10.1038/s41598-022-25031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Computational techniques are widely used to solve complex optimization problems in different fields such as engineering, finance, biology, and so on. In this paper, the Human Conception Optimizer (HCO) is proposed as a novel metaheuristic algorithm to solve any optimization problems. The idea of this algorithm is based on some biological principles of the human conception process, such as the selective nature of cervical gel in the female reproductive system to allow only healthy sperm cells into the cervix, the guidance nature of mucus gel to help sperm track a genital tracking path towards the egg in the Fallopian tube, the asymmetric nature of flagellar movement which allows sperm cells to move in the reproductive system, the sperm hyperactivation process to make them able to fertilize an egg. Thus, the strategies pursued by the sperm in searching for the egg in the Fallopian tube are modeled mathematically. The best sperm which will meet the position of the egg will be the solution of the algorithm. The performance of the proposed HCO algorithm is examined with a set of basic benchmark test functions called IEEE CEC-2005 and IEEE CEC-2020. A comparative study is also performed between the HCO algorithm and other available algorithms. The significance of the results is verified with statistical test methods. To validate the proposed HCO algorithm, two real-world engineering optimization problems are examined. For this purpose, a complex 14 over-current relay based IEEE 8 bus distribution system is considered. With the proposed algorithm, an improvement of 50% to 60% in total relay operating times is observed comparing with some existing results for the same system. Another engineering problem of designing an optimal proportional integral derivative (PID) controller for a blower driven patient hose mechanical ventilator (MV) is examined. A significant improvement in terms of response time, settling time is observed in the MV system by comparing with existing results.
Collapse
Affiliation(s)
- Debasis Acharya
- Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland, Dimapur, 797103, India
| | - Dushmanta Kumar Das
- Department of Electrical and Electronics Engineering, National Institute of Technology Nagaland, Dimapur, 797103, India.
| |
Collapse
|
6
|
Brukman NG, Nakajima KP, Valansi C, Flyak K, Li X, Higashiyama T, Podbilewicz B. A novel function for the sperm adhesion protein IZUMO1 in cell-cell fusion. J Cell Biol 2022; 222:213693. [PMID: 36394541 PMCID: PMC9671554 DOI: 10.1083/jcb.202207147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm-egg adhesion depends on the trans-interaction between the sperm-specific type I glycoprotein IZUMO1 and its oocyte-specific GPI-anchored receptor JUNO. However, the mechanisms and proteins (fusogens) that mediate the following step of gamete fusion remain unknown. Using live imaging and content mixing assays in a heterologous system and structure-guided mutagenesis, we unveil an unexpected function for IZUMO1 in cell-to-cell fusion. We show that IZUMO1 alone is sufficient to induce fusion, and that this ability is retained in a mutant unable to bind JUNO. On the other hand, a triple mutation in exposed aromatic residues prevents this fusogenic activity without impairing JUNO interaction. Our findings suggest a second function for IZUMO1 as a unilateral mouse gamete fusogen.
Collapse
Affiliation(s)
- Nicolas G. Brukman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kohdai P. Nakajima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Clari Valansi
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
7
|
Vondrakova J, Frolikova M, Ded L, Cerny J, Postlerova P, Palenikova V, Simonik O, Nahacka Z, Basus K, Valaskova E, Machan R, Pacey A, Holubcova Z, Koubek P, Ezrova Z, Park S, Liu R, Partha R, Clark N, Neuzil J, Ikawa M, Erickson K, Lam KS, Moore H, Komrskova K. MAIA, Fc receptor-like 3, supersedes JUNO as IZUMO1 receptor during human fertilization. SCIENCE ADVANCES 2022; 8:eabn0047. [PMID: 36070373 PMCID: PMC9451160 DOI: 10.1126/sciadv.abn0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/23/2022] [Indexed: 05/17/2023]
Abstract
Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.
Collapse
Affiliation(s)
- Jana Vondrakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jiri Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| | - Veronika Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Krystof Basus
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Radek Machan
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Allan Pacey
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Sheffield S10 2RX, UK
| | - Zuzana Holubcova
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Koubek
- ProCrea Swiss IVF Center, Prague, Czech Republic
| | - Zuzana Ezrova
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Soojin Park
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Parklands Avenue, Southport, Qld 4222, Australia
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kent Erickson
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Harry Moore
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
8
|
Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur JP, Vilpreux C, Neirijnck Y, Kherraf ZE, Escoffier J, Nef S, Ray PF, Arnoult C. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife 2022; 11:75373. [PMID: 35451961 PMCID: PMC9071268 DOI: 10.7554/elife.75373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.
Collapse
Affiliation(s)
| | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Jana Muroňová
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magalie Boguenet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magali Dhellemmes
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Charline Vilpreux
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| |
Collapse
|
9
|
Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and Evolution of Gamete Fusion. Front Cell Dev Biol 2022; 9:824024. [PMID: 35083224 PMCID: PMC8784728 DOI: 10.3389/fcell.2021.824024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gamete fusion is the climax of fertilization in all sexually reproductive organisms, from unicellular fungi to humans. Similarly to other cell-cell fusion events, gamete fusion is mediated by specialized proteins, named fusogens, that overcome the energetic barriers during this process. In recent years, HAPLESS 2/GENERATIVE CELL-SPECIFIC 1 (HAP2/GCS1) was identified as the fusogen mediating sperm-egg fusion in flowering plants and protists, being both essential and sufficient for the membrane merger in some species. The identification of HAP2/GCS1 in invertebrates, opens the possibility that a similar fusogen may be used in vertebrate fertilization. HAP2/GCS1 proteins share a similar structure with two distinct families of exoplasmic fusogens: the somatic Fusion Family (FF) proteins discovered in nematodes, and class II viral glycoproteins (e.g., rubella and dengue viruses). Altogether, these fusogens form the Fusexin superfamily. While some attributes are shared among fusexins, for example the overall structure and the possibility of assembly into trimers, some other characteristics seem to be specific, such as the presence or not of hydrophobic loops or helices at the distal tip of the protein. Intriguingly, HAP2/GCS1 or other fusexins have neither been identified in vertebrates nor in fungi, raising the question of whether these genes were lost during evolution and were replaced by other fusion machinery or a significant divergence makes their identification difficult. Here, we discuss the biology of HAP2/GCS1, its involvement in gamete fusion and the structural, mechanistic and evolutionary relationships with other fusexins.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
10
|
Liu R, Yan Z, Fan Y, Qu R, Chen B, Li B, Wu L, Wu H, Mu J, Zhao L, Wang W, Dong J, Zeng Y, Li Q, Wang L, Sang Q, Zhang Z, Kuang Y. OUP accepted manuscript. Hum Reprod 2022; 37:1394-1405. [PMID: 35551387 DOI: 10.1093/humrep/deac102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ruyi Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Fan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ronggui Qu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Biaobang Chen
- Institute of Reproductive Health, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin Zhao
- Institute of Reproductive Health, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
12
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
13
|
Corkidi G, Hernández-Herrera P, Montoya F, Gadêlha H, Darszon A. Long-term segmentation-free assessment of head-flagellum movement and intracellular calcium in swimming human sperm. J Cell Sci 2021; 134:jcs.250654. [PMID: 33431515 DOI: 10.1242/jcs.250654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Human spermatozoa are the archetype of long-term self-organizing transport in nature and are critical for reproductive success. They utilize coordinated head and flagellar movements to swim long distances within the female reproductive tract in order to find and fertilize the egg. However, to date, long-term analysis of the sperm head-flagellar movements, or indeed those of other flagellated microorganisms, remains elusive due to limitations in microscopy and flagellar-tracking techniques. Here, we present a novel methodology based on local orientation and isotropy of bio-images to obtain long-term kinematic and physiological parameters of individual free-swimming spermatozoa without requiring image segmentation (thresholding). This computer-assisted segmentation-free method evaluates, for the first time, characteristics of the head movement and flagellar beating for up to 9.2 min. We demonstrate its powerful use by showing how releasing Ca2+ from internal stores significantly alters long-term sperm behavior. The method allows for straightforward generalization to other bio-imaging applications, such as studies of bull sperm and Trypanosoma, or indeed of other flagellated microorganisms - appealing to communities other than those investigating sperm biology.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Hermes Gadêlha
- Department of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1QU, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| |
Collapse
|
14
|
The effects of sacubitril/valsartan and ramipril on the male fertility in hypertensive rats. North Clin Istanb 2020; 7:425-432. [PMID: 33163876 PMCID: PMC7603857 DOI: 10.14744/nci.2020.30906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE: Renin angiotensinogen system (RAS) inhibitors, ramipril and sacubitril/valsartan are frequently used in the treatment of cardiovascular diseases. Although they are known as contraindicated during pregnancy in hypertensive women, there is not any outcome of their safety in male fertility after exposure to ramipril or sacubitril/valsartan. In this study, we aimed to evaluate the effects of ramipril and sacubitril/valsartan to highlight their safety in the male fertility in normotensive and hypertensive rats. METHODS: Adult male normotensive and dexamethasone-induced hypertensive rats were treated with sacubitril/valsartan, ramipril and saline for 18 days. Arterial blood pressures were verified using carotid artery cannulation. Male fertility parameters, including the testis weights, histopathologic scoring of the testis, sperm count, sperm motility, morphology, and serum testosterone levels, were analyzed in treated and nontreated normotensive/hypertensive rats. RESULTS: Sacubitril/valsartan or ramipril treatments did not reveal a significant difference in sperm production, testicular morphology, and radioimmunoassay of serum testosterone levels compared to the control group. However, sperm motility was significantly reduced in rats under RAS inhibition. CONCLUSION: This finding was likely mediated by the identification of Ang receptors in the tails of rat sperm given that Ang receptors may play a role in the modulation of sperm motility. Identification of RAS-related proteins involved in sperm motility may help to explain their roles in motility. Our data provide general safety evidence for the male fertilization ability after paternal sacubitril/valsartan and ramipril exposure.
Collapse
|
15
|
Identification, Characterization and Synthesis of Walterospermin, a Sperm Motility Activator from the Egyptian Black Snake Walterinnesia aegyptia Venom. Int J Mol Sci 2020; 21:ijms21207786. [PMID: 33096770 PMCID: PMC7594068 DOI: 10.3390/ijms21207786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
Animal venoms are small natural mixtures highly enriched in bioactive components. They are known to target at least two important pharmacological classes of cell surface receptors: ion channels and G protein coupled receptors. Since sperm cells express a wide variety of ion channels and membrane receptors, required for the control of cell motility and acrosome reaction, two functions that are defective in infertility issues, animal venoms should contain interesting compounds capable of modulating these two essential physiological functions. Herein, we screened for bioactive compounds from the venom of the Egyptian black snake Walterinnesia aegyptia (Wa) that possess the property to activate sperm motility in vitro from male mice OF1. Using RP-HPLC and cation exchange chromatography, we identified a new toxin of 6389.89 Da (termed walterospermin) that activates sperm motility. Walterospermin was de novo sequenced using a combination of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF MS/MS) following reduction, alkylation, and enzymatic proteolytic digestion with trypsin, chymotrypsin or V8 protease. The peptide is 57 amino acid residues long and contains three disulfide bridges and was found to be identical to the previously cloned Wa Kunitz-type protease inhibitor II (Wa Kln-II) sequence. Moreover, it has strong homology with several other hitherto cloned Elapidae and Viperidae snake toxins suggesting that it belongs to a family of compounds able to regulate sperm function. The synthetic peptide shows promising activation of sperm motility from a variety of species, including humans. Its fluorescently-labelled analog predominantly marks the flagellum, a localization in agreement with a receptor that controls motility function.
Collapse
|
16
|
Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci 2020; 282:102208. [PMID: 32721624 DOI: 10.1016/j.cis.2020.102208] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse
|
17
|
Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion. Sci Rep 2020; 10:5335. [PMID: 32210282 PMCID: PMC7093486 DOI: 10.1038/s41598-020-62091-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
Three genes are known to be essential for gamete adhesion/fusion (Cd9, Izumo1 and Juno). Here, we confirmed that Spaca6 null males are infertile and showed that their sperm accumulate in the perivitelline space but are unable to fuse with oocyte. Like IZUMO1, SPACA6 which is expressed by human sperm, is remained on the equatorial segment after acrosomal reaction and is involved in human fertilization since an anti-SPACA6 antibody inhibited it. Despite the similarity of the phenotypes caused by Spaca6 and Izumo1 knockouts, these are not redundant and the essential relocation of IZUMO1 is not affected by the lack of SPACA6. We propose a model in which IZUMO1 and SPACA6 would be part of a molecular complex necessary for gamete fusion and that their concomitant presence would be required for the recruitment of another essential molecular actor, such as a fusogen, for the fusion to take place.
Collapse
|
18
|
Rival CM, Xu W, Shankman LS, Morioka S, Arandjelovic S, Lee CS, Wheeler KM, Smith RP, Haney LB, Isakson BE, Purcell S, Lysiak JJ, Ravichandran KS. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun 2019; 10:4456. [PMID: 31575859 PMCID: PMC6773685 DOI: 10.1038/s41467-019-12406-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
Fertilization is essential for species survival. Although Izumo1 and Juno are critical for initial interaction between gametes, additional molecules necessary for sperm:egg fusion on both the sperm and the oocyte remain to be defined. Here, we show that phosphatidylserine (PtdSer) is exposed on the head region of viable and motile sperm, with PtdSer exposure progressively increasing during sperm transit through the epididymis. Functionally, masking phosphatidylserine on sperm via three different approaches inhibits fertilization. On the oocyte, phosphatidylserine recognition receptors BAI1, CD36, Tim-4, and Mer-TK contribute to fertilization. Further, oocytes lacking the cytoplasmic ELMO1, or functional disruption of RAC1 (both of which signal downstream of BAI1/BAI3), also affect sperm entry into oocytes. Intriguingly, mammalian sperm could fuse with skeletal myoblasts, requiring PtdSer on sperm and BAI1/3, ELMO2, RAC1 in myoblasts. Collectively, these data identify phosphatidylserine on viable sperm and PtdSer recognition receptors on oocytes as key players in sperm:egg fusion.
Collapse
Affiliation(s)
- Claudia M Rival
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Wenhao Xu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Laura S Shankman
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sho Morioka
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Sanja Arandjelovic
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Chang Sup Lee
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Karen M Wheeler
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Ryan P Smith
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Lisa B Haney
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA
| | - Scott Purcell
- Reproductive Medicine and Surgery Center of Virginia, 595 Martha Jefferson Dr., Charlottesville, VA, 22911, USA
| | - Jeffrey J Lysiak
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Urology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
| | - Kodi S Ravichandran
- The Center for Cell Clearance, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, VA, 22903, USA.
- Department of Biomedical Molecular Biology, Ghent University, and the UGent-VIB Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
19
|
Martinez G, Hograindleur JP, Voisin S, Abi Nahed R, Abd El Aziz TM, Escoffier J, Bessonnat J, Fovet CM, De Waard M, Hennebicq S, Aucagne V, Ray PF, Schmitt E, Bulet P, Arnoult C. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol Hum Reprod 2018; 23:116-131. [PMID: 27932550 DOI: 10.1093/molehr/gaw075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/18/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus? SUMMARY ANSWER We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments. WHAT IS KNOWN ALREADY Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore, been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced. STUDY DESIGN, SIZE, DURATION This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species. PARTICIPANTS/MATERIALS, SETTING, METHODS For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide. MAIN RESULTS AND THE ROLE OF CHANCE Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide. LIMITATIONS, REASONS FOR CAUTION This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.
Collapse
Affiliation(s)
- Guillaume Martinez
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France.,Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Sébastien Voisin
- Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Tarek M Abd El Aziz
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Julien Bessonnat
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Claire-Maëlle Fovet
- Molecular Imaging Research Center, MIRCen CEA/INSERM UMR1169, Fontenay-aux-Roses F-92265, France
| | - Michel De Waard
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Sylviane Hennebicq
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans F-45071, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biochimie Génétique et Moléculaire, Grenoble F-38000, France
| | - Eric Schmitt
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France
| | - Philippe Bulet
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| |
Collapse
|
20
|
Ravaux B, Favier S, Perez E, Gourier C. Egg CD9 protein tides correlated with sperm oscillations tune the gamete fusion ability in mammal. J Mol Cell Biol 2018; 10:494-502. [DOI: 10.1093/jmcb/mjy005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Affiliation(s)
- Benjamin Ravaux
- Laboratoire de Physique Statistique, Ecole Normale Superieure/PSL Research University, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 75005 Paris, France
| | - Sophie Favier
- Laboratoire de Physique Statistique, Ecole Normale Superieure/PSL Research University, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 75005 Paris, France
| | - Eric Perez
- Laboratoire de Physique Statistique, Ecole Normale Superieure/PSL Research University, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 75005 Paris, France
| | - Christine Gourier
- Laboratoire de Physique Statistique, Ecole Normale Superieure/PSL Research University, UPMC Univ Paris 06, Université Paris Diderot, CNRS, 75005 Paris, France
| |
Collapse
|
21
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|