1
|
Mettler MK, Espinosa-Ortiz EJ, Goeres DM, Peyton BM. Considerations for testing anti-fouling coatings designed for implementation into Earth-based and spacecraft water systems. BIOFOULING 2025; 41:225-243. [PMID: 40143541 DOI: 10.1080/08927014.2025.2479692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
Biofilms are common in water systems and can lead to mechanical failure or illness of water system users. Methods for evaluating anti-fouling coatings have largely been informed by the medical industry and have not been tailored to industrial or spacecraft water systems. The goal of the paper is to help guide researchers in designing experiments to evaluate coatings that accurately represent the system under investigation. This review identified eight experimental design considerations when evaluating coatings in water systems: biofilm reactor operation, microorganism selection, reinoculation, coating surface area, liquid medium, experiment duration, coating performance evaluation, and the use of microgravity. The impact of each decision made within each of these considerations is presented. Further, the methods featured in eight studies investigating coatings for Earth-based or spacecraft water systems are discussed. This review serves to guide researchers toward improved experimental design to enable successful technology transfer from the lab bench to Earth and beyond.
Collapse
Affiliation(s)
- Madelyn K Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | | | - Darla M Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Brent M Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Zahorska E, Denig LM, Lienenklaus S, Kuhaudomlarp S, Tschernig T, Lipp P, Munder A, Gillon E, Minervini S, Verkhova V, Imberty A, Wagner S, Titz A. High-Affinity Lectin Ligands Enable the Detection of Pathogenic Pseudomonas aeruginosa Biofilms: Implications for Diagnostics and Therapy. JACS AU 2024; 4:4715-4728. [PMID: 39735928 PMCID: PMC11672137 DOI: 10.1021/jacsau.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024]
Abstract
Pseudomonas aeruginosa is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for P. aeruginosa infections are available. Here, we present the noninvasive pathogen-specific detection of P. aeruginosa using novel fluorescent probes that target the bacterial biofilm-associated lectins LecA and LecB. Several glycomimetic probes were developed to target these extracellular lectins and demonstrated to stain P. aeruginosa biofilms in vitro. Importantly, for the targeting of LecA an activity boost to low-nanomolar affinity could be achieved, which is essential for in vivo application. In vitro, the nanomolar divalent LecA-targeted imaging probe accumulated effectively in biofilms under flow conditions, independent of the fluorophore identity. Investigation of these glycomimetic imaging probes in a murine lung infection model and fluorescence imaging revealed accumulation at the infection site. These findings demonstrate the use of LecA- and LecB-targeting probes for the imaging of P. aeruginosa infections and suggest their potential as pathogen-specific diagnostics to accelerate the start of the appropriate treatment.
Collapse
Affiliation(s)
- Eva Zahorska
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Lisa Marie Denig
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Stefan Lienenklaus
- Hannover
Medical School, Institute of Laboratory
Animal Science, Hannover 30625, Germany
| | - Sakonwan Kuhaudomlarp
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
- Department
of Biochemistry, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thomas Tschernig
- Medical
Faculty of Saarland University, Institute
of Anatomy and Cell Biology, Homburg/Saar, D-66421, Germany
| | - Peter Lipp
- Center
for Molecular Signaling (PZMS), Medical
Faculty of Saarland University, Homburg/Saar D-66421, Germany
| | - Antje Munder
- Department
of Pediatric Pneumology, Allergology and
Neonatology, Hannover Medical School, Carl Neuberg-Str. 1, Hannover D-30625, Germany
- Biomedical
Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover D-30625, Germany
| | - Emilie Gillon
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Saverio Minervini
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
| | - Varvara Verkhova
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Anne Imberty
- Université
Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Stefanie Wagner
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates (CBCH), Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research, Saarbrücken D-66123, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig 38124, Germany
- Department
of Chemistry, Saarland University, Saarbrücken D-66123, Germany
- PharmaScienceHub, Saarland University, Saarbrücken D-66123, Germany
| |
Collapse
|
3
|
Sathishkumar P, Khan F. Leveraging bacteria-inspired nanomaterials for targeted controlling biofilm and virulence properties of Pseudomonas aeruginosa. Microb Pathog 2024; 197:107103. [PMID: 39505089 DOI: 10.1016/j.micpath.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen designated as a high-priority pathogen because of its role in major healthcare-associated and nosocomial infections. Biofilm production by these bacteria is one of the adaptive resistance mechanisms to traditional antibiotics, making treatment challenging, especially for immunocompromised patients. P. aeruginosa also produces a variety of virulence factors, which aid in invasion, adhesion, persistence, and immune system protection. Recent advances in nanotechnology-based therapy, notably the application of bioinspired metal and metal-oxide nanomaterials, have been seen as a viable way to control P. aeruginosa biofilm and virulence. Because of its ease of growth and culture, synthesizing metal and metal-oxide nanomaterials using bacterial species has become one of the most environmentally benign green synthesis options. The application of bacterial-inspired nanomaterials is particularly successful for targeted control of P. aeruginosa infection due to interactions with cell membrane components and transport systems. This paper delves into and provides a complete overview of the application of bacterial-inspired metal and metal-oxide nanomaterials to treat P. aeruginosa infection by targeting biofilm and virulence characteristics. The review focused on synthesizing and applying gold, silver, copper, iron, magnetite, and zinc oxide nanomaterials to mitigate P. aeruginosa biofilm and virulence. The underlying mechanism of these metal and metal-oxide nanoparticles in relation to biofilm and virulence features has also been thoroughly discussed. The current review introduces novel approaches to treating and controlling drug-resistant P. aeruginosa using bacterial-inspired nanomaterials as a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Huang Y, Chen P, Cao H, Zhou Z, Xu T. Characterization of Pseudomonas aeruginosa Isolated from Bovine Mastitis in Northern Jiangsu Province and Correlation to Drug Resistance and Biofilm Formability. Animals (Basel) 2024; 14:3290. [PMID: 39595342 PMCID: PMC11590879 DOI: 10.3390/ani14223290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to provide experimental support for the prevention and treatment of Pseudomonas aeruginosa infections and to elucidate the epidemiological distribution of resistance and virulence genes of Pseudomonas aeruginosa from mastitis in dairy cows in the northern part of Jiangsu Province and their relationship with the biofilm-forming ability of the strains. Mastitis presents a significant challenge within dairy farming, adversely impacting the health of dairy cows and precipitating substantial economic losses in milk production. In this study, Pseudomonas aeruginosa (PA) was isolated and identified from mastitis milk samples in Jiangsu Province, China. In order to characterize the isolates, multilocus sequence typing (MLST), drug resistance phenotypes, virulence genes, and biofilm formations were detected. The isolation and identification of pathogenic bacteria from 168 clinical mastitis milk samples using 16S rRNA and PCR revealed 63 strains of Pseudomonas aeruginosa, which were determined to be highly homologous according to phylogenetic tree analysis. In addition, the MLST indicated five major ST types, namely ST277, ST450, ST571, ST641, and ST463. The susceptibility to 10 antimicrobials was determined, and it was found that 63 strains of Pseudomonas aeruginosa did not have a strong resistance to the antimicrobials in general. However, there were differences in the phenotypes' resistance to antimicrobials among the different ST types. It was also found that the more resistant the strains were to antimicrobials, the lower the carriage of virulence genes detected. The biofilm content was measured using the semi-quantitative crystal violet method. It was found that there were a few strains with medium or strong biofilm-forming abilities. However, the number of virulence genes carried by the 63 strains of Pseudomonas aeruginosa was inversely proportional to the biofilm-forming ability. It was also found that there were significantly more Pseudomonas aeruginosa in the biofilm state than in the planktonic state and that strains with strong biofilm-forming abilities were more resistant to antimicrobials.
Collapse
Affiliation(s)
- Yicai Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengqiang Chen
- Fujian Nanxing Animal Health Products Co., Ltd., Nanping 353000, China
| | - Hainan Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
5
|
Uzun Yaylacı E. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:415-427. [PMID: 39373773 DOI: 10.1007/s00249-024-01723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to calculate the effect of nanopatterns' peak sharpness, width, and spacing parameters on P. aeruginosa and S. aureus cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in P. aeruginosa cell walls increase, but a decrease in S. aureus was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.
Collapse
Affiliation(s)
- Ecren Uzun Yaylacı
- Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
6
|
Jin X, Riedel-Kruse IH. Optogenetic patterning generates multi-strain biofilms with spatially distributed antibiotic resistance. Nat Commun 2024; 15:9443. [PMID: 39487123 PMCID: PMC11530673 DOI: 10.1038/s41467-024-53546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Spatial organization of microbes in biofilms enables crucial community function such as division of labor. However, quantitative understanding of such emergent community properties remains limited due to a scarcity of tools for patterning heterogeneous biofilms. Here we develop a synthetic optogenetic toolkit 'Multipattern Biofilm Lithography' for rational engineering and orthogonal patterning of multi-strain biofilms, inspired by successive adhesion and phenotypic differentiation in natural biofilms. We apply this toolkit to profile the growth dynamics of heterogeneous biofilm communities, and observe the emergence of spatially modulated commensal relationships due to shared antibiotic protection against the beta-lactam ampicillin. Supported by biophysical modeling, these results yield in-vivo measurements of key parameters, e.g., molecular beta-lactamase production per cell and length scale of antibiotic zone of protection. Our toolbox and associated findings provide quantitative insights into the spatial organization and distributed antibiotic protection within biofilms, with direct implications for future biofilm research and engineering.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada.
| | - Ingmar H Riedel-Kruse
- Department of Molecular and Cellular Biology (and by courtesy) Applied Mathematics, Biomedical Engineering, and Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
8
|
Malone M, Nygren E, Hamberg T, Radzieta M, Jensen SO. In vitro and in vivo evaluation of the antimicrobial effectiveness of non-medicated hydrophobic wound dressings. Int Wound J 2024; 21:e14416. [PMID: 37770025 PMCID: PMC10824701 DOI: 10.1111/iwj.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
There is an increasing use of non-medicated wound dressing with claims of irreversible bacterial binding. Most of the data are from in vitro models which lack clinical relevance. This study employed a range of in vitro experiments to address this gap and we complemented our experimental designs with in vivo observations using dressings obtained from patients with diabetes-related foot ulcers. A hydrophobic wound dressing was compared with a control silicone dressing in vitro. Test dressings were placed on top of a Pseudomonas aeruginosa challenge suspension with increasing concentrations of suspension inoculum in addition to supplementation with phosphate buffered saline (PBS) or increased protein content (IPC). Next, we used the challenge suspensions obtained at the end of the first experiment, where bacterial loads from the suspensions were enumerated following test dressing exposure. Further, the time-dependent bacterial attachment was investigated over 1 and 24 h. Lastly, test dressings were exposed to a challenge suspension with IPC, with or without the addition of the bacteriostatic agent Deferiprone to assess the impacts of limiting bacterial growth in the experimental design. Lastly, two different wound dressings with claims of bacterial binding were obtained from patients with chronic diabetes-related foot ulcers after 72 h of application and observed using scanning electron microscope (SEM). Bacteria were enumerated from each dressing after a 1-h exposure time. There was no statistical difference in bacterial attachment between both test dressings when using different suspension inoculum concentrations or test mediums. Bacterial attachment to the two test dressings was significantly lower (p < 0.0001) when IPC was used instead of PBS. In the challenge suspension with PBS, only the hydrophobic dressing achieved a statistically significant reduction in bacterial loads (0.5 ± 0.05 log colony forming units; p = 0.001). In the presence of IPC, there was no significant reduction in bacterial loads for either test dressing. When bacterial growth was arrested, attachment to the test dressings did not increase over time, suggesting that the number of bacteria on the test dressings increases over time due to bacterial growth. SEM identified widespread adsorption of host fouling across the test dressings which occurred prior to microbial binding. Therein, microbial attachment occurred predominantly to host fouling and not directly to the dressings. Bacterial binding is not unique to dialkylcarbamoyl chloride (DACC) dressings and under clinically relevant in vitro conditions and in vivo observations, we demonstrate (in addition to previously published work) that the bacterial binding capabilities are not effective at reducing the number of bacteria in laboratory models or human wounds.
Collapse
Affiliation(s)
- Matthew Malone
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Tina Hamberg
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Slade O. Jensen
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
10
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
12
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LE. Cell arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545666. [PMID: 37645902 PMCID: PMC10462148 DOI: 10.1101/2023.06.20.545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | | | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
13
|
El Masry M, Bhasme P, Mathew-Steiner SS, Smith J, Smeenge T, Roy S, Sen CK. Swine Model of Biofilm Infection and Invisible Wounds. J Vis Exp 2023:10.3791/65301. [PMID: 37395583 PMCID: PMC10655070 DOI: 10.3791/65301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Biofilm infection is a major contributor to wound chronicity. The establishment of clinically relevant experimental wound biofilm infection requires the involvement of the host immune system. Iterative changes in the host and pathogen during the formation of such clinically relevant biofilm can only occur in vivo. The swine wound model is recognized for its advantages as a powerful pre-clinical model. There are several reported approaches for studying wound biofilms. In vitro and ex vivo systems are deficient in terms of the host immune response. Short-term in vivo studies involve acute responses and, thus, do not allow for biofilm maturation, as is known to occur clinically. The first long-term swine wound biofilm study was reported in 2014. The study recognized that biofilm-infected wounds may close as determined by planimetry, but the skin barrier function of the affected site may fail to be restored. Later, this observation was validated clinically. The concept of functional wound closure was thus born. Wounds closed but deficient in skin barrier function may be viewed as invisible wounds. In this work, we seek to report the methodological details necessary to reproduce the long-term swine model of biofilm-infected severe burn injury, which is clinically relevant and has translational value. This protocol provides detailed guidance on establishing an 8 week wound biofilm infection using P. aeruginosa (PA01). Eight full-thickness burn wounds were created symmetrically on the dorsum of domestic white pigs, which were inoculated with (PA01) at day 3 post-burn; subsequently, noninvasive assessments of the wound healing were conducted at different time points using laser speckle imaging (LSI), high-resolution ultrasound (HUSD), and transepidermal water loss (TEWL). The inoculated burn wounds were covered with a four-layer dressing. Biofilms, as established and confirmed structurally by SEM at day 7 post-inoculation, compromised the functional wound closure. Such an adverse outcome is subject to reversal in response to appropriate interventions.
Collapse
Affiliation(s)
- Mohamed El Masry
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Pramod Bhasme
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Jessica Smith
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Thomas Smeenge
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine;
| |
Collapse
|
14
|
Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. DIVERSITY 2023. [DOI: 10.3390/d15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plant growth-promoting bacteria (PGPB) enhance plant growth, as well as protect plants from several biotic and abiotic stresses through a variety of mechanisms. Therefore, the exploitation of PGPB in agriculture is feasible as it offers sustainable and eco-friendly approaches to maintaining soil health while increasing crop productivity. The vital key of PGPB application in agriculture is its effectiveness in colonizing plant roots and the phyllosphere, and in developing a protective umbrella through the formation of microcolonies and biofilms. Biofilms offer several benefits to PGPB, such as enhancing resistance to adverse environmental conditions, protecting against pathogens, improving the acquisition of nutrients released in the plant environment, and facilitating beneficial bacteria–plant interactions. Therefore, bacterial biofilms can successfully compete with other microorganisms found on plant surfaces. In addition, plant-associated PGPB biofilms are capable of protecting colonization sites, cycling nutrients, enhancing pathogen defenses, and increasing tolerance to abiotic stresses, thereby increasing agricultural productivity and crop yields. This review highlights the role of biofilms in bacterial colonization of plant surfaces and the strategies used by biofilm-forming PGPB. Moreover, the factors influencing PGPB biofilm formation at plant root and shoot interfaces are critically discussed. This will pave the role of PGPB biofilms in developing bacterial formulations and addressing the challenges related to their efficacy and competence in agriculture for sustainability.
Collapse
|
15
|
Gierl L, Horn H, Wagner M. Impact of Fe 2+ and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Bacillus subtilis Case Study. Microorganisms 2022; 10:2234. [PMID: 36422304 PMCID: PMC9699539 DOI: 10.3390/microorganisms10112234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe2+ ions within the cultivation medium on biofilm development, structure and stability, Bacillus subtilis biofilms were cultivated in mini-fluidic flow cells. Two different Fe2+ inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates (n = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe2+ inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe2+ addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe2+ inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe2+/L (44.8 µmol/L; high inflow concentration) compared to the low Fe2+ inflow concentration of 0.25 mg Fe2+/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of Bacillus subtilis biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe2+ inflow concentrations.
Collapse
Affiliation(s)
- Luisa Gierl
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Harald Horn
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
| | - Michael Wagner
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-1), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. Int J Mol Sci 2022; 23:ijms23084386. [PMID: 35457206 PMCID: PMC9028604 DOI: 10.3390/ijms23084386] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.
Collapse
|
17
|
Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. NANOSCALE 2022; 14:4018-4041. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance is a leading cause of mortality worldwide. Without newly approved antibiotics and antifungals being brought to the market, resistance is being developed to the ones currently available to clinicians. The reason is the applied evolutionary pressure to bacterial and fungal species due to the wide overuse of common antibiotics and antifungals in clinical practice and agriculture. Biofilms harbour antimicrobial-resistant subpopulations, which make their antimicrobial treatment even more challenging. Nanoparticle-based technologies have recently been shown to successfully overcome antimicrobial resistance in both planktonic and biofilms phenotypes. This results from the combination of novel nanomaterial research and classic antimicrobial therapies which promise to deliver a whole new generation of high-performance active nanocarrier systems. This review discusses the latest developments of promising nanotechnologies with applications against resistant pathogens and evaluates their potential and feasibility for use in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Paul J Weldick
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Anheng Wang
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Ahmed F Halbus
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Baryr Ave. 53, Nur-sultan city, 010000, Kazakhstan.
| |
Collapse
|
18
|
Perez LJ, Parashar R, Plymale A, Scheibe TD. Contributions of biofilm-induced flow heterogeneities to solute retention and anomalous transport features in porous media. WATER RESEARCH 2022; 209:117896. [PMID: 34922103 DOI: 10.1016/j.watres.2021.117896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Microbial biofilms are ubiquitous within porous media and the dynamics of their growth influence surface and subsurface flow patterns which impacts the physical properties of porous media and large-scale transport of solutes. A two-dimensional pore-scale numerical model was used to evaluate the impact of biofilm-induced flow heterogeneities on conservative transport. Our study integrates experimental biofilm images of Paenibacillus 300A strain in a microfluidic device packed with cylindrical grains in a hexagonal distribution, with mathematical modeling. Biofilm is represented as a synthetic porous structure with locally varying physical properties that honors the impact of biofilm on the porous medium. We find that biofilm plays a major role in shaping the observed conservative transport dynamics by enhancing anomalous characteristics. More specifically, when biofilm is present, the pore structure in our geometry becomes more spatially correlated. We observe intermittent behavior in the Lagrangian velocities that switches between fast transport periods and long trapping events. Our results suggest that intermittency enhances solute spreading in breakthrough curves which exhibit extreme anomalous slope at intermediate times and very marked late solute arrival due to solute retention. The efficiency of solute retention by the biofilm is controlled by a transport regime which can extend the tailing in the concentration breakthrough curves. These results indicate that solute retention by the biofilm exerts a strong control on conservative solute transport at pore-scale, a role that to date has not received enough attention.
Collapse
Affiliation(s)
| | | | - Andrew Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
19
|
Castro MR, Dias GM, Salles TS, Cabral NM, Mariano DCO, Oliveira HL, Abdelhay ESFW, Binato R, Neves BC. Genome-wide analysis reveals a rhamnolipid-dependent modulation of flagellar genes in Pseudomonas aeruginosa PAO1. Curr Genet 2022; 68:289-304. [DOI: 10.1007/s00294-021-01225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
|
20
|
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry-A Review. Foods 2021; 10:2587. [PMID: 34828868 PMCID: PMC8621587 DOI: 10.3390/foods10112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilms cause problems in the food industry due to their persistence and incompetent hygiene processing technologies. Interest in photodynamic inactivation (PDI) for combating biofilms has increased in recent years. This technique can induce microbial cell death, reduce cell attachment, ruin biofilm biomolecules and eradicate structured biofilms without inducing microbial resistance. This review addresses microbial challenges posed by biofilms in food environments and highlights the advantages of PDI in preventing and eradicating microbial biofilm communities. Current findings of the antibiofilm efficiencies of this technique are summarized. Additionally, emphasis is given to its potential mechanisms and factors capable of influencing biofilm communities, as well as promising hurdle strategies.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Emmanuel Kyere
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
21
|
Kowalski CH, Morelli KA, Stajich JE, Nadell CD, Cramer RA. A Heterogeneously Expressed Gene Family Modulates the Biofilm Architecture and Hypoxic Growth of Aspergillus fumigatus. mBio 2021; 12:e03579-20. [PMID: 33593969 PMCID: PMC8545126 DOI: 10.1128/mbio.03579-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Aspergillus encompasses human pathogens such as Aspergillus fumigatus and industrial powerhouses such as Aspergillus niger In both cases, Aspergillus biofilms have consequences for infection outcomes and yields of economically important products. However, the molecular components influencing filamentous fungal biofilm development, structure, and function remain ill defined. Macroscopic colony morphology is an indicator of underlying biofilm architecture and fungal physiology. A hypoxia-locked colony morphotype of A. fumigatus has abundant colony furrows that coincide with a reduction in vertically oriented hyphae within biofilms and increased low oxygen growth and virulence. Investigation of this morphotype has led to the identification of the causative gene, biofilm architecture factor A (bafA), a small cryptic open reading frame within a subtelomeric gene cluster. BafA is sufficient to induce the hypoxia-locked colony morphology and biofilm architecture in A. fumigatus Analysis across a large population of A. fumigatus isolates identified a larger family of baf genes, all of which have the capacity to modulate hyphal architecture, biofilm development, and hypoxic growth. Furthermore, introduction of A. fumigatusbafA into A. niger is sufficient to generate the hypoxia-locked colony morphology, biofilm architecture, and increased hypoxic growth. Together, these data indicate the potential broad impacts of this previously uncharacterized family of small genes to modulate biofilm architecture and function in clinical and industrial settings.IMPORTANCE The manipulation of microbial biofilms in industrial and clinical applications remains a difficult task. The problem is particularly acute with regard to filamentous fungal biofilms for which molecular mechanisms of biofilm formation, maintenance, and function are only just being elucidated. Here, we describe a family of small genes heterogeneously expressed across Aspergillus fumigatus strains that are capable of modifying colony biofilm morphology and microscopic hyphal architecture. Specifically, these genes are implicated in the formation of a hypoxia-locked colony morphotype that is associated with increased virulence of A. fumigatus Synthetic introduction of these gene family members, here referred to as biofilm architecture factors, in both A. fumigatus and A. niger additionally modulates low oxygen growth and surface adherence. Thus, these genes are candidates for genetic manipulation of biofilm development in aspergilli.
Collapse
Affiliation(s)
- Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kaesi A Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
22
|
Karimifard S, Li X, Elowsky C, Li Y. Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel. WATER RESEARCH 2021; 188:116536. [PMID: 33125999 DOI: 10.1016/j.watres.2020.116536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/22/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study integrates microfluidic experiments and mathematical modeling to study the impacts of biofilms on flow in porous media and to explore approaches to simplify modeling permeability with complicated biofilm geometries. E. coli biofilms were grown in a microfluidic channel packed with a single layer of glass beads to reach three biofilm levels: low, intermediate, and high, with biofilm ratios (βr) of 2.7%, 17.6%, and 55.2%, respectively. Two-dimensional biofilm structures and distributions in the porous medium were modeled by digitizing confocal images and considering broad ranges of biofilm permeability (kb) (from 10-15 m2 to 10-7 m2) and biofilm porosity (εb) (from 0.2 to 0.8). The overall permeability of the porous medium (k), the flow pathways and the overall/local pressure gradients were found to be highly dependent on βr and kb but were moderately impacted by εb when the biofilm levels were high and intermediate with kb>10-11 m2. When biofilm structures are well developed, simplified biofilm geometries, such as uniform coating and symmetric contact filling, can provide reasonable approximations of k.
Collapse
Affiliation(s)
- Shahab Karimifard
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Yusong Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States.
| |
Collapse
|
23
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
24
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
25
|
Machineni L. Effects of biotic and abiotic factors on biofilm growth dynamics and their heterogeneous response to antibiotic challenge. J Biosci 2020. [DOI: 10.1007/s12038-020-9990-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Machineni L. Effects of biotic and abiotic factors on biofilm growth dynamics and their heterogeneous response to antibiotic challenge. J Biosci 2020; 45:25. [PMID: 32020907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the last couple of decades, with the crisis of new antimicrobial arsenal, multidrug-resistant clinical pathogens have been observed extensively. In clinical and medical settings, these persistent pathogens predominantly grow as complex heterogeneous structures enmeshed in a self-produced exopolysaccharide matrix, termed as biofilms. Since biofilms can rapidly form by adapting new environmental surroundings and have potential effect on human health, it is critical to study them promptly and consistently. Biofilm infections are challenging in the contamination of medical devices and implantations, food processing and pharmaceutical industrial settings, and in dental area caries, periodontitis and so on. The persistence of infections associated with biofilms has been mainly attributed to the increased antibiotic resistance offered by the cells growing in biofilms. In fact, it is well known that this recalcitrance of bacterial biofilms is multifactorial, and there are several resistance mechanisms that may act in parallel in order to provide an enhanced level of resistance to the biofilm. In combination, distinct resistance mechanisms significantly decrease our ability to control and eradicate biofilm-associated infections with current antimicrobial arsenal. In addition, various factors are known to influence the process of biofilm formation, growth dynamics, and their heterogeneous response towards antibiotic therapy. The current review discusses the contribution of cellular and physiochemical factors on the growth dynamics of biofilm, especially their role in antibiotic resistance mechanisms of bacterial population living in surface attached growth mode. A systematic investigation on the effects and treatment of biofilms may pave the way for novel therapeutic strategies to prevent and treat biofilms in healthcare and industrial settings.
Collapse
|
27
|
Abstract
Bacteria are often found living in aggregated multicellular communities known as biofilms. Biofilms are three-dimensional structures that confer distinct physical and biological properties to the collective of cells living within them. We used agent-based modeling to explore whether local cellular interactions were sufficient to give rise to global structural features of biofilms. Specifically, we asked whether chemorepulsion from a self-produced quorum-sensing molecule, autoinducer-2 (AI-2), was sufficient to recapitulate biofilm growth and cellular organization observed for biofilms of Helicobacter pylori, a common bacterial resident of human stomachs. To carry out this modeling, we modified an existing platform, Individual-based Dynamics of Microbial Communities Simulator (iDynoMiCS), to incorporate three-dimensional chemotaxis, planktonic cells that could join or leave the biofilm structure, and cellular production of AI-2. We simulated biofilm growth of previously characterized H. pylori strains with various AI-2 production and sensing capacities. Using biologically plausible parameters, we were able to recapitulate both the variation in biofilm mass and cellular distributions observed with these strains. Specifically, the strains that were competent to chemotax away from AI-2 produced smaller and more heterogeneously spaced biofilms, whereas the AI-2 chemotaxis-defective strains produced larger and more homogeneously spaced biofilms. The model also provided new insights into the cellular demographics contributing to the biofilm patterning of each strain. Our analysis supports the idea that cellular interactions at small spatial and temporal scales are sufficient to give rise to larger-scale emergent properties of biofilms.IMPORTANCE Most bacteria exist in aggregated, three-dimensional structures called biofilms. Although biofilms play important ecological roles in natural and engineered settings, they can also pose societal problems, for example, when they grow in plumbing systems or on medical implants. Understanding the processes that promote the growth and disassembly of biofilms could lead to better strategies to manage these structures. We had previously shown that Helicobacter pylori bacteria are repulsed by high concentrations of a self-produced molecule, AI-2, and that H. pylori mutants deficient in AI-2 sensing form larger and more homogeneously spaced biofilms. Here, we used computer simulations of biofilm formation to show that local H. pylori behavior of repulsion from high AI-2 could explain the overall architecture of H. pylori biofilms. Our findings demonstrate that it is possible to change global biofilm organization by manipulating local cell behaviors, which suggests that simple strategies targeting cells at local scales could be useful for controlling biofilms in industrial and medical settings.
Collapse
|
28
|
Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10:2183. [PMID: 31097723 PMCID: PMC6522473 DOI: 10.1038/s41467-019-10201-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are composed of exopolysaccharides (EPS), exogenous DNA, and proteins that hold these communities together. P. aeruginosa produces lectins LecA and LecB, which possess affinities towards sugars found in matrix EPS and mediate adherence of P. aeruginosa to target host cells. Here, we demonstrate that LecB binds to Psl, a key matrix EPS, and this leads to increased retention of both cells and EPS in a growing biofilm. This interaction is predicted to occur between the lectin and the branched side chains present on Psl. Finally, we show that LecB coordinates Psl localization in the biofilm. This constitutes a unique function for LecB and identifies it as a matrix protein that contributes to biofilm structure through EPS interactions.
Collapse
Affiliation(s)
| | | | | | | | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Basovizza, Trieste, Italy
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Integrative Microbiology Research Centre, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
29
|
Awan AB, Schiebel J, Böhm A, Nitschke J, Sarwar Y, Schierack P, Ali A. Association of biofilm formation and cytotoxic potential with multidrug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI JOURNAL 2019; 18:79-90. [PMID: 30956641 PMCID: PMC6449682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/23/2019] [Indexed: 11/01/2022]
Abstract
Multidrug resistant (MDR) Pseudomonas aeruginosa having strong biofilm potential and virulence factors are a serious threat for hospitalized patients having compromised immunity. In this study, 34 P. aeruginosa isolates of human origin (17 MDR and 17 non-MDR clinical isolates) were checked for biofilm formation potential in enriched and minimal media. The biofilms were detected using crystal violet method and a modified software package of the automated VideoScan screening method. Cytotoxic potential of the isolates was also investigated on HepG2, LoVo and T24 cell lines using automated VideoScan technology. Pulse field gel electrophoresis revealed 10 PFGE types in MDR and 8 in non-MDR isolates. Although all isolates showed biofilm formation potential, strong biofilm formation was found more in enriched media than in minimal media. Eight MDR isolates showed strong biofilm potential in both enriched and minimal media by both detection methods. Strong direct correlation between crystal violet and VideoScan methods was observed in identifying strong biofilm forming isolates. High cytotoxic effect was observed by 4 isolates in all cell lines used while 6 other isolates showed high cytotoxic effect on T24 cell line only. Strong association of multidrug resistance was found with biofilm formation as strong biofilms were observed significantly higher in MDR isolates (p-value < 0.05) than non-MDR isolates. No significant association of cytotoxic potential with multidrug resistance or biofilm formation was found (p-value > 0.05). The MDR isolates showing significant cytotoxic effects and strong biofilm formation impose a serious threat for hospitalized patients with weak immune system.
Collapse
Affiliation(s)
- Asad Bashir Awan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Juliane Schiebel
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alexander Böhm
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jörg Nitschke
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Yasra Sarwar
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Peter Schierack
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Institute for Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
30
|
Breaking the Vicious Cycle of Antibiotic Killing and Regrowth of Biofilm-Residing Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.01635-18. [PMID: 30297365 DOI: 10.1128/aac.01635-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physicochemical insults. In addition to the general recalcitrance of biofilm bacteria, high bacterial loads in biofilm-associated infections significantly diminish the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols that have been established to serve the eradication of acute infections fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as a measure for effectiveness of the antimicrobial treatment. It depends on the (i) nature and concentration of the antibiotic, (ii) duration of antibiotic treatment, (iii) application as monotherapy or combination therapy, and (iv) interval of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages at intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.
Collapse
|
31
|
Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 2018; 4:17. [PMID: 30131867 PMCID: PMC6102240 DOI: 10.1038/s41522-018-0062-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Developing reliable anti-biofilm strategies or efficient biofilm-based bioprocesses strongly depends on having a clear understanding of the mechanisms underlying biofilm development, and knowledge of the relevant mechanical parameters describing microbial biofilm behavior. Many varied mechanical testing methods are available to assess these parameters. The mechanical properties thus identified can then be used to compare protocols such as antibiotic screening. However, the lack of standardization in both mechanical testing and the associated identification methods for a given microbiological goal remains a blind spot in the biofilm community. The pursuit of standardization is problematic, as biofilms are living structures, i.e., both complex and dynamic. Here, we review the main available methods for characterizing the mechanical properties of biofilms through the lens of the relationship linking experimental testing to the identification of mechanical parameters. We propose guidelines for characterizing biofilms according to microbiological objectives that will help the reader choose an appropriate test and a relevant identification method for measuring any given mechanical parameter. The use of a common methodology for the mechanical characterization of biofilms will enable reliable analysis and comparison of microbiological protocols needed for improvement of engineering process and screening.
Collapse
|
32
|
Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis. Microbiol Mol Biol Rev 2018; 82:82/2/e00001-18. [PMID: 29743338 DOI: 10.1128/mmbr.00001-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori, which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence.
Collapse
|
33
|
Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism. Antimicrob Agents Chemother 2018; 62:AAC.02544-17. [PMID: 29463543 PMCID: PMC5923133 DOI: 10.1128/aac.02544-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 11/20/2022] Open
Abstract
Segregation of bacteria based on their metabolic activities in biofilms plays an important role in the development of antibiotic resistance. Mushroom-shaped biofilm structures, which are reported for many bacteria, exhibit topographically varying levels of multiple drug resistance from the cap of the mushroom to its stalk. Understanding the dynamics behind the formation of such structures can aid in design of drug delivery systems, antibiotics, or physical systems for removal of biofilms. We explored the development of metabolically heterogeneous Pseudomonas aeruginosa biofilms using numerical models and laboratory knockout experiments on wild-type and chemotaxis-deficient mutants. We show that chemotactic processes dominate the transformation of slender and hemispherical structures into mushroom structures with a signature cap. Cellular Potts model simulation and experimental data provide evidence that accelerated movement of bacteria along the periphery of the biofilm, due to nutrient cues, results in the formation of mushroom structures and bacterial segregation. Multidrug resistance of bacteria is one of the most threatening dangers to public health. Understanding the mechanisms of the development of mushroom-shaped biofilms helps to identify the multidrug-resistant regions. We decoded the dynamics of the structural evolution of bacterial biofilms and the physics behind the formation of biofilm structures as well as the biological triggers that produce them. Combining in vitro gene knockout experiments with in silico models showed that chemotactic motility is one of the main driving forces for the formation of stalks and caps. Our results provide physicists and biologists with a new perspective on biofilm removal and eradication strategies.
Collapse
|
34
|
Carvalho G, Balestrino D, Forestier C, Mathias JD. How do environment-dependent switching rates between susceptible and persister cells affect the dynamics of biofilms faced with antibiotics? NPJ Biofilms Microbiomes 2018; 4:6. [PMID: 29560270 PMCID: PMC5854711 DOI: 10.1038/s41522-018-0049-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/24/2023] Open
Abstract
Persisters form sub-populations of stress-tolerant cells that play a major role in the capacity of biofilms to survive and recover from disturbances such as antibiotic treatments. The mechanisms of persistence are diverse and influenced by environmental conditions, and persister populations are more heterogeneous than formerly suspected. We used computational modeling to assess the impact of three switching strategies between susceptible and persister cells on the capacity of bacterial biofilms to grow, survive and recover from antibiotic treatments. The strategies tested were: (1) constant switches, (2) substrate-dependent switches and (3) antibiotic-dependent switches. We implemented these strategies in an individual-based biofilm model and simulated antibiotic shocks on virtual biofilms. Because of limited available data on switching rates in the literature, nine parameter sets were assessed for each strategy. Substrate and antibiotic-dependent switches allowed high switching rates without affecting the growth of the biofilms. Compared to substrate-dependent switches, constant and antibiotic-dependent switches were associated with higher proportions of persisters in the top of the biofilms, close to the substrate source, which probably confers a competitive advantage within multi-species biofilms. The constant and substrate-dependent strategies need a compromise between limiting the wake-up and death of persisters during treatments and leaving the persister state fast enough to recover quickly after antibiotic-removal. Overall, the simulations gave new insights into the relationships between the dynamics of persister populations in biofilms and their dynamics of growth, survival and recovery when faced with disturbances.
Collapse
Affiliation(s)
- Gabriel Carvalho
- UR LISC Laboratoire d'Ingénierie pour les Systèmes Complexes, Irstea, Aubière, France
| | - Damien Balestrino
- 2LMGE, UMR6023 CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Jean-Denis Mathias
- UR LISC Laboratoire d'Ingénierie pour les Systèmes Complexes, Irstea, Aubière, France
| |
Collapse
|
35
|
Jia R, Yang D, Xu D, Gu T. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Front Microbiol 2017; 8:2335. [PMID: 29230206 PMCID: PMC5712129 DOI: 10.3389/fmicb.2017.02335] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium capable of forming problematic biofilms in many environments. They cause biocorrosion of medical implants and industrial equipment and infrastructure. Aerobic corrosion of P. aeruginosa against stainless steels has been reported by some researchers while there is a lack of reports on anaerobic P. aeruginosa corrosion in the literature. In this work, the corrosion by a wild-type P. aeruginosa (strain PAO1) biofilm against 304 stainless steel (304 SS) was investigated under strictly anaerobic condition for up to 14 days. The anaerobic corrosion of 304 SS by P. aeruginosa was reported for the first time. Results showed that the average sessile cell counts on 304 SS coupons after 7- and 14-day incubations were 4.8 × 107 and 6.2 × 107 cells/cm2, respectively. Scanning electron microscopy and confocal laser scanning microscopy corroborated the sessile cell counts. The X-ray diffraction analysis identified the corrosion product as iron nitride, confirming that the corrosion was caused by the nitrate reducing biofilm. The largest pit depths on 304 SS surfaces after the 7- and 14-day incubations with P. aeruginosa were 3.9 and 7.4 μm, respectively. Electrochemical tests corroborated the pitting data.
Collapse
Affiliation(s)
- Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, United States
| | - Dongqing Yang
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, United States
| | - Dake Xu
- School of Materials Science and Engineering, Northeastern University, Shenyang, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, United States
| |
Collapse
|
36
|
Kreft JU, Plugge CM, Prats C, Leveau JHJ, Zhang W, Hellweger FL. From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality. Front Microbiol 2017; 8:2299. [PMID: 29230200 PMCID: PMC5711835 DOI: 10.3389/fmicb.2017.02299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.
Collapse
Affiliation(s)
- Jan-Ulrich Kreft
- Centre for Computational Biology, Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Clara Prats
- Department of Physics, School of Agricultural Engineering of Barcelona, Universitat Politècnica de Catalunya-BarcelonaTech, Castelldefels, Spain
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ferdi L Hellweger
- Civil and Environmental Engineering Department, Marine and Environmental Sciences Department, Bioengineering Department, Northeastern University, Boston, MA, United States
| |
Collapse
|
37
|
Jensen LK, Johansen ASB, Jensen HE. Porcine Models of Biofilm Infections with Focus on Pathomorphology. Front Microbiol 2017; 8:1961. [PMID: 29067019 PMCID: PMC5641329 DOI: 10.3389/fmicb.2017.01961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilm formation is one of the main reasons for a negative treatment outcome and a high recurrence rate for many chronic infections in humans. The optimal way to study both the biofilm forming bacteria and the host response simultaneously is by using discriminative, reliable, and reproducible animal models of the infections. In this review, the advantages of in vivo studies are compared to in vitro studies of biofilm formation in infectious diseases. The pig is the animal of choice when developing and applying large animal models of infectious diseases due to its similarity of anatomy, physiology, and immune system to humans. Furthermore, conventional pigs spontaneously develop many of the same chronic bacterial infections as seen in humans. Therefore, in this review porcine models of five different infectious diseases all associated with biofilm formation and chronicity in humans are described. The infectious diseases are: chronic wounds, endocarditis, pyelonephritis, hematogenous osteomyelitis, and implant-associated osteomyelitis (IAO).
Collapse
Affiliation(s)
- Louise K Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne S B Johansen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik E Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
38
|
Jia R, Li Y, Al-Mahamedh HH, Gu T. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Front Microbiol 2017; 8:1538. [PMID: 28861053 PMCID: PMC5561659 DOI: 10.3389/fmicb.2017.01538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023] Open
Abstract
Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium.
Collapse
Affiliation(s)
- Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, AthensOH, United States
| | - Yingchao Li
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, Department of Materials Science and Engineering, China University of Petroleum - BeijingBeijing, China
| | | | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, AthensOH, United States
| |
Collapse
|
39
|
Jia R, Yang D, Xu D, Gu T. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Sci Rep 2017; 7:6946. [PMID: 28761161 PMCID: PMC5537228 DOI: 10.1038/s41598-017-07312-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a ubiquitous microbe. It can form recalcitrant biofilms in clinical and industrial settings. PA biofilms cause infections in patients. They also cause biocorrosion of medical implants. In this work, D-tyrosine (D-tyr) was investigated as an antimicrobial enhancer for ciprofloxacin (CIP) against a wild-type PA biofilm (strain PAO1) on C1018 carbon steel in a strictly anaerobic condition. Seven-day biofilm prevention test results demonstrated that 2 ppm (w/w) D-tyr enhanced 30 ppm CIP by achieving extra 2-log sessile cell reduction compared with the 30 ppm CIP alone treatment. The cocktail of 30 ppm CIP + 2 ppm D-tyr achieved similar efficacy as the 80 ppm CIP alone treatment in the biofilm prevention test. Results also indicated that the enhanced antimicrobial treatment reduced weight loss and pitting corrosion. In the 3-hour biofilm removal test, the cocktail of 80 ppm CIP + 5 ppm D-tyr achieved extra 1.5-log reduction in sessile cell count compared with the 80 ppm CIP alone treatment. The cocktail of 80 ppm CIP + 5 ppm D-tyr achieved better efficacy than the 150 ppm CIP alone treatment in the biofilm removal test.
Collapse
Affiliation(s)
- Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | - Dongqing Yang
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | - Dake Xu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|