1
|
Li H, Anjani QK, Hutton ARJ, Paris JL, Moreno‐Castellanos N, Himawan A, Larrañeta E, Donnelly RF. Design of a Novel Delivery Efficiency Feedback System for Biphasic Dissolving Microarray Patches Based on Poly(Lactic Acid) and Moisture-Indicating Silica. Adv Healthc Mater 2024; 13:e2304082. [PMID: 38471772 PMCID: PMC11468354 DOI: 10.1002/adhm.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.
Collapse
Affiliation(s)
- Huanhuan Li
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | | | | - Juan Luis Paris
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐IBIMA Plataforma BIONANDMálaga29590Spain
| | | | - Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyUniversitas HasanuddinMakassar90245Indonesia
| | - Eneko Larrañeta
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | |
Collapse
|
2
|
Hartfield J, Bird E, Liang Z. Effects of Organic Surface Contamination on the Mass Accommodation Coefficient of Water: A Molecular Dynamics Study. J Phys Chem B 2024; 128:585-595. [PMID: 38175820 DOI: 10.1021/acs.jpcb.3c06939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The mass accommodation coefficient (MAC), a parameter that quantifies the possibility of a phase change to occur at a liquid-vapor interface, can strongly affect the evaporation and condensation rates at a liquid surface. Due to the various challenges in experimental determination of the MAC, molecular dynamics (MD) simulations have been widely used to study the MAC on liquid surfaces with no impurities or contaminations. However, experimental studies show that airborne hydrocarbons from various sources can adsorb on liquid surfaces and alter the liquid surface properties. In this work, therefore, we study the effects of organic surface contamination, which is immiscible with water, on the MAC of water by equilibrium and nonequilibrium MD simulations. The equilibrium MD simulation results show that the MAC decreases almost linearly with increasing surface coverage of the organic contaminants. With the MAC determined from EMD simulations, the nonequilibrium MD simulation results show that the Schrage equation, which has been proven to be accurate in predicting the evaporation/condensation rates on clean liquid surfaces, is also accurate in predicting the condensation rate at contaminated water surfaces. The key assumption about the molecular velocity distribution in the Schrage analysis is still valid for condensing vapor molecules near contaminated water surfaces. We also find that under nonequilibrium conditions the adsorption of the water vapor molecules on the organic surface results in an adsorption vapor flux near the contaminated water surface. When the water surface is almost fully covered by the model organic contaminants, the adsorption flux dominates over the water condensation flux and leads to a false prediction of the MAC from the Schrage equation.
Collapse
Affiliation(s)
- Jordan Hartfield
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Eric Bird
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhi Liang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Luong NT, Veyret N, Boily JF. CO 2 Mineralization by MgO Nanocubes in Nanometric Water Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45055-45063. [PMID: 37707796 PMCID: PMC10540135 DOI: 10.1021/acsami.3c10590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Water films formed by the adhesion and condensation of air moisture on minerals can trigger the formation of secondary minerals of great importance to nature and technology. Magnesium carbonate growth on Mg-bearing minerals is not only of great interest for CO2 capture under enhanced weathering scenarios but is also a prime system for advancing key ideas on mineral formation under nanoconfinement. To help advance ideas on water film-mediated CO2 capture, we tracked the growth of amorphous magnesium carbonate (AMC) on MgO nanocubes exposed to moist CO2 gas. AMC was identified by its characteristic vibrational spectral signature and by its lack of long-range structure by X-ray diffraction. We find that AMC (MgCO3·2.3-2.5H2O) grew in sub-monolayer (ML) to 4 ML thick water films, with formation rates and yields scaling with humidity. AMC growth was however slowed down as AMC nanocoatings blocked water films access to the reactive MgO core. Films could however be partially dissolved by exposure to thicker water films, driving AMC growth for several more hours until nanocoatings blocked the reactions again. These findings shed new light on a potentially important bottleneck for the efficient mineralization of CO2 using MgO-bearing products. Notably, this study shows how variations in the air humidity affect CO2 capture by controlling water film coverages on reactive minerals. This process is also of great interest in the study of mineral growth in nanometrically thick water films.
Collapse
Affiliation(s)
- N. Tan Luong
- Department of Chemistry, Umeå
University, SE 901 87 Umeå, Sweden
| | - Noémie Veyret
- Department of Chemistry, Umeå
University, SE 901 87 Umeå, Sweden
| | | |
Collapse
|
4
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Chatre C, Ehret E, Ondarçuhu T, Steyer P, Masenelli-Varlot K, Cadete Santos Aires FJ, Nozière B. Influence of Surface-Active Substances and Substrates on the Wettability of Individual Aerosol Particles during Condensation by Environmental Scanning Electron Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2957-2965. [PMID: 36795487 DOI: 10.1021/acs.langmuir.2c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The formation of liquid cloud droplets from aerosol particles in the Earth atmosphere is still under debate particularly because of the difficulties to quantify the importance of bulk and surface effects in these processes. Recently, single-particle techniques have been developed to access experimental key parameters at the scale of individual particles. Environmental scanning electron microscopy (ESEM) has the advantage to provide in situ monitoring of the water uptake of individual microscopic particles deposited on solid substrates. In this work, ESEM was used to compare droplet growth on pure ammonium sulfate (NH4)2SO4 and mixed sodium dodecyl sulfate/ammonium sulfate (SDS/(NH4)2SO4) particles and to explore the role of experimental parameters, such as the hydrophobic-hydrophilic character of the substrate, on this growth. With hydrophilic substrates, the growth on pure salt particles was strongly anisotropic, but this anisotropy was suppressed by the presence of SDS. With hydrophobic substrates, it is the wetting behavior of the liquid droplet that is impacted by the presence of SDS. The wetting behavior of the pure (NH4)2SO4 solution on a hydrophobic surface shows a step-by-step mechanism that can be attributed to successive pinning-depinning phenomena at the triple-phase line frontier. Unlike the pure (NH4)2SO4 solution, the mixed SDS/(NH4)2SO4 solution did not show such a mechanism. Therefore, the hydrophobic-hydrophilic character of the substrate plays an important role in the stability and dynamics of the liquid droplets' nucleation by water vapor condensation. In particular, hydrophilic substrates are not suited for the investigation of the hygroscopic properties (deliquescence relative humidity (DRH) and hygroscopic growth factor (GF)) of particles. Using hydrophobic substrates, data show that the DRH of (NH4)2SO4 particles is measured within 3% accuracy on the RH and their GF could indicate a size-dependent effect in the micrometer range. The presence of SDS does not seem to modify the DRH and GF of (NH4)2SO4 particles. This study shows that the water uptake on deposited particles is a complex process but, once carefully taken into account, ESEM is a suitable technique to study them.
Collapse
Affiliation(s)
- Clément Chatre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, 69626 Villeurbanne, France
| | - Eric Ehret
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, 69626 Villeurbanne, France
| | | | - Philippe Steyer
- Univ. Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, 69621 Villeurbanne, France
| | - Karine Masenelli-Varlot
- Univ. Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, 69621 Villeurbanne, France
| | - Francisco José Cadete Santos Aires
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON UMR 5256, 69626 Villeurbanne, France
- National Research Tomsk State University, LCR, 634050 Tomsk, Russia
| | - Barbara Nozière
- Division of Applied Physical Chemistry, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Benjamin SE, LaVerne JA, Sigmon GE, Burns PC. Ozone-Facilitated Formation of Uranyl Peroxide in Humid Conditions. Inorg Chem 2022; 61:20977-20985. [PMID: 36519839 DOI: 10.1021/acs.inorgchem.2c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metaschoepite, [(UO2)8O2(OH)12](H2O)10, maintained in a high relative humidity (RH) environment with air initially transformed into an intermediate phase that subsequently was replaced by the peroxide phase studtite, [(UO2)(O2)(H2O)2](H2O)2, over the course of 42 days, as observed using Raman and infrared spectroscopy and powder X-ray diffraction. Addition of atmospheric ozone vastly increased the rate and extent of the transformation to studtite but only in a high-RH atmosphere. Owing to its strong affinity for peroxide, uranyl reacted with hydrogen peroxide as it formed and precipitated stable studtite. In this work, we provide a previously unidentified source of hydrogen peroxide and make a case for the re-examination of storage systems where the consequences of atmospheric ozone are not considered.
Collapse
Affiliation(s)
- Savannah E Benjamin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Ginger E Sigmon
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
7
|
Koishi A, Lee SS, Fenter P, Fernandez-Martinez A, Bourg IC. Water Adsorption on Mica Surfaces with Hydrophilicity Tuned by Counterion Types (Na, K, and Cs) and Structural Fluorination. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:16447-16460. [PMID: 37881644 PMCID: PMC10597534 DOI: 10.1021/acs.jpcc.2c04751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Indexed: 10/27/2023]
Abstract
The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.
Collapse
Affiliation(s)
- Ayumi Koishi
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Soo Lee
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | - Paul Fenter
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United
States
| | | | - Ian C. Bourg
- Department
of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High
Meadows Environmental Institute, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nat Rev Chem 2022; 6:598-613. [PMID: 37117714 DOI: 10.1038/s41570-022-00418-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
Abstract
The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
Collapse
|
9
|
Öztürk Hİ. The effect of different lyophilisation pressures on the microbiological stability, physicochemical, microstructural, and sensorial properties of yoghurt powders. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Geng S, Lin E, Li X, Liu W, Wang T, Wang Z, Sensharma D, Darwish S, Andaloussi YH, Pham T, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal–Organic Frameworks for Efficient Ethylene Purification. J Am Chem Soc 2021; 143:8654-8660. [DOI: 10.1021/jacs.1c02108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shubo Geng
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - En Lin
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Li
- Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94T9PX, Republic of Ireland
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94T9PX, Republic of Ireland
| | - Shaza Darwish
- Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94T9PX, Republic of Ireland
| | - Yassin H. Andaloussi
- Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94T9PX, Republic of Ireland
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Michael J. Zaworotko
- Department of Chemical Sciences, Bernal Institute University of Limerick, Limerick V94T9PX, Republic of Ireland
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
- College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Cheng W, Lindholm J, Holmboe M, Luong NT, Shchukarev A, Ilton ES, Hanna K, Boily JF. Nanoscale Hydration in Layered Manganese Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:666-674. [PMID: 33404244 PMCID: PMC7880569 DOI: 10.1021/acs.langmuir.0c02592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Birnessite is a layered MnO2 mineral capable of intercalating nanometric water films in its bulk. With its variable distributions of Mn oxidation states (MnIV, MnIII, and MnII), cationic vacancies, and interlayer cationic populations, birnessite plays key roles in catalysis, energy storage solutions, and environmental (geo)chemistry. We here report the molecular controls driving the nanoscale intercalation of water in potassium-exchanged birnessite nanoparticles. From microgravimetry, vibrational spectroscopy, and X-ray diffraction, we find that birnessite intercalates no more than one monolayer of water per interlayer when exposed to water vapor at 25 °C, even near the dew point. Molecular dynamics showed that a single monolayer is an energetically favorable hydration state that consists of 1.33 water molecules per unit cell. This monolayer is stabilized by concerted potassium-water and direct water-birnessite interactions, and involves negligible water-water interactions. Using our composite adsorption-condensation-intercalation model, we predicted humidity-dependent water loadings in terms of water intercalated in the internal and adsorbed at external basal faces, the proportions of which vary with particle size. The model also accounts for additional populations condensed on and between particles. By describing the nanoscale hydration of birnessite, our work secures a path for understanding the water-driven catalytic chemistry that this important layered manganese oxide mineral can host in natural and technological settings.
Collapse
Affiliation(s)
- Wei Cheng
- University
Rennes, École Nationale Supérieure de Chimie de Rennes,
CNRS, UMR 6226, 11 Allée
de Beaulieu, 35708 Rennes, France
| | - Jerry Lindholm
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Michael Holmboe
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - N. Tan Luong
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Eugene S. Ilton
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Khalil Hanna
- University
Rennes, École Nationale Supérieure de Chimie de Rennes,
CNRS, UMR 6226, 11 Allée
de Beaulieu, 35708 Rennes, France
| | | |
Collapse
|
12
|
Yalcin SE, Legg BA, Yeşilbaş M, Malvankar NS, Boily JF. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. SCIENCE ADVANCES 2020; 6:eaaz9708. [PMID: 32832658 PMCID: PMC7439304 DOI: 10.1126/sciadv.aaz9708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/10/2020] [Indexed: 05/10/2023]
Abstract
Knowledge of the occurrences of water films on minerals is critical for global biogeochemical and atmospheric processes, including element cycling and ice nucleation. The underlying mechanisms controlling water film growth are, however, misunderstood. Using infrared nanospectroscopy, amplitude-modulated atomic force microscopy, and molecular simulations, we show how water films grow from water vapor on hydrophilic mineral nanoparticles. We imaged films with up to four water layers that grow anisotropically over a single face. Growth usually begins from the near edges of a face where defects preferentially capture water vapor. Thicker films produced by condensation cooling completely engulf nanoparticles and form thicker menisci over defects. The high surface tension of water smooths film surfaces and produces films of inhomogeneous thickness. Nanoscale topography and film surface energy thereby control anisotropic distributions and thicknesses of water films on hydrophilic mineral nanoparticles.
Collapse
Affiliation(s)
- Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Benjamin A. Legg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Merve Yeşilbaş
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Nikhil S. Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | | |
Collapse
|
13
|
Krause F, Renner B, Coppens F, Dewanckele J, Schwotzer M. Reactivity of Gypsum-Based Materials Subjected to Thermal Load: Investigation of Reaction Mechanisms. MATERIALS 2020; 13:ma13061427. [PMID: 32245074 PMCID: PMC7142976 DOI: 10.3390/ma13061427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
The thermal stability of gypsum-based materials, and in this context, especially their long-term behavior, is the background of our current research activities. A comprehensive investigation program was compiled in which detailed examinations of various model materials exposed to thermal loads were carried out. The understanding of the partly not entirely consistent state of knowledge shall be sharpened especially by in situ observations of the thermally induced conversion reaction of gypsum into hemihydrate. The temporal course of the reaction was investigated non-destructively by in situ investigations in a high-resolution X-ray computed tomography setup, and the experiment was accompanied by detailed characterizations of the microstructure and composition. In this contribution, selected results of experiments with a high-purity natural gypsum rock as the model substance are presented. Studying the influence of temperature on the reaction showed that, even under supposedly dry conditions, the reaction could take place at much lower temperatures than usually reported in the literature. It was demonstrated that the transformation of gypsum into hemihydrate could take place at a temperature of already 50 °C. The results indicated that even under “classical” heating conditions in a conventional oven, the dissolution and crystallization processes in water films on the mineral surfaces could be suggested to be a driving force for the reaction. A corresponding reaction model, which took these aspects into account, was proposed in this work.
Collapse
Affiliation(s)
- Felix Krause
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), 76344 Eggenstein-Leopoldshafen, Germany;
| | | | | | | | - Matthias Schwotzer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), 76344 Eggenstein-Leopoldshafen, Germany;
- Correspondence: ; Tel.: +49-721-608-24627
| |
Collapse
|
14
|
Park KS, Milke R, Efthimiopoulos I, Pausewein RR, Reinhold S. Pyrometamorphic process of ceramic composite materials in pottery production in the Bronze/Iron Age of the Northern Caucasus (Russia). Sci Rep 2019; 9:10725. [PMID: 31341221 PMCID: PMC6656883 DOI: 10.1038/s41598-019-47228-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/14/2019] [Indexed: 11/09/2022] Open
Abstract
Pyrotechnology for the prehistoric pottery has been an important subject for the study of ancient production technology and technological styles. However, heterogeneous characteristics in chemical and mineralogical compositions and massive amounts of ceramic sherds at most archaeological sites make it difficult to identify production technologies. In this study, SEM-EDS/WDS, XRD and transmittance and reflectance FT-IR techniques were employed step by step, in order to overcome these limitations. The serial combination of each method covers a macro-, meso- and micro-scale and it enabled us to identify the relationship between firing temperature, reducing or oxidizing atmosphere and thermally induced mobility of Ca and Fe. Numerous ceramic pottery sherds from two archaeological sites in the North Caucasus, Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (Late Bronze/Early Iron Age) were investigated and compared to the ceramics found at Levinsadovka and Saf'janovo around the Sea of Azov, Russia (Late/Final Bronze Age) for this purpose. Morphological changes by sintering and transformation of indicator minerals such as calcite, hematite, spinel, gehlenite, quartz and cis/trans-vacant 1M illite provide temperature thresholds at 675, 700, 750, 950, 1050, 1100, 1300 °C. With the laboratory based FT-IR, vibrational changes in shape, wavenumber and intensity corresponding to Si-O stretching bands yield an order and classification of the ceramics with regard to firing conditions between the samples as well as the unraveling of temperature profiles within a single sample in a 100 µm scale. With this approach, the number of archaeological ceramics could be classified according to the pyrometamorphic transformation of heterogeneous ceramic composite materials. Combined with the archaeological contexts of each site, these results will contribute to the reconstruction of local technological styles.
Collapse
Affiliation(s)
- Ki Suk Park
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, 12249, Berlin, Germany.
| | - Ralf Milke
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74-100, 12249, Berlin, Germany
| | - Ilias Efthimiopoulos
- Deutsches GeoForschungsZentrum GFZ, Section 3.6, Telegrafenberg, 14473, Potsdam, Germany
| | | | - Sabine Reinhold
- Deutsches Archäologisches Institut, Im Dol 2-6, Haus II, 14195, Berlin, Germany
| |
Collapse
|
15
|
Endres MB, Weichold O. Sorption-active transparent films based on chitosan. Carbohydr Polym 2019; 208:108-114. [DOI: 10.1016/j.carbpol.2018.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022]
|
16
|
Cheng W, Hanna K, Boily JF. Water Vapor Binding on Organic Matter-Coated Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1252-1257. [PMID: 30608658 DOI: 10.1021/acs.est.8b05134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atmospheric water vapor binding to soils is a key process driving water availability in unsaturated terrestrial environments. Using a representative hydrophilic iron oxyhydroxide, this study highlights key mechanisms through which water vapor (i) adsorbs and (ii) condenses at mineral surfaces coated with Leonardite humic acid (LHA). Microgravimetry and vibrational spectroscopy showed that liquid-like water forms in the three-dimensional array of mineral-bound LHA when present at total C/Fe ratios well exceeding ∼73 mg C per g Fe (26 C atoms/nm2). Below these loadings, minerals become even less hydrophilic than in the absence of LHA. This lowering in hydrophilicity is caused by the complexation of LHA water-binding sites to mineral surfaces, and possibly by conformational changes in LHA structure removing available condensation environments for water. An empirical relationship predicting the dependence of water adsorption densities on LHA loadings was developed from these results. Together with the molecular-level description provided in this work, this relationship should guide efforts in predicting water availability, and thereby occurrences of water-driven geochemical processes in terrestrial environments.
Collapse
Affiliation(s)
- W Cheng
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226 , F-35000 Rennes , France
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - K Hanna
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226 , F-35000 Rennes , France
| | - J-F Boily
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|