1
|
HIV-1 subtype B spread through cross-border clusters in the Balkans: a molecular analysis in view of incidence trends. AIDS 2023; 37:125-135. [PMID: 36129113 DOI: 10.1097/qad.0000000000003394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To analyze phylogenetic relations and assess the role of cross-border clusters in the spread of HIV-1 subtype B across the Balkans, given the general trends of new HIV diagnoses in seven Balkan countries. DESIGN Retrospective phylogenetic and trend analysis. METHODS In-depth phylogenetic, phylodynamic and phylogeographic analysis performed on 2415 HIV-1 subtype B sequences from 1999 to 2019 using maximal likelihood and Bayesian methods. The joinpoint regression analysis of new HIV diagnoses by country and modes of transmission using 2004-2019 ECDC data. RESULTS Ninety-three HIV-1 Subtype B transmission clusters (68% of studied sequences) were detected of which four cross-border clusters (11% of studied sequences). Phylodynamic analysis showed activity of cross-border clusters up until the mid-2000s, with a subsequent stationary growth phase. Phylogeography analyses revealed reciprocal spread patterns between Serbia, Slovenia and Montenegro and several introductions to Romania from these countries and Croatia. The joinpoint analysis revealed a reduction in new HIV diagnoses in Romania, Greece and Slovenia, whereas an increase in Serbia, Bulgaria, Croatia and Montenegro, predominantly among MSM. CONCLUSION Differing trends of new HIV diagnoses in the Balkans mirror differences in preventive policies implemented in participating countries. Regional spread of HIV within the countries of former Yugoslavia has continued to play an important role even after country break-up, whereas the spread of subtype B through multiple introductions to Romania suggested the changing pattern of travel and migration linked to European integration of Balkan countries in the early 2000s.
Collapse
|
2
|
Liu M, Chato C, Poon AFY. From components to communities: bringing network science to clustering for molecular epidemiology. Virus Evol 2023; 9:vead026. [PMID: 37187604 PMCID: PMC10175948 DOI: 10.1093/ve/vead026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Defining clusters of epidemiologically related infections is a common problem in the surveillance of infectious disease. A popular method for generating clusters is pairwise distance clustering, which assigns pairs of sequences to the same cluster if their genetic distance falls below some threshold. The result is often represented as a network or graph of nodes. A connected component is a set of interconnected nodes in a graph that are not connected to any other node. The prevailing approach to pairwise clustering is to map clusters to the connected components of the graph on a one-to-one basis. We propose that this definition of clusters is unnecessarily rigid. For instance, the connected components can collapse into one cluster by the addition of a single sequence that bridges nodes in the respective components. Moreover, the distance thresholds typically used for viruses like HIV-1 tend to exclude a large proportion of new sequences, making it difficult to train models for predicting cluster growth. These issues may be resolved by revisiting how we define clusters from genetic distances. Community detection is a promising class of clustering methods from the field of network science. A community is a set of nodes that are more densely inter-connected relative to the number of their connections to external nodes. Thus, a connected component may be partitioned into two or more communities. Here we describe community detection methods in the context of genetic clustering for epidemiology, demonstrate how a popular method (Markov clustering) enables us to resolve variation in transmission rates within a giant connected component of HIV-1 sequences, and identify current challenges and directions for further work.
Collapse
Affiliation(s)
- Molly Liu
- Department of Pathology and Laboratory Medicine, Western University, Dental Sciences Building, Rm. 4044, London, ON N6A 5C1, Canada
| | - Connor Chato
- Department of Pathology and Laboratory Medicine, Western University, Dental Sciences Building, Rm. 4044, London, ON N6A 5C1, Canada
| | | |
Collapse
|
3
|
Chaudron SE, Leemann C, Kusejko K, Nguyen H, Tschumi N, Marzel A, Huber M, Böni J, Perreau M, Klimkait T, Yerly S, Ramette A, Hirsch HH, Rauch A, Calmy A, Vernazza P, Bernasconi E, Cavassini M, Metzner KJ, Kouyos RD, Günthard HF. A Systematic Molecular Epidemiology Screen Reveals Numerous Human Immunodeficiency Virus (HIV) Type 1 Superinfections in the Swiss HIV Cohort Study. J Infect Dis 2022; 226:1256-1266. [PMID: 35485458 DOI: 10.1093/infdis/jiac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Studying human immunodeficiency virus type 1 (HIV-1) superinfection is important to understand virus transmission, disease progression, and vaccine design. But detection remains challenging, with low sampling frequencies and insufficient longitudinal samples. METHODS Using the Swiss HIV Cohort Study (SHCS), we developed a molecular epidemiology screening for superinfections. A phylogeny built from 22 243 HIV-1 partial polymerase sequences was used to identify potential superinfections among 4575 SHCS participants with longitudinal sequences. A subset of potential superinfections was tested by near-full-length viral genome sequencing (NFVGS) of biobanked plasma samples. RESULTS Based on phylogenetic and distance criteria, 325 potential HIV-1 superinfections were identified and categorized by their likelihood of being detected as superinfections due to sample misidentification. NFVGS was performed for 128 potential superinfections; of these, 52 were confirmed by NFVGS, 15 were not confirmed, and for 61 sampling did not allow confirming or rejecting superinfection because the sequenced samples did not include the relevant time points causing the superinfection signal in the original screen. Thus, NFVGS could support 52 of 67 adequately sampled potential superinfections. CONCLUSIONS This cohort-based molecular approach identified, to our knowledge, the largest population of confirmed superinfections, showing that, while rare with a prevalence of 1%-7%, superinfections are not negligible events.
Collapse
Affiliation(s)
- Sandra E Chaudron
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christine Leemann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huyen Nguyen
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nadine Tschumi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Alex Marzel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Schulthess Klinik, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland.,Division of Infectious Diseases and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pietro Vernazza
- Clinic for Infectiology and Hospital Hygiene, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Matthias Cavassini
- Service for Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Kusejko K, Tschumi N, Chaudron SE, Nguyen H, Battegay M, Bernasconi E, Böni J, Huber M, Calmy A, Cavassini M, Egle A, Grabmeier-Pfistershammer K, Haas B, Hirsch H, Klimkait T, Öllinger A, Perreau M, Ramette A, Flury BB, Sarcletti M, Scherrer A, Schmid P, Yerly S, Zangerle R, Günthard HF, Kouyos RD. Similar But Different: Integrated Phylogenetic Analysis of Austrian and Swiss HIV-1 Sequences Reveal Differences in Transmission Patterns of the Local HIV-1 Epidemics. J Acquir Immune Defic Syndr 2022; 90:e4-e12. [PMID: 35298446 PMCID: PMC9394492 DOI: 10.1097/qai.0000000000002949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Phylogenetic analyses of 2 or more countries allow to detect differences in transmission dynamics of local HIV-1 epidemics beyond differences in demographic characteristics. METHODS A maximum-likelihood phylogenetic tree was built using pol -sequences of the Swiss HIV Cohort Study (SHCS) and the Austrian HIV Cohort Study (AHIVCOS), with international background sequences. Three types of phylogenetic cherries (clusters of size 2) were analyzed further: (1) domestic cherries; (2) international cherries; and (3) SHCS/AHIVCOS-cherries. Transmission group and ethnicities observed within the cherries were compared with the respective distribution expected from a random distribution of patients on the phylogeny. RESULTS The demographic characteristics of the AHIVCOS (included patients: 3'141) and the SHCS (included patients: 12'902) are very similar. In the AHIVCOS, 36.5% of the patients were in domestic cherries, 8.3% in international cherries, and 7.0% in SHCS/AHIVCOS cherries. Similarly, in the SHCS, 43.0% of the patients were in domestic cherries, 8.2% in international cherries, and 1.7% in SHCS/AHIVCOS cherries. Although international cherries in the SHCS were dominated by heterosexuals with men who have sex with men being underrepresented, the opposite was the case for the AHIVCOS. In both cohorts, cherries with one patient belonging to the transmission group intravenous drug user and the other one non-intravenous drug user were underrepresented. CONCLUSIONS In both cohorts, international HIV transmission plays a major role in the local epidemics, mostly driven by men who have sex with men in the AHIVOS, and by heterosexuals in the SHCS, highlighting the importance of international collaborations to understand global HIV transmission links on the way to eliminate HIV.
Collapse
Affiliation(s)
- Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nadine Tschumi
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sandra E. Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huyen Nguyen
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | | | - Bernhard Haas
- Institute of Hospital Hygiene and Microbiology, Styrian Hospital Corporation, The Styrian Healthcare Company, Graz, Austria
| | - Hans Hirsch
- Molecular Virology, Department of Biomedicine–Petersplatz, University of Basel, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine–Petersplatz, University of Basel, Basel, Switzerland
| | - Angela Öllinger
- Department of Dermatology, Kepler University Hospital, Linz, Austria
| | - Matthieu Perreau
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Baharak Babouee Flury
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St. Gallen, Switzerland; and
| | - Mario Sarcletti
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St. Gallen, Switzerland; and
| | - Sabine Yerly
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Robert Zangerle
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Mortier V, Debaisieux L, Dessilly G, Stoffels K, Vaira D, Vancutsem E, Van Laethem K, Vanroye F, Verhofstede C. Prevalence and evolution of transmitted HIV drug resistance in Belgium between 2013 and 2019. Open Forum Infect Dis 2022; 9:ofac195. [PMID: 35794938 PMCID: PMC9251670 DOI: 10.1093/ofid/ofac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Background To assess the prevalence and evolution of transmitted drug resistance (TDR) in Belgium, a total of 3708 baseline human immunodeficiency virus (HIV)-1 polymerase sequences from patients diagnosed between 2013 and 2019 were analyzed. Methods Protease and reverse-transcriptase HIV-1 sequences were collected from the 7 national Aids Reference Laboratories. Subtype determination and drug resistance scoring were performed using the Stanford HIV Drug Resistance Database. Trends over time were assessed using linear regression, and the maximum likelihood approach was used for phylogenetic analysis. Results A total of 17.9% of the patients showed evidence of TDR resulting in at least low-level resistance to 1 drug (Stanford score ≥15). If only the high-level mutations (Stanford score ≥60) were considered, TDR prevalence dropped to 6.3%. The majority of observed resistance mutations impacted the sensitivity for nonnucleoside reverse-transcriptase inhibitors (NNRTIs) (11.4%), followed by nucleoside reverse-transcriptase inhibitors (6.2%) and protease inhibitors (2.4%). Multiclass resistance was observed in 2.4%. Clustered onward transmission was evidenced for 257 of 635 patients (40.5%), spread over 25 phylogenetic clusters. Conclusions The TDR prevalence remained stable between 2013 and 2019 and is comparable to the prevalence in other Western European countries. The high frequency of NNRTI mutations requires special attention and follow-up. Phylogenetic analysis provided evidence for local clustered onward transmission of some frequently detected mutations.
Collapse
Affiliation(s)
- Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laurent Debaisieux
- Aids Reference Laboratory, Université Libre de Bruxelles, CUB Hôpital Erasme, 1070 Brussels, Belgium
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium
| | - Kristel Van Laethem
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium Aids Reference Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Fien Vanroye
- Aids Reference Laboratory, Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Gil H, Delgado E, Benito S, Georgalis L, Montero V, Sánchez M, Cañada-García JE, García-Bodas E, Díaz A, Thomson MM, The Members of the Spanish Group for the Study of New HIV Diagnoses. Transmission Clusters, Predominantly Associated With Men Who Have Sex With Men, Play a Main Role in the Propagation of HIV-1 in Northern Spain (2013–2018). Front Microbiol 2022; 13:782609. [PMID: 35432279 PMCID: PMC9009226 DOI: 10.3389/fmicb.2022.782609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses of HIV-1-infected individuals whose transmission is related group phylogenetically in transmission clusters (TCs). The study of the phylogenetic relations of these viruses and the factors associated with these individuals is essential to analyze the HIV-1 epidemic. In this study, we examine the role of TCs in the epidemiology of HIV-1 infection in Galicia and the Basque County, two regions of northern Spain. A total of 1,158 HIV-1-infected patients from both regions with new diagnoses (NDs) in 2013–2018 were included in the study. Partial HIV-1 pol sequences were analyzed phylogenetically by approximately maximum-likelihood with FastTree 2. In this analysis, 10,687 additional sequences from samples from HIV-1-infected individuals collected in Spain in 1999–2019 were also included to assign TC membership and to determine TCs’ sizes. TCs were defined as those which included viruses from ≥4 individuals, at least 50% of them Spaniards, and with ≥0.95 Shimodaira-Hasegawa-like node support in the phylogenetic tree. Factors associated to TCs were evaluated using odds ratios (OR) and their 95% CI. Fifty-one percent of NDs grouped in 162 TCs. Male patients (OR: 2.6; 95% CI: 1.5–4.7) and men having sex with men (MSM; OR: 2.1; 95% CI: 1.4–3.2) had higher odds of belonging to a TC compared to female and heterosexual patients, respectively. Individuals from Latin America (OR: 0.3; 95% CI: 0.2–0.4), North Africa (OR: 0.4; 95% CI: 0.2–1.0), and especially Sub-Saharan Africa (OR: 0.02; 95% CI: 0.003–0.2) were inversely associated to belonging to TCs compared to native Spaniards. Our results show that TCs are important components of the HIV-1 epidemics in the two Spanish regions studied, where transmission between MSM is predominant. The majority of migrants were infected with viruses not belonging to TCs that expand in Spain. Molecular epidemiology is essential to identify local peculiarities of HIV-1 propagation. The early detection of TCs and prevention of their expansion, implementing effective control measures, could reduce HIV-1 infections.
Collapse
Affiliation(s)
- Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Michael M. Thomson, ; Horacio Gil,
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Leonidas Georgalis
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E. Cañada-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Asunción Díaz
- HIV Surveillance and Behavioral Monitoring Unit, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Michael M. Thomson, ; Horacio Gil,
| | | |
Collapse
|
7
|
Molecular Transmission Dynamics of Primary HIV Infections in Lazio Region, Years 2013-2020. Viruses 2021; 13:v13020176. [PMID: 33503987 PMCID: PMC7911907 DOI: 10.3390/v13020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular investigation of primary HIV infections (PHI) is crucial to describe current dynamics of HIV transmission. Aim of the study was to investigate HIV transmission clusters (TC) in PHI referred during the years 2013–2020 to the National Institute for Infectious Diseases in Rome (INMI), that is the Lazio regional AIDS reference centre, and factors possibly associated with inclusion in TC. These were identified by phylogenetic analysis, based on population sequencing of pol; a more in depth analysis was performed on TC of B subtype, using ultra-deep sequencing (UDS) of env. Of 270 patients diagnosed with PHI during the study period, 229 were enrolled (median follow-up 168 (IQR 96–232) weeks). Median age: 39 (IQR 32–48) years; 94.8% males, 86.5% Italians, 83.4% MSM, 56.8% carrying HIV-1 subtype B. Of them, 92.6% started early treatment within a median of 4 (IQR 2–7) days after diagnosis; median time to sustained suppression was 20 (IQR 8–32) weeks. Twenty TC (median size 3, range 2–9 individuals), including 68 patients, were identified. A diagnosis prior to 2015 was the unique factor associated with inclusion in a TC. Added value of UDS was the identification of shared quasispecies components in transmission pairs within TC.
Collapse
|
8
|
Reichmuth ML, Chaudron SE, Bachmann N, Nguyen H, Böni J, Metzner KJ, Perreau M, Klimkait T, Yerly S, Hirsch HH, Hauser C, Ramette A, Vernazza P, Cavassini M, Bernasconi E, Günthard HF, Kusejko K, Kouyos RD. Using longitudinally sampled viral nucleotide sequences to characterize the drivers of HIV-1 transmission. HIV Med 2020; 22:346-359. [PMID: 33368946 DOI: 10.1111/hiv.13030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Understanding the drivers of HIV-1 transmission is of importance for curbing the ongoing epidemic. Phylogenetic methods based on single viral sequences allow us to assess whether two individuals are part of the same viral outbreak, but cannot on their own assess who potentially transmitted the virus. We developed and assessed a molecular epidemiology method with the main aim to screen cohort studies for and to characterize individuals who are 'potential HIV-1 transmitters', in order to understand the drivers of HIV-1 transmission. METHODS We developed and validated a molecular epidemiology approach using longitudinally sampled viral Sanger sequences to characterize potential HIV-1 transmitters in the Swiss HIV Cohort Study. RESULTS Our method was able to identify 279 potential HIV-1 transmitters and allowed us to determine the main epidemiological and virological drivers of transmission. We found that the directionality of transmission was consistent with infection times for 72.9% of 85 potential HIV-1 transmissions with accurate infection date estimates. Being a potential HIV-1 transmitter was associated with risk factors including viral load [adjusted odds ratiomultivariable (95% confidence interval): 1.86 (1.49-2.32)], syphilis coinfection [1.52 (1.06-2.19)], and recreational drug use [1.45 (1.06-1.98)]. By contrast for the potential HIV-1 recipients, this association was weaker or even absent [1.18 (0.82-1.72), 0.89 (0.52-1.55) and 1.53 (0.98-2.39), respectively], indicating that inferred directionality of transmission is useful at the population level. CONCLUSIONS Our results indicate that longitudinally sampled Sanger sequences do not provide sufficient information to identify transmitters with high certainty at the individual level, but that they allow the drivers of transmission at the population level to be characterized.
Collapse
Affiliation(s)
- M L Reichmuth
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - S E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - N Bachmann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - H Nguyen
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - J Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - K J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - M Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - T Klimkait
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - S Yerly
- Laboratory of Virology, Geneva University Hospital, Geneva, Switzerland
| | - H H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - C Hauser
- Department of Infectious Diseases, Bern University Hospital, Bern, Switzerland
| | - A Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - P Vernazza
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - M Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - E Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - H F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - K Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - R D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Novitsky V, Steingrimsson JA, Howison M, Gillani FS, Li Y, Manne A, Fulton J, Spence M, Parillo Z, Marak T, Chan PA, Bertrand T, Bandy U, Alexander-Scott N, Dunn CW, Hogan J, Kantor R. Empirical comparison of analytical approaches for identifying molecular HIV-1 clusters. Sci Rep 2020; 10:18547. [PMID: 33122765 PMCID: PMC7596705 DOI: 10.1038/s41598-020-75560-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Public health interventions guided by clustering of HIV-1 molecular sequences may be impacted by choices of analytical approaches. We identified commonly-used clustering analytical approaches, applied them to 1886 HIV-1 Rhode Island sequences from 2004-2018, and compared concordance in identifying molecular HIV-1 clusters within and between approaches. We used strict (topological support ≥ 0.95; distance 0.015 substitutions/site) and relaxed (topological support 0.80-0.95; distance 0.030-0.045 substitutions/site) thresholds to reflect different epidemiological scenarios. We found that clustering differed by method and threshold and depended more on distance than topological support thresholds. Clustering concordance analyses demonstrated some differences across analytical approaches, with RAxML having the highest (91%) mean summary percent concordance when strict thresholds were applied, and three (RAxML-, FastTree regular bootstrap- and IQ-Tree regular bootstrap-based) analytical approaches having the highest (86%) mean summary percent concordance when relaxed thresholds were applied. We conclude that different analytical approaches can yield diverse HIV-1 clustering outcomes and may need to be differentially used in diverse public health scenarios. Recognizing the variability and limitations of commonly-used methods in cluster identification is important for guiding clustering-triggered interventions to disrupt new transmissions and end the HIV epidemic.
Collapse
Affiliation(s)
| | | | - Mark Howison
- Research Improving People's Life, Providence, RI, USA
| | | | | | | | | | | | | | | | - Philip A Chan
- Brown University, Providence, RI, USA
- Rhode Island Department of Health, Providence, RI, USA
| | | | - Utpala Bandy
- Rhode Island Department of Health, Providence, RI, USA
| | | | | | | | | |
Collapse
|
10
|
Skaathun B, Pines HA, Patterson TL, Semple SJ, Pekar J, Harvey-Vera A, Rangel G, Mehta SR. Recent HIV Infection among men who have sex with men and transgender women in Tijuana. Rev Saude Publica 2020; 54:82. [PMID: 32876301 PMCID: PMC7446761 DOI: 10.11606/s1518-8787.2020054002179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/18/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To characterize recent HIV infections among newly diagnosed men who have sex with men and transgender women in Tijuana. METHODS Limiting Antigen (LAg)-Avidity testing was performed to detect recent HIV infection within a cohort of newly-diagnosed men who have sex with men and transgender women in Tijuana. Logistic regression was used to determine characteristics associated with recent infection. A partial transmission network was inferred using HIV-1 pol sequences. Tamura-Nei 93 genetic distances were measured between all pairs of sequences, and the network was constructed by inferring putative transmission links (genetic distances ≤ 1.5%). We assessed whether recent infection was associated with clustering within the inferred network. RESULTS Recent infection was detected in 11% (22/194) of newly-diagnosed participants. Out of the participants with sequence data, 60% (9/15) with recent infection clustered compared with 31% (43/139) with chronic infection. Two recent infections belonged to the same cluster. In adjusted analyses, recent infection was associated with years of residence in Tijuana (OR = 1.5; 95%CI 1.01-1.09), cocaine use (past month) (OR = 8.50; 95%CI 1.99-28.17), and ever experiencing sexual abuse (OR = 2.85; 95%CI 1.03-7.85). DISCUSSION A total of 11% of men newly diagnosed with HIV who have sex with men and transgender women in Tijuana were recently infected. The general lack of clustering between participants with recent infection suggests continued onward HIV transmission rather than an outbreak within a particular cluster.
Collapse
Affiliation(s)
- Britt Skaathun
- University of CaliforniaDepartment of MedicineDivision of Infectious Diseases and Global Public HealthSan DiegoLa JollaUSAUniversity of California, San Diego. Department of Medicine. Division of Infectious Diseases and Global Public Health. San Diego, La Jolla, USA
| | - Heather A. Pines
- University of CaliforniaDepartment of MedicineDivision of Infectious Diseases and Global Public HealthSan DiegoLa JollaUSAUniversity of California, San Diego. Department of Medicine. Division of Infectious Diseases and Global Public Health. San Diego, La Jolla, USA
| | - Thomas L Patterson
- University of CaliforniaDepartment of PsychiatrySan DiegoLa JollaUSAUniversity of California, San Diego. Department of Psychiatry. San Diego, La Jolla, USA
| | - Shirley J Semple
- University of CaliforniaDepartment of PsychiatrySan DiegoLa JollaUSAUniversity of California, San Diego. Department of Psychiatry. San Diego, La Jolla, USA
| | - Jonathan Pekar
- University of CaliforniaBioinformatics and Systems Biology ProgramSan DiegoLa JollaUSAUniversity of California, San Diego. Bioinformatics and Systems Biology Program. San Diego, La Jolla, USA
| | - Alicia Harvey-Vera
- Universidad XochicalcoTijuanaBaja CaliforniaMexicoUniversidad Xochicalco. Tijuana, Baja California, Mexico
| | - Gudelia Rangel
- United States-Mexico Border Health CommissionTijuanaBaja CaliforniaMexicoUnited States-Mexico Border Health Commission. Tijuana, Baja California, Mexico
- El Colegio de la Frontera NorteTijuanaBaja CaliforniaMexicoEl Colegio de la Frontera Norte. Tijuana, Baja California, Mexico
| | - Sanjay R. Mehta
- University of CaliforniaDepartment of MedicineDivision of Infectious Diseases and Global Public HealthSan DiegoLa JollaUSAUniversity of California, San Diego. Department of Medicine. Division of Infectious Diseases and Global Public Health. San Diego, La Jolla, USA
- University of CaliforniaDepartment of PathologySan DiegoLa Jolla,USAUniversity of California, San Diego. Department of Pathology. San Diego, La Jolla, USA
- San Diego Veterans Affairs Medical CenterDepartment of MedicineSan DiegoUSASan Diego Veterans Affairs Medical Center. Department of Medicine. San Diego, USA
| |
Collapse
|
11
|
Impact of HLA-B*52:01-Driven Escape Mutations on Viral Replicative Capacity. J Virol 2020; 94:JVI.02025-19. [PMID: 32321820 DOI: 10.1128/jvi.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
HLA-B*52:01 is strongly associated with protection against HIV disease progression. However, the mechanisms of HLA-B*52:01-mediated immune control have not been well studied. We here describe a cohort with a majority of HIV C-clade-infected individuals from Delhi, India, where HLA-B*52:01 is highly prevalent (phenotypic frequency, 22.5%). Consistent with studies of other cohorts, expression of HLA-B*52:01 was associated with high absolute CD4 counts and therefore a lack of HIV disease progression. We here examined the impact of HLA-B*52:01-associated viral polymorphisms within the immunodominant C clade Gag epitope RMTSPVSI (here, RI8; Gag residues 275 to 282) on viral replicative capacity (VRC) since HLA-mediated reduction in VRC is a central mechanism implicated in HLA-associated control of HIV. We observed in HLA-B*52:01-positive individuals a higher frequency of V280T, V280S, and V280A variants within RI8 (P = 0.0001). Each of these variants reduced viral replicative capacity in C clade viruses, particularly the V280A variant (P < 0.0001 in both the C clade consensus and in the Indian study cohort consensus p24 Gag backbone), which was also associated with significantly higher absolute CD4 counts in the donors (median, 941.5 cells/mm3; P = 0.004). A second HLA-B*52:01-associated mutation, K286R, flanking HLA-B*52:01-RI8, was also analyzed. Although selected in HLA-B*52:01-positive subjects often in combination with the V280X variants, this mutation did not act as a compensatory mutant but, indeed, further reduced VRC. These data are therefore consistent with previous work showing that HLA-B molecules that are associated with immune control of HIV principally target conserved epitopes within the capsid protein, escape from which results in a significant reduction in VRC.IMPORTANCE Few studies have addressed the mechanisms of immune control in HIV-infected subjects in India, where an estimated 2.7 million people are living with HIV. We focus here on a study cohort in Delhi on one of the most prevalent HLA-B alleles, HLA-B*52:01, present in 22.5% of infected individuals. HLA-B*52:01 has consistently been shown in other cohorts to be associated with protection against HIV disease progression, but studies have been limited by the low prevalence of this allele in North America and Europe. Among the C-clade-infected individuals, we show that HLA-B*52:01 is the most protective of all the HLA-B alleles expressed in the Indian cohort and is associated with the highest absolute CD4 counts. Further, we show that the mechanism by which HLA-B*52:01 mediates immune protection is, at least in part, related to the inability of HIV to evade the HLA-B*52:01-restricted p24 Gag-specific CD8+ T-cell response without incurring a significant loss to viral replicative capacity.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW A major goal of public health in relation to HIV/AIDS is to prevent new transmissions in communities. Phylogenetic techniques have improved our understanding of the structure and dynamics of HIV transmissions. However, there is still no consensus about phylogenetic methodology, sampling coverage, gene target and/or minimum fragment size. RECENT FINDINGS Several studies use a combined methodology, which includes both a genetic or patristic distance cut-off and a branching support threshold to identify phylogenetic clusters. However, the choice about these thresholds remains an inherently subjective process, which affects the results of these studies. There is still a lack of consensus about the genomic region and the size of fragments that should be used, although there seems to be emerging a consensus that using longer segments, allied with the use of a realistic model of evolution and a codon alignment, increases the likelihood of inferring true transmission clusters. The pol gene is still the most used genomic region, but recent studies have suggested that whole genomes and/or sequences from nef and gp41 are also good targets for cluster reconstruction. SUMMARY The development and application of standard methodologies for phylogenetic clustering analysis will advance our understanding of factors associated with HIV transmission. This will lead to the design of more precise public health interventions.
Collapse
|
13
|
Rhee SY, Clutter D, Fessel WJ, Klein D, Slome S, Pinsky BA, Marcus JL, Hurley L, Silverberg MJ, Kosakovsky Pond SL, Shafer RW. Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted Human Immunodeficiency Virus Type 1 Drug Resistance in a Large US Clinic Population. Clin Infect Dis 2020; 68:213-221. [PMID: 29846534 PMCID: PMC6321854 DOI: 10.1093/cid/ciy453] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background There are few large studies of transmitted drug resistance (TDR) prevalence and the drug resistance mutations (DRMs) responsible for TDR in the United States. Methods Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequences were obtained from 4253 antiretroviral therapy (ART)–naive individuals in a California clinic population from 2003 to 2016. Phylogenetic analyses were performed to study linkages between TDR strains and selection pressure on TDR-associated DRMs. Results From 2003 to 2016, there was a significant increase in overall (odds ratio [OR], 1.05 per year [95% confidence interval {CI}, 1.03–1.08]; P < .001) and nonnucleoside RT inhibitor (NNRTI)–associated TDR (OR, 1.11 per year [95% CI, 1.08–1.15]; P < .001). Between 2012 and 2016, TDR rates to any drug class ranged from 15.7% to 19.2%, and class-specific rates ranged from 10.0% to 12.8% for NNRTIs, 4.1% to 8.1% for nucleoside RT inhibitors (NRTIs), and 3.6% to 5.2% for protease inhibitors. The thymidine analogue mutations, M184V/I and the tenofovir-associated DRMs K65R and K70E/Q/G/N/T accounted for 82.9%, 7.3%, and 1.4% of NRTI-associated TDR, respectively. Thirty-seven percent of TDR strains clustered with other TDR strains sharing the same DRMs. Conclusions Although TDR has increased significantly in this large cohort, many TDR strains are unlikely to influence the activity of currently preferred first-line ART regimens. The high proportion of DRMs associated with infrequently used regimens combined with the clustering of TDR strains suggest that some TDR strains are being transmitted between ART-naive individuals.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - Dana Clutter
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - W Jeffrey Fessel
- Department of Internal Medicine, Kaiser Permanente Northern California, San Francisco
| | - Daniel Klein
- Department of Infectious Diseases, Kaiser Permanente Northern California, San Leandro
| | - Sally Slome
- Department of Infectious Diseases, Kaiser Permanente Northern California, Oakland
| | | | - Julia L Marcus
- Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Leo Hurley
- Division of Research, Kaiser Permanente Northern California, Oakland
| | | | | | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University
| |
Collapse
|
14
|
Verhofstede C, Mortier V, Dauwe K, Callens S, Deblonde J, Dessilly G, Delforge ML, Fransen K, Sasse A, Stoffels K, Van Beckhoven D, Vanroye F, Vaira D, Vancutsem E, Van Laethem K. Exploring HIV-1 Transmission Dynamics by Combining Phylogenetic Analysis and Infection Timing. Viruses 2019; 11:v11121096. [PMID: 31779195 PMCID: PMC6950120 DOI: 10.3390/v11121096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-1 pol sequences obtained through baseline drug resistance testing of patients newly diagnosed between 2013 and 2017 were analyzed for genetic similarity. For 927 patients the information on genetic similarity was combined with demographic data and with information on the recency of infection. Overall, 48.3% of the patients were genetically linked with 11.4% belonging to a pair and 36.9% involved in a cluster of ≥3 members. The percentage of early diagnosed (≤4 months after infection) was 28.6%. Patients of Belgian origin were more frequently involved in transmission clusters (49.7% compared to 15.3%) and diagnosed earlier (37.4% compared to 12.2%) than patients of Sub-Saharan African origin. Of the infections reported to be locally acquired, 69.5% were linked (14.1% paired and 55.4% in a cluster). Equal parts of early and late diagnosed individuals (59.9% and 52.4%, respectively) were involved in clusters. The identification of a genetically linked individual for the majority of locally infected patients suggests a high rate of diagnosis in this population. Diagnosis however is often delayed for >4 months after infection increasing the opportunities for onward transmission. Prevention of local infection should focus on earlier diagnosis and protection of the still uninfected members of sexual networks with human immunodeficiency virus (HIV)-infected members.
Collapse
Affiliation(s)
- Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
- Correspondence:
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
| | - Steven Callens
- Aids Reference Center, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Jessika Deblonde
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Marie-Luce Delforge
- Aids Reference Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Katrien Fransen
- HIV/STD Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.F.); (F.V.)
| | - André Sasse
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium;
| | - Dominique Van Beckhoven
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Fien Vanroye
- HIV/STD Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.F.); (F.V.)
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium;
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium;
| | - Kristel Van Laethem
- Aids Reference Laboratory, University Hospital Leuven, 3000 Leuven, Belgium;
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Abstract
Background Portugal has one of the most severe HIV-1 epidemics in Western Europe. Two subtypes circulate in parallel since the beginning of the epidemic. Comparing their transmission patterns and its association with transmitted drug resistance (TDR) is important to pinpoint transmission hotspots and to develop evidence-based treatment guidelines. Methods Demographic, clinical and genomic data were collected from 3599 HIV-1 naive patients between 2001 and 2014. Sequences obtained from drug resistance testing were used for subtyping, TDR determination and transmission clusters (TC) analyses. Results In Portugal, transmission of subtype B was significantly associated with young males, while transmission of subtype G was associated with older heterosexuals. In Portuguese originated people, there was a decreasing trend both for prevalence of subtype G and for number of TCs in this subtype. The active TCs that were identified (i.e. clusters originated after 2008) were associated with subtype B-infected males residing in Lisbon. TDR was significantly different when comparing subtypes B (10.8% [9.5–12.2]) and G (7.6% [6.4–9.0]) (p = 0.001). Discussion TC analyses shows that, in Portugal, the subtype B epidemic is active and fueled by young male patients residing in Lisbon, while transmission of subtype G is decreasing. Despite similar treatment rates for both subtypes in Portugal, TDR is significantly different between subtypes.
Collapse
|
16
|
Fabeni L, Alteri C, Di Carlo D, Orchi N, Carioti L, Bertoli A, Gori C, Forbici F, Continenza F, Maffongelli G, Pinnetti C, Vergori A, Mondi A, Ammassari A, Borghi V, Giuliani M, De Carli G, Pittalis S, Grisetti S, Pennica A, Mastroianni CM, Montella F, Cristaudo A, Mussini C, Girardi E, Andreoni M, Antinori A, Ceccherini-Silberstein F, Perno CF, Santoro MM. Dynamics and phylogenetic relationships of HIV-1 transmitted drug resistance according to subtype in Italy over the years 2000-14. J Antimicrob Chemother 2018; 72:2837-2845. [PMID: 29091206 DOI: 10.1093/jac/dkx231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/09/2017] [Indexed: 11/14/2022] Open
Abstract
Background Transmitted drug-resistance (TDR) remains a critical aspect for the management of HIV-1-infected individuals. Thus, studying the dynamics of TDR is crucial to optimize HIV care. Methods In total, 4323 HIV-1 protease/reverse-transcriptase sequences from drug-naive individuals diagnosed in north and central Italy between 2000 and 2014 were analysed. TDR was evaluated over time. Maximum-likelihood and Bayesian phylogenetic trees with bootstrap and Bayesian-probability supports defined transmission clusters. Results Most individuals were males (80.2%) and Italian (72.1%), with a median (IQR) age of 37 (30-45) years. MSM accounted for 42.2% of cases, followed by heterosexuals (36.4%). Non-B subtype infections accounted for 30.8% of the overall population and increased over time (<2005-14: 19.5%-38.5%, P < 0.0001), particularly among Italians (<2005-14: 6.5%-28.8%, P < 0.0001). TDR prevalence was 8.8% and increased over time in non-B subtypes (<2005-14: 2%-7.1%, P = 0.018). Overall, 467 transmission clusters (involving 1207 individuals; 27.9%) were identified. The prevalence of individuals grouping in transmission clusters increased over time in both B (<2005-14: 12.9%-33.5%, P = 0.001) and non-B subtypes (<2005-14: 18.4%-41.9%, P = 0.006). TDR transmission clusters were 13.3% within the overall cluster observed and dramatically increased in recent years (<2005-14: 14.3%-35.5%, P = 0.005). This recent increase was mainly due to non-B subtype-infected individuals, who were also more frequently involved in large transmission clusters than those infected with a B subtype [median number of individuals in transmission clusters: 7 (IQR 6-19) versus 4 (3-4), P = 0.047]. Conclusions The epidemiology of HIV transmission changed greatly over time; the increasing number of transmission clusters (sometimes with drug resistance) shows that detection and proper treatment of the multi-transmitters is a major target for controlling HIV spread.
Collapse
Affiliation(s)
- L Fabeni
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - C Alteri
- University of Rome Tor Vergata, Rome, Italy
| | - D Di Carlo
- University of Rome Tor Vergata, Rome, Italy
| | - N Orchi
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - L Carioti
- University of Rome Tor Vergata, Rome, Italy
| | - A Bertoli
- University of Rome Tor Vergata, Rome, Italy
| | - C Gori
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - F Forbici
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - F Continenza
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | | | - C Pinnetti
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - A Vergori
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - A Mondi
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - A Ammassari
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - V Borghi
- Modena University Hospital, Modena, Italy
| | - M Giuliani
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - G De Carli
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - S Pittalis
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - S Grisetti
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | | | | | - F Montella
- S. Giovanni Addolorata Hospital, Rome, Italy
| | - A Cristaudo
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - C Mussini
- Modena University Hospital, Modena, Italy
| | - E Girardi
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | - M Andreoni
- University Hospital Tor Vergata, Rome, Italy
| | - A Antinori
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | | | - C F Perno
- National Institute for Infectious Diseases L Spallanzani, IRCCS, Rome, Italy
| | | | | | | |
Collapse
|