1
|
Arizono K, Sedohara A, Tuvshinjargal K, Tanaka T, Koga M, Nakahara F, Ootani A, Kanno Y, Ikeuchi K, Saito M, Adachi E, Tsutsumi T, Yotsuyanagi H. MicroRNA in neuroexosome as a potential biomarker for HIV-associated neurocognitive disorders. J Neurovirol 2025; 31:56-74. [PMID: 39821903 PMCID: PMC11971210 DOI: 10.1007/s13365-024-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
HIV-associated neurocognitive disorder (HAND) is a complication of chronic inflammation caused by HIV infection that impairs cognitive and motor functions. HAND can occur at any age, regardless of the duration of infection, even in people living with HIV (PLWH) whose blood viral load is controlled by antiretroviral therapy. The diagnosis of HAND requires a battery of neuropsychological tests, which is time-consuming and burdensome, limiting its effectiveness for screening PLWH. Here, we aimed to identify biomarkers for quantitatively diagnosing and screening for HAND using minimally invasive blood tests. Neuronal-derived exosomes (neuroexosomes) were isolated from the peripheral blood of PLWH, and the transcriptomes of their microRNAs (miRNAs) were analyzed. We identified five upregulated miRNAs (hsa-miR-16-5p, hsa-miR-26a-3p, hsa-92a-3p, hsa-miR-103a-3p, and hsa-miR-185-5p), and two downregulated miRNA (hsa-miR-3613-3p and hsa-miR-4668-5p) in PLWH diagnosed with HAND (HAND PLWH). Functional analysis of five miRNAs whose expression levels increased in HAND PLWH using the database showed that these miRNAs are involved in motor proteins and endocytosis, which are associated with nerve function. The expression levels of hsa-miR-16-5p, hsa-miR-103a-3p, and hsa-miR-185-5p were significantly higher than those in the non-HIV controls and non-HAND PLWH, suggesting that these miRNAs are potential biomarkers for HAND. Since there were no changes in known dementia miRNA biomarkers in HAND PLWH, the miRNAs identified in this study will allow for early differentiation of HAND.
Collapse
Affiliation(s)
- Kotaro Arizono
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Khulan Tuvshinjargal
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Takahiro Tanaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Fumio Nakahara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Amato Ootani
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshiaki Kanno
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Eisuke Adachi
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| |
Collapse
|
2
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
3
|
Yu S, Jiang S, Zhou Y, Zhu Z, Yang X. Impact of Radiation on Exosomes in Regulating Tumor Immune Microenvironment. Adv Radiat Oncol 2024; 9:101549. [PMID: 39055959 PMCID: PMC11269846 DOI: 10.1016/j.adro.2024.101549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 07/28/2024] Open
Abstract
Purpose Exosomes have been shown to play a role in most, if not all, steps of cancer progression. We still lack a comprehensive understanding of the bidirectional communication of exosomes between tumor cells and immune cells. This article aims to explore how exosomes can influence cancer growth and how they are affected by radiation therapy. Methods and Materials We searched on PubMed and Web of Science on the impact of radiation on tumor derived exosomes and immune cell derived exosomes in tumor immune microenvironment. We screened all the related articles and summarized their main discoveries and important results. Results This article reviewed the effects of tumor derived exosomes and immune cell-derived exosomes on TME and tumor progression after radiotherapy, suggesting the dual effects of exosomes which may refer to clinical practice. Moreover, we retrospected the clinical applications based on tumor derived exosomes, including liquid biopsy, radio-resistance and drug delivery, and discussed the challenges and prospects. Conclusions Exosomes are important in cancer treatment, especially with radiation therapy. Learning more about them could lead to better treatments. However, there are still challenges to overcome. The review points out the need for more research in this area.
Collapse
Affiliation(s)
- Silai Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
4
|
Rigalli JP, Gagliardi A, Diester K, Bajraktari-Sylejmani G, Blank A, Burhenne J, Lenard A, Werntz L, Huppertz A, Münch L, Wendt JM, Sauter M, Haefeli WE, Weiss J. Extracellular Vesicles as Surrogates for the Regulation of the Drug Transporters ABCC2 (MRP2) and ABCG2 (BCRP). Int J Mol Sci 2024; 25:4118. [PMID: 38612927 PMCID: PMC11012658 DOI: 10.3390/ijms25074118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Anna Gagliardi
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Klara Diester
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Alexander Lenard
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Lars Werntz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Andrea Huppertz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- MVZ Diaverum Remscheid, Rosenhügelstraße 4a, 42859 Remscheid, Germany
| | - Lena Münch
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Janica Margrit Wendt
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| |
Collapse
|
5
|
Gagliardi A, Bajraktari-Sylejmani G, Barocelli E, Weiss J, Rigalli JP. Extracellular Vesicles as Surrogates for Drug Metabolism and Clearance: Promise vs. Reality. Life (Basel) 2023; 13:1745. [PMID: 37629602 PMCID: PMC10455864 DOI: 10.3390/life13081745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual.
Collapse
Affiliation(s)
- Anna Gagliardi
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Elisabetta Barocelli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Bucci-Muñoz M, Gola AM, Rigalli JP, Ceballos MP, Ruiz ML. Extracellular Vesicles and Cancer Multidrug Resistance: Undesirable Intercellular Messengers? Life (Basel) 2023; 13:1633. [PMID: 37629489 PMCID: PMC10455762 DOI: 10.3390/life13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Bucci-Muñoz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Aldana Magalí Gola
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - María Paula Ceballos
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - María Laura Ruiz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| |
Collapse
|
7
|
Sadu L, Krishnan RH, Akshaya RL, Das UR, Satishkumar S, Selvamurugan N. Exosomes in bone remodeling and breast cancer bone metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:120-130. [PMID: 36155749 DOI: 10.1016/j.pbiomolbio.2022.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are endosome-derived microvesicles that carry cell-specific biological cargo, such as proteins, lipids, and noncoding RNAs (ncRNAs). They play a key role in bone remodeling by enabling the maintenance of a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Recent evidence indicates that exosomes disrupt bone remodeling that occurs during breast cancer (BC) progression. The bone is a preferred site for BC metastasis owing to its abundant osseous reserves. In this review, we aimed to highlight the roles of exosomes derived from bone cells and breast tumor in bone remodeling and BC bone metastasis (BCBM). We also briefly outline the mechanisms of action of ncRNAs and proteins carried by exosomes secreted by bone and BCBM. Furthermore, this review highlights the potential of utilizing exosomes as biomarkers or delivery vehicles for the diagnosis and treatment of BCBM.
Collapse
Affiliation(s)
- Lakshana Sadu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R Hari Krishnan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
8
|
Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, Kroetz DL, Miller MA, Gozalpour E, Chu X. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:540-561. [PMID: 35488474 PMCID: PMC9398938 DOI: 10.1002/cpt.2627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers.
Collapse
Affiliation(s)
- Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sook W. Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ling Zou
- Pharmacokinetics and Drug MetabolismAmgen Inc.South San FranciscoCaliforniaUSA
| | - Pär Matsson
- Department of PharmacologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eugene C. Chen
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Miles A. Miller
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elnaz Gozalpour
- Drug Safety and MetabolismIMED Biotech UnitSafety and ADME Translational Sciences DepartmentAstraZeneca R&DCambridgeUK
| | - Xiaoyan Chu
- Department of ADME and Discovery ToxicologyMerck & Co. IncKenilworthNew JerseyUSA
| |
Collapse
|
9
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
10
|
Newman LA, Useckaite Z, Johnson J, Sorich MJ, Hopkins AM, Rowland A. Selective Isolation of Liver-Derived Extracellular Vesicles Redefines Performance of miRNA Biomarkers for Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010195. [PMID: 35052873 PMCID: PMC8773667 DOI: 10.3390/biomedicines10010195] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Definitive diagnosis of the progressive form, non-alcoholic steatohepatitis (NASH), requires liver biopsy, which is highly invasive and unsuited to early disease or tracking changes. Inadequate performance of current minimally invasive tools is a critical barrier to managing NAFLD burden. Altered circulating miRNA profiles show potential for minimally invasive tracking of NAFLD. The selective isolation of the circulating extracellular vesicle subset that originates from hepatocytes presents an important opportunity for improving the performance of miRNA biomarkers of liver disease. The expressions of miR-122, -192, and -128-3p were quantified in total cell-free RNA, global EVs, and liver-specific EVs from control, NAFL, and NASH subjects. In ASGR1+ EVs, each miR biomarker trended positively with disease severity and expression was significantly higher in NASH subjects compared with controls. The c-statistic defining the performance of ASGR1+ EV derived miRNAs was invariably >0.78. This trend was not observed in the alternative sources. This study demonstrates the capacity for liver-specific isolation to transform the performance of EV-derived miRNA biomarkers for NAFLD, robustly distinguishing patients with NAFL and NASH.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Jillian Johnson
- Early Clinical Development, Pfizer Global Research and Development, Groton, CT 06340, USA;
| | - Michael J. Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Ashley M. Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
- Correspondence: ; Tel.: +61-882-047-546
| |
Collapse
|
11
|
Wang Z, Huang J, Xie D, He D, Lu A, Liang C. Toward Overcoming Treatment Failure in Rheumatoid Arthritis. Front Immunol 2021; 12:755844. [PMID: 35003068 PMCID: PMC8732378 DOI: 10.3389/fimmu.2021.755844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation and bone erosion. The exact mechanism of RA is still unknown, but various immune cytokines, signaling pathways and effector cells are involved. Disease-modifying antirheumatic drugs (DMARDs) are commonly used in RA treatment and classified into different categories. Nevertheless, RA treatment is based on a "trial-and-error" approach, and a substantial proportion of patients show failed therapy for each DMARD. Over the past decades, great efforts have been made to overcome treatment failure, including identification of biomarkers, exploration of the reasons for loss of efficacy, development of sequential or combinational DMARDs strategies and approval of new DMARDs. Here, we summarize these efforts, which would provide valuable insights for accurate RA clinical medication. While gratifying, researchers realize that these efforts are still far from enough to recommend specific DMARDs for individual patients. Precision medicine is an emerging medical model that proposes a highly individualized and tailored approach for disease management. In this review, we also discuss the potential of precision medicine for overcoming RA treatment failure, with the introduction of various cutting-edge technologies and big data.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Duoli Xie
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Chen XD, Zhao J, Yang X, Zhou BW, Yan Z, Liu WF, Li C, Liu KX. Gut-Derived Exosomes Mediate Memory Impairment After Intestinal Ischemia/Reperfusion via Activating Microglia. Mol Neurobiol 2021; 58:4828-4841. [PMID: 34189701 DOI: 10.1007/s12035-021-02444-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022]
Abstract
Intestinal ischemia/reperfusion is a grave condition with high morbidity and mortality in perioperative and critical care settings and causes multiple organ injuries beyond the intestine, including brain injury. Exosomes act as intercellular communication carriers by the transmission of their cargo to recipient cells. Here, we investigate whether exosomes derived from the intestine contribute to brain injury after intestinal ischemia/reperfusion via interacting with microglia in the brain. Intestinal ischemia/reperfusion was established in male C57/BL mice by clamping the superior mesenteric artery for 30 min followed by reperfusion. The sham surgery including laparotomy and isolation of the superior mesenteric artery without occlusion was performed as control. Male C57 mouse was intracerebral ventricular injected with intestinal exosomes from mice of intestinal ischemia/reperfusion or sham surgery. Primary microglia were cocultured with intestinal exosomes; HT-22 cells were treated with intestinal exosomes or microglia conditioned media. Intestinal ischemia/reperfusion-induced microglial activation, neuronal loss, synaptic stability decline, and cognitive deficit. Intracerebral ventricular injection of intestinal exosomes from intestinal ischemia/reperfusion mice causes microglial activation, neuronal loss, synaptic stability decline, and cognitive impairment. Microglia can incorporate intestinal exosomes both in vivo and in vitro. Microglia activated by intestinal exosomes increases neuron apoptotic rate and decreases synaptic stability. This study indicates that intestinal exosomes mediate memory impairment after intestinal ischemia/reperfusion via activating microglia. Inhibiting exosome secretion or suppressing microglial activation can be a therapeutic target to prevent memorial impairment after intestinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengzheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Newman LA, Fahmy A, Sorich MJ, Best OG, Rowland A, Useckaite Z. Importance of between and within Subject Variability in Extracellular Vesicle Abundance and Cargo when Performing Biomarker Analyses. Cells 2021; 10:cells10030485. [PMID: 33668220 PMCID: PMC7996254 DOI: 10.3390/cells10030485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Small extracellular vesicles (sEV) have emerged as a potential rich source of biomarkers in human blood and present the intriguing potential for a 'liquid biopsy' to track disease and the effectiveness of interventions. Recently, we have further demonstrated the potential for EV derived biomarkers to account for variability in drug exposure. This study sought to evaluate the variability in abundance and cargo of global and liver-specific circulating sEV, within (diurnal) and between individuals in a cohort of healthy subjects (n = 10). We present normal ranges for EV concentration and size and expression of generic EV protein markers and the liver-specific asialoglycoprotein receptor 1 (ASGR1) in samples collected in the morning and afternoon. EV abundance and cargo was generally not affected by fasting, except CD9 which exhibited a statistically significant increase (p = 0.018). Diurnal variability was observed in the expression of CD81 and ASGR1, which significantly decreased (p = 0.011) and increased (p = 0.009), respectively. These results have potential implications for study sampling protocols and normalisation of biomarker data when considering the expression of sEV derived cargo as a biomarker strategy. Specifically, the novel finding that liver-specific EVs exhibit diurnal variability in healthy subjects should have broad implications in the study of drug metabolism and development of minimally invasive biomarkers for liver disease.
Collapse
|
14
|
Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, Reny JL, Daali Y, Eiermann B, Cook J, Lesko L, McLachlan AJ, Rostami-Hodjegan A. Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy. Annu Rev Pharmacol Toxicol 2020; 61:225-245. [PMID: 33035445 DOI: 10.1146/annurev-pharmtox-033020-113257] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Model-informed precision dosing (MIPD) has become synonymous with modern approaches for individualizing drug therapy, in which the characteristics of each patient are considered as opposed to applying a one-size-fits-all alternative. This review provides a brief account of the current knowledge, practices, and opinions on MIPD while defining an achievable vision for MIPD in clinical care based on available evidence. We begin with a historical perspective on variability in dose requirements and then discuss technical aspects of MIPD, including the need for clinical decision support tools, practical validation, and implementation of MIPD in health care. We also discuss novel ways to characterize patient variability beyond the common perceptions of genetic control. Finally, we address current debates on MIPD from the perspectives of the new drug development, health economics, and drug regulations.
Collapse
Affiliation(s)
- Adam S Darwich
- Logistics and Informatics in Health Care, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Thomas M Polasek
- Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia.,Centre for Medicine Use and Safety, Monash University, Melbourne, Victoria 3052, Australia.,Certara, Princeton, New Jersey 08540, USA
| | - Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester M13 9PT, United Kingdom;
| | | | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Division of General Internal Medicine, Geneva University Hospitals, CH-1211 Geneva, Switzerland
| | - Youssef Daali
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Birgit Eiermann
- Inera AB, Swedish Association of Local Authorities and Regions, SE-118 93 Stockholm, Sweden
| | - Jack Cook
- Drug Safety Research & Development, Pfizer Inc., Groton, Connecticut 06340, USA
| | - Lawrence Lesko
- Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, Florida 32827, USA
| | - Andrew J McLachlan
- School of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amin Rostami-Hodjegan
- Certara, Princeton, New Jersey 08540, USA.,Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
15
|
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16:809-822. [PMID: 32729746 DOI: 10.1080/17425255.2020.1801634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) lower cholesterol synthesis in patients with hypercholesterolemia. Increased statin exposure is an important risk factor for skeletal muscle toxicity. Potent inhibitors of cytochrome P450 (CYP) 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin, and atorvastatin. Fluvastatin is metabolized by CYP2C9, whereas pravastatin, rosuvastatin, and pitavastatin are unaffected by inhibition by either CYP. Statins also have different affinities for membrane transporters involved in processes such as intestinal absorption, hepatic absorption, biliary excretion, and renal excretion. AREAS COVERED In this review, the pharmacokinetic aspects of drug-drug interactions with statins and genetic polymorphisms of CYPs and drug transporters involved in the pharmacokinetics of statins are discussed. EXPERT OPINION Understanding the mechanisms underlying statin interactions can help minimize drug interactions and reduce the adverse side effects caused by statins. Since recent studies have shown the involvement of drug transporters such as OATP and BCRP as well as CYPs in statin pharmacokinetics, further clinical studies focusing on the drug transporters are necessary. The establishment of biomarkers based on novel mechanisms, such as the leakage of microRNAs into the peripheral blood associated with the muscle toxicity, is important for the early detection of statin side effects.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Yuito Fujita
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
16
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Dickinson PJ, Tanaka T, Akiyoshi H, Maeda S, Kamishina H. Expression of microRNAs in plasma and in extracellular vesicles derived from plasma for dogs with glioma and dogs with other brain diseases. Am J Vet Res 2020; 81:355-360. [PMID: 32228257 DOI: 10.2460/ajvr.81.4.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure expression of microRNAs (miRNAs) in plasma and in extracellular vesicles (EVs) derived from plasma for dogs with glioma and dogs with other brain diseases. SAMPLE Plasma samples from 11 dogs with glioma and 19 control dogs with various other brain diseases. PROCEDURES EVs were isolated from plasma samples by means of ultracentrifugation. Expression of 4 candidate reference miRNAs (let-7a, miR-16, miR-26a, and miR-103) and 4 candidate target miRNAs (miR-15b, miR-21, miR-155, and miR-342-3p) was quantified with reverse transcription PCR assays. Three software programs were used to select the most suitable reference miRNAs from among the 4 candidate reference miRNAs. Expression of the 4 target miRNAs was then calculated relative to expression of the reference genes in plasma and EVs, and relative expression was compared between dogs with glioma and control dogs with other brain diseases. RESULTS The most suitable reference miRNAs were miR-16 for plasma and let-7a for EVs. Relative expression of miR-15b in plasma and in EVs was significantly higher in dogs with glioma than in control dogs. Relative expression of miR-342-3p in EVs was significantly higher in dogs with glioma than in control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that miR-15b and miR-342-3p have potential as noninvasive biomarkers for differentiating glioma from other intracranial diseases in dogs. However, more extensive analysis of expression in specific glioma subtypes and grades, compared with expression in more defined control populations, will be necessary to assess their clinical relevance.
Collapse
|
17
|
Rodrigues AD, Rowland A. Profiling of Drug-Metabolizing Enzymes and Transporters in Human Tissue Biopsy Samples: A Review of the Literature. J Pharmacol Exp Ther 2020; 372:308-319. [PMID: 31879375 DOI: 10.1124/jpet.119.262972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 03/08/2025] Open
Abstract
Within the drug pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME) research community, investigators regularly generate in vitro data sets using appropriately vendor-sourced and processed human tissue. Such data enable drug screening, the generation of kinetic parameters, extrapolation of in vitro to in vivo, as well as the modeling and simulation of drug PK. Although there are large numbers of manuscripts describing studies with deceased organ donor tissue, relatively few investigators have published studies utilizing living donor tissue biopsy samples. After a review of the available literature, it was possible to find publications describing the use of tissue biopsy samples to determine enzyme inhibition ex vivo, the study of genotype-phenotype associations, the evaluation of tissue expression profiling following an inducer, and assessment of correlations between tissue expression profiles and in vivo-derived trait measures (e.g., biomarker plasma levels and probe drug PK). Some reports described multiple single-tissue biopsies, whereas others described single multiple-organ biopsies. It is concluded that biopsy-derived data can support modeling exercises (as input data and when validating models) and enable the assessment of organ-specific changes in enzyme and transporter profiles resulting from drug interactions, disease (e.g., metabolic disease, fibrosis, inflammation, cancer, infection), age, pregnancy, organ impairment, and genotype. With the emergence of multiorgan axes (e.g., microbiome-gut-liver-kidney) and interest in remote sensing (interorgan communication), it is envisioned that there will be increased demand for single- and multiorgan tissue biopsy data to support hypothesis testing and PK-ADME model building. SIGNIFICANCE STATEMENT: Based on a review of the literature, it is apparent that profiling of human tissue biopsy samples is useful in support of pharmacokinetics (PK)-absorption, distribution, metabolism, and excretion (ADME)-related studies. With conventional tissue biopsy as precedent, it is envisioned that researchers will turn to less invasive "liquid biopsy" methods in support of ADME-related studies (e.g., profiling of plasma-derived tissue-specific nanovesicles). Generation of such multiorgan liquid biopsy data in larger numbers of subjects and at multiple study time points will provide a rich data set for modeling purposes.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (D.R.) and College of Medicine and Public Health, Flinders University, Adelaide, Australia (A.R.)
| | - Andrew Rowland
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (D.R.) and College of Medicine and Public Health, Flinders University, Adelaide, Australia (A.R.)
| |
Collapse
|
18
|
Bakirtzi K, Man Law IK, Fang K, Iliopoulos D, Pothoulakis C. MiR-21 in Substance P-induced exosomes promotes cell proliferation and migration in human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2019; 317:G802-G810. [PMID: 31545921 PMCID: PMC6957364 DOI: 10.1152/ajpgi.00043.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
Abstract
Exosomes are cellular vesicles involved in intercellular communication via their specialized molecular cargo, such as miRNAs. Substance P (SP), a neuropeptide/hormone, and its high-affinity receptor, NK-1R, are highly expressed during colonic inflammation. Our previous studies show that SP/NK-1R signaling stimulates differential miRNA expression and promotes colonic epithelial cell proliferation. In this study, we examined whether SP/NK-1R signaling regulates exosome biogenesis and exosome-miRNA cargo sorting. Moreover, we examined the role of SP/NK-1R signaling in exosome-regulated cell proliferation and migration. Exosomes produced by human colonic NCM460 epithelial cells overexpressing NK-1R (NCM460-NK1R) were isolated from culture media. Exosome abundance and uptake were assessed by Western blot analysis (abundance) and Exo-Green fluorescence microscopy (abundance and uptake). Cargo-miRNA levels were assessed by RT-PCR. Cell proliferation and migration were assessed using xCELLigence technology. Colonic epithelial exosomes were isolated from mice pretreated with SP for 3 days. Cell proliferation in vivo was assessed by Ki-67 staining. SP/NK-1R signaling in human colonic epithelial cells (in vitro) and mouse colons (in vivo) increased 1) exosome production, 2) the level of fluorescence in NCM460s treated with Exo-Green-labeled exosomes, and 3) the level of miR-21 in exosome cargo. Moreover, our results showed that SP/NK-1R-induced cell proliferation and migration are at least in part dependent on intercellular communication via exosomal miR-21 in vitro and in vivo. Our results demonstrate that SP/NK-1R signaling regulates exosome biogenesis and induces its miR-21 cargo sorting. Moreover, exosomal miR-21 promotes proliferation and migration of target cells.NEW & NOTEWORTHY Substance P signaling regulates exosome production in human colonic epithelial cells and colonic crypts in wild-type mice. MiR-21 is selectively sorted into exosomes induced by Substance P stimulation and promotes cell proliferation and migration in human colonocytes and mouse colonic crypts.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Kai Fang
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
20
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Ueda T, Inden M, Akiyoshi H, Maeda S, Kamishina H. Identification of reference genes for microRNAs of extracellular vesicles isolated from plasma samples of healthy dogs by ultracentrifugation, precipitation, and membrane affinity chromatography methods. Am J Vet Res 2019; 80:449-454. [PMID: 31034274 DOI: 10.2460/ajvr.80.5.449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare ultracentrifugation, precipitation, and membrane affinity chromatography methods for isolation of extracellular vesicles (EVs) from canine plasma samples and to identify suitable reference genes for incorporation into a quantitative reverse transcription PCR assay of microRNA expression in plasma EVs of healthy dogs. ANIMALS 6 healthy Beagles. PROCEDURES Plasma samples were obtained from each dog, and EVs were isolated from 0.3 mL of these samples via ultracentrifugation, precipitation, and membrane-affinity chromatographic methods. Nanoparticle tracking analysis was performed to determine the concentration and size distribution of EVs isolated by the ultracentrifugation method. Expression levels (cycle threshold values) of 4 microRNAs (let-7a, miR-16, miR-26a, and miR-103) were then compared by means of quantitative reverse transcription PCR assay. Three statistical programs were used to identify the microRNAs most suitable for use as reference genes. RESULTS Results indicated that ultracentrifugation was the most stable of all 3 methods for isolating microRNAs from 0.3 mL of plasma. Nanoparticle tracking revealed that EV samples obtained by the ultracentrifugation method contained a mean ± SD of approximately 1.59 × 1010 vesicles/mL ± 4.2 × 108 vesicles/mL. Of the 4 microRNAs in plasma EVs isolated by ultracentrifugation, miR-103 was the most stable. CONCLUSIONS AND CLINICAL RELEVANCE The ultracentrifugation method has potential as a stable method for isolating EVs from canine plasma samples with a high recovery rate, and miR-103 may provide the most stable reference gene for normalizing microRNA expression data pertaining to plasma EVs isolated by ultracentrifugation.
Collapse
|
21
|
Subramanian VS, Sabui S, Marchant JS, Said HM. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. J Nutr Biochem 2019; 65:46-53. [PMID: 30616065 PMCID: PMC6420349 DOI: 10.1016/j.jnutbio.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/04/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Intestinal absorption of ascorbic acid (AA) occurs via a Na+-dependent carrier-mediated process facilitated through the human sodium-dependent vitamin C transporters-1 &-2 (hSVCT1 and hSVCT2). Many studies have shown that hSVCT1 (product of the SLC23A1 gene) is expressed on the apical membrane of polarized enterocytes where it mediates AA absorption. hSVCT1 expression levels are therefore an important determinant of physiological vitamin C homeostasis. However, little is known about posttranscriptional mechanisms that regulate hSVCT1 expression in intestinal epithelia. In this study, we investigated regulation of hSVCT1 by microRNA (miRNA). A pmirGLO-SLC23A1-3'-UTR construct transfected into human intestinal cell lines (Caco-2 and NCM460 cells) showed markedly reduced luciferase activity. Bioinformatic analysis of the SLC23A1-3'-UTR predicted five miRNA binding sites (miR-103a, miR-107, miR-328, miR-384, and miR-499-5p) in the 3'-UTR. Expression of mature miR-103a was markedly higher compared to the other four putative miRNA regulators in both intestinal cell lines and mouse jejunal mucosa. Addition of a miR-103a mimic, but not a miR-103a mutant construct, markedly reduced the luminescence of the pmirGLO-SLC23A1-3'-UTR reporter. Reciprocally, addition of a miR-103a inhibitor significantly increased luciferase reporter activity. Addition of the miR-103a mimic led to a significant inhibition in AA uptake, associated with decreased hSVCT1 mRNA and protein expression in Caco-2 cells. In contrast, the miR-103a inhibitor increased AA uptake, associated with increased levels of hSVCT1 mRNA and protein. These findings provide the first evidence for posttranscriptional regulation of hSVCT1 by miRNA in intestinal epithelial cells.
Collapse
Affiliation(s)
- Veedamali S Subramanian
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822.
| | - Subrata Sabui
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI 53226
| | - Hamid M Said
- Department of Medicine, University of California, Irvine, CA 92697; Department of Physiology/Biophysics, University of California, Irvine, CA 92697; VA Medical Center, Long Beach, CA 90822
| |
Collapse
|
22
|
Rodrigues D, Rowland A. From Endogenous Compounds as Biomarkers to Plasma-Derived Nanovesicles as Liquid Biopsy; Has the Golden Age of Translational Pharmacokinetics-Absorption, Distribution, Metabolism, Excretion-Drug-Drug Interaction Science Finally Arrived? Clin Pharmacol Ther 2019; 105:1407-1420. [PMID: 30554411 DOI: 10.1002/cpt.1328] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 12/15/2022]
Abstract
It is now established that a drug's pharmacokinetics (PK) absorption, distribution, metabolism, excretion (ADME) and drug-drug interaction (DDI) profile can be modulated by age, disease, and genotype. In order to facilitate subject phenotyping and clinical DDI assessment, therefore, various endogenous compounds (in plasma and urine) have been pursued as drug-metabolizing enzyme and transporter biomarkers. Compared with biomarkers, however, the topic of circulating extracellular vesicles as "liquid biopsy" has received little attention within the ADME community; most organs secrete nanovesicles (e.g., exosomes) into the blood that contain luminal "cargo" derived from the originating organ (proteins, messenger RNA, and microRNA). As such, ADME profiling of plasma exosomes could be leveraged to better define genotype-phenotype relationships and the study of ontogeny, disease, and complex DDIs. If methods to support the isolation of tissue-derived plasma exosomes are successfully developed and validated, it is envisioned that they will be used jointly with genotyping, biomarkers, and modeling tools to greatly progress translational PK-ADME-DDI science.
Collapse
Affiliation(s)
- David Rodrigues
- ADME Sciences, Medicine Design, Pfizer, Inc., Groton, Connecticut, USA
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Hu X, Liao S, Bai H, Wu L, Wang M, Wu Q, Zhou J, Jiao L, Chen X, Zhou Y, Lu X, Ying B, Zhang Z, Li W. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine 2019; 40:564-573. [PMID: 30745169 PMCID: PMC6413343 DOI: 10.1016/j.ebiom.2019.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Background Tuberculosis (TB) is difficult to diagnose under complex clinical conditions as electronic health records (EHRs) are often inadequate in making an affirmative diagnosis. As exosomal miRNAs emerged as promising biomarkers, we investigated the potential of using exosomal miRNAs and EHRs in TB diagnosis. Methods A total of 370 individuals, including pulmonary tuberculosis (PTB), tuberculous meningitis (TBM), non-TB disease controls and healthy state controls, were enrolled. Exosomal miRNAs were profiled in the exploratory cohort using microarray and miRNA candidates were selected in the selection cohort using qRT-PCR. EHRs and follow-up information of the patients were collected accordingly. miRNAs and EHRs were used to develop diagnostic models for PTB and TBM in the selection cohort with the Support Vector Machine (SVM) algorithm. These models were further evaluated in an independent testing cohort. Findings Six exosomal miRNAs (miR-20a, miR-20b, miR-26a, miR-106a, miR-191, miR-486) were differentially expressed in the TB patients. Three SVM models, "EHR+miRNA", "miRNA only" and "EHR only" were compared, and "EHR + miRNA" model achieved the highest diagnostic efficacy, with an AUC up to 0.97 (95% CI 0.80–0.99) in TBM and 0.97 (0.87–0.99) in PTB, respectively. However, "EHR only" model only showed an AUC of 0.67 (0.46–0.83) in TBM. After 2-month anti-tuberculosis therapy, overexpressed miRNAs presented a decreased expression trend (p= 4.80 × 10−5). Interpretation Our results showed that the combination of exosomal miRNAs and EHRs could potentially improve clinical diagnosis of TBM and PTB. Fund Funds for the Central Universities, the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shun Liao
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuerong Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhaolei Zhang
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Abstract
The translocation of drugs across biological membranes not only occurs via passive diffusion but also by transporter-mediated processes. Knowledge of tissue-specific drug transporter expression, as well as characterization of substrate drugs of individual transporters, leads to a better understanding of the role of these transporters in the pharmacokinetics of drugs. The ATP-binding cassette transporter family member breast cancer resistance protein (BCRP) is one of the most important intestinal efflux transporters involved in the intestinal absorption or permeability of drugs. A genetic variant in the BCRP, 421C>A, is a useful biomarker for explaining large interindividual differences in the pharmacokinetics of sulfasalazine (SASP), a BCRP substrate. However, large intragenotypic differences remain in spite of the incorporation of this genotype into the pharmacokinetics of SASP. Epigenetic regulation alters gene expression without changing DNA sequences. In epigenetic regulation, microRNAs (miRNAs) appear to be the most extensively investigated due to their important roles in the posttranscriptional regulation of mRNAs. Our study showed that miR-328 negatively regulates BCRP expression in human tissues, and the intestine-derived exosomal miR-328 levels positively correlated with the SASP area under the blood concentration-time curve. These results suggest that circulating intestine-derived exosomal miR-328 in plasma has potential as a possible biomarker for estimating BCRP function in human intestines. A clearer understanding of epigenetic mechanisms regulating the expression of drug transporters will provide insights into novel approaches to individualized drug therapy.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
25
|
Liu XZ, Fan J, Qi K, Liu SP, Xu WD, Gao Y, Gu XD, Li J, Bai CG, Shi YQ, Zhang LL, Zhao DB. Dishevelled2 promotes apoptosis and inhibits inflammatory cytokine secretion in rheumatoid arthritis fibroblast-like synoviocytes through crosstalk with the NF-κB pathway. Oncotarget 2017; 8:12649-12663. [PMID: 28187436 PMCID: PMC5355042 DOI: 10.18632/oncotarget.15172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dishevelled (Dvl) not only links the canonical Wnt and non-canonical Wnt pathways but can also crosstalk with other pathways. As there is no systematic study to date on Dvl in rheumatoid arthritis (RA), we explored the impact of Dvl2 on proliferation and inflammatory cytokine secretion in RA fibroblast-like synoviocytes (FLSs). Expression of Dvl2 in RA synovial tissue and RA-FLSs was measured. Dvl2 was overexpressed in collagen-induced arthritis rats and human RA-FLSs,. the apoptosis and secretion of inflammatory cytokines were observed. Genetic changes and corresponding mechanisms caused by overexpressing Dvl2 in RA-FLSs were assessed. Dvl2 was found to be overexpressed in RA synovial tissue and RA-FLSs. Overexpression of Dvl2 increased apoptosis and inhibited inflammatory cytokine secretion by RA-FLSs in vivo and in vitro, and Dvl2 inhibited expression of anti-apoptotic and inflammatory genes. One possible mechanism is that Dvl2 decreases the nuclear translocation of P65 and inhibits its ability to bind to the promoters of NF-κB target genes. Our findings reveal an underappreciated role of Dvl2 in regulating inflammation and RA-FLS apoptosis and provide insight into crosstalk between the Wnt and nuclear factor-κB (NF-κB) pathways.
Collapse
Affiliation(s)
- Xing Zhen Liu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Jie Fan
- Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Ke Qi
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shu Peng Liu
- Experimental Center, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Dong Xu
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ying Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiao Dan Gu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jia Li
- Department of Joint Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chen Guang Bai
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ye Qing Shi
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lan Ling Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dong Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Hirota T, Tanaka T, Takesue H, Ieiri I. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2016; 13:19-30. [DOI: 10.1080/17425255.2017.1230199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|