1
|
Yang T, Zhu L, Yu D, Wang C, Fujiwara M, Cai Q, Liu H. Scale dependent niche conservatism in fish communities of the largest freshwater lake in China. Oecologia 2025; 207:80. [PMID: 40341967 DOI: 10.1007/s00442-025-05724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Two major theoretical concepts of niche evolution lead to conflicting predictions in ecological studies: the competitive exclusion principle (CEP) predicts that closely-related species should be sufficiently divergent to coexist, whereas niche conservatism (NC) suggests that closely-related species should be more ecologically similar. Here, we test this conundrum by employing stable isotope ratios (δ13C, δ15N) to estimate trophic niches and test niche evolution in fish communities of Poyang Lake, central China. At a broad phylogenetic scale involving 57 species, we examined the relationships between trophic niche differences along genetic distances and tested phylogenetic signals. We found that trophic differences were positively associated with genetic distances when genetic distances were less than 0.24, showing strong phylogenetic signal, but not when larger than 0.24. We then focused on seven Cultrinae species coexisting at a local scale and compared trophic niche differences within and between sister species, closely-related species, and distantly-related species. We found that trophic differences between distantly-related species were significantly larger than those between closely-related species at a broad spatial scale, supporting NC. However, trophic differences between sister species were larger than those between closely-related species at a small local scale (individual sampling sites), suggesting the importance of CEP not NC. Hence, our findings suggest that niche evolution operates in a scale-dependent manner: in a phylogenetic scale (time scale), NC predictions were met well below a certain range, not above that range; at a spatial scale, CEP predictions were met for coexisting sister species, however the other species followed the NC predictions.
Collapse
Affiliation(s)
- Tingyue Yang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Engineering Research Center of Eco-Environment in the Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan, 430010, China
| | - Lan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dan Yu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunling Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Masami Fujiwara
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Qinghua Cai
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Huanzhang Liu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Hofmann S, Rödder D, Andermann T, Matschiner M, Riedel J, Baniya CB, Flecks M, Yang J, Jiang K, Jianping J, Litvinchuk SN, Martin S, Masroor R, Nothnagel M, Vershinin V, Zheng Y, Jablonski D, Schmidt J, Podsiadlowski L. Exploring Paleogene Tibet's warm temperate environments through target enrichment and phylogenetic niche modelling of Himalayan spiny frogs (Paini, Dicroglossidae). Mol Ecol 2024; 33:e17446. [PMID: 38946613 DOI: 10.1111/mec.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Dennis Rödder
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Tobias Andermann
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Jendrian Riedel
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Morris Flecks
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jianhuan Yang
- Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Hong Kong, China
| | - Ke Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Jianping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | | | - Michael Nothnagel
- Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Vladimir Vershinin
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Eltsyn Ural Federal University, Yekaterinburg, Russia
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
3
|
Yuan X, Zhang Y, Hu L, Sang W, Yang Z. Investigating the effects of species niche shifts on the potential distribution of Tuta absoluta (Lepidoptera: Gelechiidae) by using global occurrence data. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:8. [PMID: 38771255 PMCID: PMC11107378 DOI: 10.1093/jisesa/ieae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Invasive species may occupy quite different environments in their invaded areas to native ones, which may intensively interfere with predicting potential distribution through ecological niche modeling (ENM). Here, we take the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), a tomato pest, as an example to investigate this topic. We analyzed niche expansion, stability, unfilling, and Schoener's D by principal component analysis (PCA) ordination method to examine its realized niche shifts and to explore how ENM approaches are affected by niche shifts. We used 5 datasets: Asian, African, European, South American, and global occurrence records in this study. Results showed that high niche unfilling for the species' invaded areas in Asia (20%), Africa (12%), and Europe (37%), possibly due to T. absoluta being in the early stages of invasion. High niche expansion was observed in Asia (38%) and Europe (19%), implying that some European and Asian populations had reached new climatic areas. African niche had the most niche stability (94%) and was equivalent to the native one in climate space (PCA ordination method), but the n-dimensional climate space framework showed that they were different. When projecting the native model to Asia and Europe, the native model performed poorly, implying that the niche shifts affected the transferability of the native model. ENM based on global data outperformed than other models, and our results suggested that T. absoluta has a large potential distribution in Asia, Mexico, South Europe, the United States, and Australia. Meanwhile, we recommend updating ENMs based on the species' invasion stage.
Collapse
Affiliation(s)
- Xuejiao Yuan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Luyi Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zheng Yang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
- Beijing Biodiversity Conservation Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| |
Collapse
|
4
|
Rader JA, Matute DR. Isotopic niches do not follow the expectations of niche conservatism in the bird genus Cinclodes. J Evol Biol 2023; 36:1185-1197. [PMID: 37428811 PMCID: PMC11571101 DOI: 10.1111/jeb.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, in Cinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life.
Collapse
Affiliation(s)
- Jonathan A Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R Matute
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Luo Z, Mowery MA, Cheng X, Yang Q, Hu J, Andrade MCB. Realized niche shift of an invasive widow spider: drivers and impacts of human activities. Front Zool 2022; 19:25. [PMID: 36307847 PMCID: PMC9617396 DOI: 10.1186/s12983-022-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Predicting invasiveness requires an understanding of the propensity of a given species to thrive in areas with novel ecological challenges. Evaluation of realized niche shift of an invasive species in its invasive range, detecting the main drivers of the realized niche shift, and predicting the potential distribution of the species can provide important information for the management of populations of invasive species and the conservation of biodiversity. The Australian redback spider, Latrodectus hasselti, is a widow spider that is native to Australia and established in Japan, New Zealand, and Southeast Asia. We used ecological niche models and ordinal comparisons in an integrative method to compare the realized niches of native and invasive populations of this spider species. We also assessed the impact of several climatic predictor variables and human activity on this niche shift. We hypothesized that human impact is important for successful establishment of this anthropophilic species, and that climatic predictor variables may determine suitable habitat and thus predict invasive ranges. Results Our models showed that L. hasselti distributions are positively influenced by human impact in both of the native and invasive ranges. Maximum temperature was the most important climatic variable in predictions of the distribution of native populations, while precipitation seasonality was the most important in predictions of invasive populations. The realized niche of L. hasselti in its invasive range differed from that in its native range, indicating possible realized niche shift. Conclusions We infer that a preference for human-disturbed environments may underlie invasion and establishment in this spider species, as anthropogenic habitat modifications could provide shelters from unsuitable climatic conditions and extreme climatic stresses to the spiders. Because Australia and the countries in which the species is invasive have differing climates, differences in the availability of certain climatic conditions could have played a role in the realized niche shift of L. hasselti. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00470-z.
Collapse
|
6
|
Rhodes CG, Loaiza JR, Romero LM, Gutiérrez Alvarado JM, Delgado G, Rojas Salas O, Ramírez Rojas M, Aguilar-Avendaño C, Maynes E, Valerín Cordero JA, Soto Mora A, Rigg CA, Zardkoohi A, Prado M, Friberg MD, Bergmann LR, Marín Rodríguez R, Hamer GL, Chaves LF. Anopheles albimanus (Diptera: Culicidae) Ensemble Distribution Modeling: Applications for Malaria Elimination. INSECTS 2022; 13:221. [PMID: 35323519 PMCID: PMC8955261 DOI: 10.3390/insects13030221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022]
Abstract
In the absence of entomological information, tools for predicting Anopheles spp. presence can help evaluate the entomological risk of malaria transmission. Here, we illustrate how species distribution models (SDM) could quantify potential dominant vector species presence in malaria elimination settings. We fitted a 250 m resolution ensemble SDM for Anopheles albimanus Wiedemann. The ensemble SDM included predictions based on seven different algorithms, 110 occurrence records and 70 model projections. SDM covariates included nine environmental variables that were selected based on their importance from an original set of 28 layers that included remotely and spatially interpolated locally measured variables for the land surface of Costa Rica. Goodness of fit for the ensemble SDM was very high, with a minimum AUC of 0.79. We used the resulting ensemble SDM to evaluate differences in habitat suitability (HS) between commercial plantations and surrounding landscapes, finding a higher HS in pineapple and oil palm plantations, suggestive of An. albimanus presence, than in surrounding landscapes. The ensemble SDM suggested a low HS for An. albimanus at the presumed epicenter of malaria transmission during 2018-2019 in Costa Rica, yet this vector was likely present at the two main towns also affected by the epidemic. Our results illustrate how ensemble SDMs in malaria elimination settings can provide information that could help to improve vector surveillance and control.
Collapse
Affiliation(s)
- Charlotte G. Rhodes
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.G.R.); (G.L.H.)
| | - Jose R. Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad de Panama Apartado Postal 0816-02593, Panama;
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panama Apartado Postal 0816-02593, Panama
| | - Luis Mario Romero
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia Apartado Postal 304-3000, Costa Rica;
| | - José Manuel Gutiérrez Alvarado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Gabriela Delgado
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Obdulio Rojas Salas
- Programa Nacional de Manejo Integrado de Vectores, Región Huetar Norte, Ministerio de Salud, Muelle de San Carlos, San Carlos, Alajuela Código 21006, Costa Rica;
| | - Melissa Ramírez Rojas
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Carlos Aguilar-Avendaño
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
| | - Ezequías Maynes
- Programa Nacional de Manejo Integrado de Vectores, Región Huetar Caribe, Ministerio de Salud, Sixaola, Talamanca, Limon Código 70402, Costa Rica;
| | - José A. Valerín Cordero
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Pacífico Central, Ministerio de Salud, Puntarenas, Puntarenas Código 60101, Costa Rica;
| | - Alonso Soto Mora
- Coordinación Regional, Programa Nacional de Manejo Integrado de Vectores, Región Brunca, Ministerio de Salud, San Isidro del General, Pérez Zeledón, San Jose Código 11901, Costa Rica;
| | - Chystrie A. Rigg
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panama Apartado Postal 0816-02593, Panama;
| | - Aryana Zardkoohi
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Monica Prado
- Unidad de Investigación en Plasmodium, Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología, Universidad de Costa Rica, San Pedro, San Jose Apartado Postal 11501-2060, Costa Rica;
| | - Mariel D. Friberg
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD 20740, USA;
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Luke R. Bergmann
- Department of Geography, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Rodrigo Marín Rodríguez
- Oficina Central de Enlace, Programa Nacional de Manejo Integrado de Vectores, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (J.M.G.A.); (G.D.); (C.A.-A.); (R.M.R.)
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (C.G.R.); (G.L.H.)
| | - Luis Fernando Chaves
- Vigilancia de la Salud, Ministerio de Salud, San José, San Jose Apartado Postal 10123-1000, Costa Rica; (M.R.R.); (A.Z.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panama Apartado Postal 0816-02593, Panama;
| |
Collapse
|
7
|
Vaissi S, Rezaei S. Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.774481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of ecological niche divergence in lineage speciation has recently stimulated the interest of evolutionary biologists and ecologists. Phylogenetic analysis has revealed that the Hyrcanian wood frog, Rana pseudodalmatina, has diverged into two western and eastern regional clades (WRC and ERC) within the Hyrcanian forest. The goal of this study was to investigate whether the ecological niches of WRC and ERC are conserved or diverged, as well as to figure out what variables promote niche conservatism or divergence. For this purpose, the maximum entropy model was employed to assess environmental niche modeling in geographical (G) space utilizing climatic and macro-environmental data. The niche overlap, equivalency, and similarity tests based on PCAenv analyses were used to assess niche divergence or conservatism in environmental (E) space. The findings strongly support the hypothesis that WRC and ERC have undergone substantial niche divergence and are constrained by a unique set of climatic and macro-environmental conditions. This study by ecological niche comparisons based on phylogenetic data provides new insights into the exploration of species diversification processes in the Hyrcanian forests.
Collapse
|
8
|
Nunes LA, Raxworthy CJ, Pearson RG. Evidence for ecological processes driving speciation among endemic lizards of Madagascar. Evolution 2021; 76:58-69. [PMID: 34862965 DOI: 10.1111/evo.14409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Although genetic patterns produced by population isolation during speciation are well documented, the biogeographic and ecological processes that trigger speciation remain poorly understood. Alternative hypotheses for the biogeography and ecology of speciation include geographic isolation combined with niche conservation (soft allopatry) or parapatric distribution on an environmental gradient with niche divergence (ecological speciation). Here, we use species' distributions, environmental data, and two null models (the Random Translation and Rotation and the Background Similarity Test) to test these alternative hypotheses among 28 sister pairs of microendemic lizards in Madagascar. Our results demonstrate strong bimodal peaks along a niche divergence-conservation spectrum, with at least 25 out of 28 sister pairs exhibiting either niche conservation or divergence, and the remaining pairs showing weak ecological signals. Yet despite these significant results, we do not find strong associations of niche conservation with allopatric distributions or niche divergence with parapatric distributions. Our findings thus provide strong evidence of a role for ecological processes driving speciation, rather than the classic expectation of speciation through geographic isolation, but demonstrate that the link between ecological speciation and parapatry is complex and requires further analysis of a broader taxonomic sample to fully resolve.
Collapse
Affiliation(s)
- Laura A Nunes
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, New York, New York, 10024
| | - Richard G Pearson
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Guo K, Yuan S, Wang H, Zhong J, Wu Y, Chen W, Hu C, Chang Q. Species distribution models for predicting the habitat suitability of Chinese fire-bellied newt Cynops orientalis under climate change. Ecol Evol 2021; 11:10147-10154. [PMID: 34367565 PMCID: PMC8328465 DOI: 10.1002/ece3.7822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Climate change influences species geographical distribution and diversity pattern. The Chinese fire-bellied newt (Cynops orientalis) is an endemic species distributed in East-central China, which has been classified as near-threatened species recently due to habitat destruction and degradation and illegal trade in the domestic and international pet markets. So far, little is known about the spatial distribution of the species. Based on bioclimatic data of the current and future climate projections, we modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. In this study, 46 records of C. orientalis from East China and 8 bioclimatic variables were used. Among the ten modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to their predictive abilities. The current habitat suitability showed that C. orientalis had a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The models suggested that precipitation of warmest quarter (bio18) and mean temperature of wettest quarter (bio6) had the highest contribution to the model. This study revealed that C. orientalis is sensitive to climate change, which will lead to a large range shift. The projected spatial and temporal pattern of range shifts for C. orientalis should provide a useful reference for implementing long-term conservation and management strategies for amphibians in East China.
Collapse
Affiliation(s)
- Kun Guo
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Sijia Yuan
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hao Wang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jun Zhong
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yanqing Wu
- Nanjing Institute of Environmental SciencesMinistry of Environmental ProtectionNanjingChina
| | - Wan Chen
- College of Environment and EcologyJiangsu Open University (The City Vocational College of Jiangsu)NanjingChina
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
- Analytical and Testing CenterNanjing Normal UniversityNanjingChina
| | - Qing Chang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
10
|
Escalante MA, Horníková M, Marková S, Kotlík P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol Evol 2021; 11:8054-8070. [PMID: 34188871 PMCID: PMC8216960 DOI: 10.1002/ece3.7637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 01/25/2023] Open
Abstract
Species-level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal. We first model the environmental requirements for the bank vole using species-wide occurrences (210 filtered records) and then model each lineage separately to examine niche overlap and test for niche differentiation in geographic and environmental space. We then use the models to estimate past [Last Glacial Maximum (LGM) and mid-Holocene] habitat suitability to compare with previously hypothesized glacial refugia for this species. Environmental niches are statistically significantly different from each other for all pairs of lineages in geographic and environmental space, and these differences cannot be explained by habitat availability within their respective ranges. Together with the inability of most of the lineages to correctly predict the distributions of other lineages, these results support intraspecific ecological differentiation in the bank vole. Model projections of habitat suitability during the LGM support glacial survival of the bank vole in the Mediterranean region and in central and western Europe. Niche differences between lineages and the resulting spatial segregation of habitat suitability suggest ecological differentiation has played a role in determining the present phylogeographic patterns in the bank vole. Our study illustrates that models pooling lineages within a species may obscure the potential for different responses to climate change among populations.
Collapse
Affiliation(s)
- Marco A. Escalante
- Laboratory of Molecular EcologyInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Michaela Horníková
- Laboratory of Molecular EcologyInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Silvia Marková
- Laboratory of Molecular EcologyInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Petr Kotlík
- Laboratory of Molecular EcologyInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| |
Collapse
|
11
|
Zhu X, Hua L, Fang M, DU Y, Lin C, Lin L, Ji X. Lineage diversification and niche evolution in the Reeves' Butterfly Lizard Leiolepis reevesii (Agamidae). Integr Zool 2020; 16:404-419. [PMID: 33274597 DOI: 10.1111/1749-4877.12506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We used mitochondrial cytochrome b and ND4 genes and 9 microsatellite loci to determine genetic diversity, population structure, evolutionary history, and migration patterns within the Reeves' butterfly lizard Leiolepis reevesii (Agamidae). Considering molecular-based phylogeographical lineages, we then performed niche equivalency and similarity tests between divergent lineages. Phylogenetic analyses based on mitochondrial DNA (mtDNA) data revealed 2 lineages (A and B) diverging ≈0.84 million years ago and, respectively, restricted to the northern and southern portions of the Wuzhishan and Yinggeling mountain ranges. Lineage B contains individuals from southern Hainan; Lineage A includes individuals from all other localities and can be further divided into 3 clusters according to microsatellite data. The null hypothesis that the 2 lineages shared identical niches was rejected in all niche equivalency tests, indicating niche shifts during genetic divergence. Similarity tests provided evidence of niche conservatism, suggesting that the 2 lineages share more characteristics of their niche spaces than randomly expected. The niche similarity and equivalency tests indicated a complex niche pattern in which both lineages share a main portion of their ecological spaces. The climatic niche of Lineage B represented a marginal and specialized fraction of the entire ecological space of the climatic niche of Lineage A, with warmer conditions. Isolation caused by orogenesis and subsequent niche divergence, together with local adaptation, may have led to genetic differentiation and further lineage sorting in L. reevesii.
Collapse
Affiliation(s)
- Xiaming Zhu
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lei Hua
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Mengchao Fang
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu DU
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, Hainan, China
| | - Chixian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, Hainan, China
| | - Longhui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, Hainan, China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent. Sci Rep 2020; 10:18705. [PMID: 33127966 PMCID: PMC7599212 DOI: 10.1038/s41598-020-74684-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Phylogenetically closely related species are often assumed to have similar responses to environmental conditions, but species-specific responses have also been described. These two scenarios may have different conservation implications. We tested these two hypotheses for Prionailurus cats (P. rubiginosus, P. bengalensis, P. viverrinus) in the Indian subcontinent and show its implications on species current protected area coverage and climatic suitability trends through time. We fitted ecological niche models with current environmental conditions and calculated niche overlap. In addition, we developed a model for the Jungle Cat Felis chaus to compare species responses and niche overlap estimates within Prionailurus with those for a related sympatric small cat species. Then we estimated the proportion of current suitable environment covered by protected area and projected climatic models from past (last interglacial) to future (2070; RCP4.5 and RCP8.5) conditions to show implications on population management and conservation. The hypothesis of a similar response and niche overlap among closely related species is not supported. Protected area coverage was lowest for P. viverrinus (mean = 0.071, SD = 0.012) and highest for P. bengalensis (mean = 0.088, SD = 0.006). In addition, the proportion of the subcontinent with suitable climate varied through time and was species-specific. For P. bengalensis, climatic suitability shrunk since at least the mid-Holocene, a trend that can be intensified by human-induced climate warming. Concerning P. viverrinus, most predictions show stable future climatic suitability, but a few indicated potential loss. Climatic suitability for P. rubiginous was predicted to remain stable but the species exhibited a negative association with intensive agriculture. Similar responses to environmental change by phylogenetically closely related species should not be assumed and have implications on protected area coverage and natural trends of species climatic suitability over time. This should be taken into account during conservation and management actions.
Collapse
|
13
|
Moreno-Contreras I, Sánchez-González LA, Arizmendi MDC, Prieto-Torres DA, Navarro-Sigüenza AG. Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evol Biol 2020. [DOI: 10.1007/s11692-020-09498-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wang X, Que P, Heckel G, Hu J, Zhang X, Chiang CY, Zhang N, Huang Q, Liu S, Martinez J, Pagani-Núñez E, Dingle C, Leung YY, Székely T, Zhang Z, Liu Y. Genetic, phenotypic and ecological differentiation suggests incipient speciation in two Charadrius plovers along the Chinese coast. BMC Evol Biol 2019; 19:135. [PMID: 31248363 PMCID: PMC6598359 DOI: 10.1186/s12862-019-1449-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Speciation with gene flow is an alternative to the nascence of new taxa in strict allopatric separation. Indeed, many taxa have parapatric distributions at present. It is often unclear if these are secondary contacts, e.g. caused by past glaciation cycles or the manifestation of speciation with gene flow, which hampers our understanding of how different forces drive diversification. Here we studied genetic, phenotypic and ecological aspects of divergence in a pair of incipient shorebird species, the Kentish (Charadrius alexandrinus) and the White-faced Plovers (C. dealbatus), shorebirds with parapatric breeding ranges along the Chinese coast. We assessed divergence based on molecular markers with different modes of inheritance and quantified phenotypic and ecological divergence in aspects of morphometric, dietary and climatic niches. Results Our integrative analyses revealed small to moderate levels of genetic and phenotypic distinctiveness with symmetric gene flow across the contact area at the Chinese coast. The two species diverged approximately half a million years ago in dynamic isolation with secondary contact occurring due to cycling sea level changes between the Eastern and Southern China Sea in the mid-late Pleistocene. We found evidence of character displacement and ecological niche differentiation between the two species, invoking the role of selection in facilitating divergence despite gene flow. Conclusion These findings imply that ecology can indeed counter gene flow through divergent selection and thus contributes to incipient speciation in these plovers. Furthermore, our study highlights the importance of using integrative datasets to reveal the evolutionary history and assist the inference of mechanisms of speciation. Electronic supplementary material The online version of this article (10.1186/s12862-019-1449-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Pinjia Que
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Genopode, 1015, Lausanne, Switzerland
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xuecong Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chung-Yu Chiang
- Department of Environmental Science, Tunhai University, Taichun, Taiwan
| | - Nan Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin Huang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Simin Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | | | - Emilio Pagani-Núñez
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caroline Dingle
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yu Yan Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Tamás Székely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA1 7AY, UK
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Wang F, Wang D, Guo G, Hu Y, Wei J, Liu J. Species delimitation of the Dermacentor ticks based on phylogenetic clustering and niche modeling. PeerJ 2019; 7:e6911. [PMID: 31123639 PMCID: PMC6512763 DOI: 10.7717/peerj.6911] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022] Open
Abstract
Three species belonging to the genus Dermacentor (Acari: Ixodidae), D. marginatus, D. nuttalli and D. silvarum are well known as vectors for a great variety of infection pathogens. All three of them are host ticks, which are very similar in morphology characteristics, life cycle, seasonal variation and ecological conditions, making it difficult to distinguish the three species. In the present study, these three species were delimitated based on molecular data and ecological niche. The molecular analysis showed that the three species can be distinguished by COI and ITS2 sequences. We created future potential distribution maps for the three species under climate changes with MaxEnt, which highlighted the different levels of the suitable habitats for each tick species. In addition, niche comparisons among the three species in Dermacentor were conducted, and the analysis suggested that niche overlap was relatively high with D. nuttalli and D. silvarum compared to the other species pairs, which was consistent with the molecular data. Niche equivalency and similarity test confirmed that these Dermacentor species were closely related but distinct species. In conclusion, delimitation of these three species within Dermacentor was supported by molecular phylogeny and quantitative ecological space. This study will provide deep insights into the biology, ecology, and diversification processes within Dermacentor species, and for the development of effective control for ticks.
Collapse
Affiliation(s)
- Fang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Ge Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Yonghong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Jiufeng Wei
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
16
|
Hu J, Huang Y, Jiang J, Guisan A. Genetic diversity in frogs linked to past and future climate changes on the roof of the world. J Anim Ecol 2019; 88:953-963. [PMID: 30861112 DOI: 10.1111/1365-2656.12974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/05/2018] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
Abstract
Mountains, representing storehouses of biodiversity, endemism and threatened species, are biodiversity hotspots of great conservation importance. However, increasing evidence indicates that mountain species throughout the world are responding to climate change, past or contemporary, by shifting their geographic distributions and patterns of genetic diversity, potentially affecting their adaptive capacity and increasing risk of extinction. Using the iconic high-elevation frog Nanorana parkeri as indicator, we showed how spatial analyses of climatic stability combined with genetic data allow unravelling amphibian responses to past and future climate changes on 'the roof of the world'-the Qinghai-Tibetan Plateau. We found that areas along the Yarlung Tsangpo Valley were climatically more stable relative to other regions, apparently serving as a large climatic refugium during Quaternary glaciations, but that these areas will likely be affected by future climate change. As populations closer to Quaternary refugia usually had higher genetic diversity, current genetic diversity can be explained in the largest part by distance to historically stable areas, outweighing other historical and contemporary factors. Along with the dynamics of suitable range, a fluctuating habitat fragmentation supported the pattern of historical changes in genetic diversity (Ne ) over time. Our results emphasize strong relationships between amphibian genetic diversity, past range dynamics and where to preserve suitable habitats in the face of future climate changes. More generally, our findings highlighted a central role of refugia during Quaternary climatic fluctuations, and how isolation from refugia may have modulated amphibian genetic diversity across the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yan Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
de Luis M, Bartolomé C, García Cardo Ó, Martínez Labarga JM, Álvarez-Jiménez J. Sympatric and allopatric niche shift of endemic Gypsophila (Caryophyllaceae) taxa in the Iberian Peninsula. PLoS One 2018; 13:e0206043. [PMID: 30403709 PMCID: PMC6221283 DOI: 10.1371/journal.pone.0206043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/05/2018] [Indexed: 12/03/2022] Open
Abstract
Several species of the Gypsophila genus are endemic to the Iberian Peninsula, including gypsophytes of particular ecological, evolutionary and biochemical interest, and taxa that have undergone both sympatric and allopatric genetic differentiation. The niche shift among these taxa has been assessed using ecological niche modelling and ordination techniques, adopting a niche overlap approach to compare the similarity and equivalency of the ecological niches. We used the Maximum Entropy method to study the potential distribution of these taxa in different eras: the Last Glacial Maximum (LGM), the Mid Holocene and the current conditions. We present evidence of niche shift during the speciation of G. bermejoi, with a strong niche overlap between the parental taxa (G. struthium subsp. struthium and G. tomentosa), yet both overlap much more weakly with the hybrid species. This phenomenon may be explained by genetic and epigenetic interactions, and it has been described in other species. We also studied the sister subspecies G. struthium subsp. struthium and G. struthium subsp. hispanica, with mostly allopatric distributions and with the Iberian System mountain range acting as a geographical barrier. The Iberian System and other mountain ranges may have favored differences in the climatic conditions on either side of the mountain range, which is consistent with an incipient process of bioclimatic ecological speciation. These results seem to indicate that niche shift can occur over very different timespans. In the case of G. bermejoi, speciation may have produced significant niche shifting in one or two generations due to its alloploid nature. By contrast, G. struthium subsp. struthium and G. struthium subsp. hispanica seem to have undergone a more gradual process of allopatric genetic differentiation driven by bioclimatic factors. Both these processes are relatively recent and they will have been strongly influenced by the climate change at the end of LGM.
Collapse
Affiliation(s)
- Miguel de Luis
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Carmen Bartolomé
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
- * E-mail:
| | - Óscar García Cardo
- Empresa Pública de Gestión Ambiental de Castilla-La Mancha (GEACAM), Cuenca, Spain
| | - Juan Manuel Martínez Labarga
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Julio Álvarez-Jiménez
- Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
19
|
Berriozabal‐Islas C, Rodrigues JFM, Ramírez‐Bautista A, Becerra‐López JL, Nieto‐Montes de Oca A. Effect of climate change in lizards of the genus Xenosaurus (Xenosauridae) based on projected changes in climatic suitability and climatic niche conservatism. Ecol Evol 2018; 8:6860-6871. [PMID: 30073050 PMCID: PMC6065345 DOI: 10.1002/ece3.4200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023] Open
Abstract
Accelerated climate change represents a major threat to the health of the planet's biodiversity. Particularly, lizards of the genus Xenosaurus might be negatively affected by this phenomenon because several of its species have restricted distributions, low vagility, and preference for low temperatures. No study, however, has examined the climatic niche of the species of this genus and how their distribution might be influenced by different climate change scenarios. In this project, we used a maximum entropy approach to model the climatic niche of 10 species of the genus Xenosaurus under present and future suitable habitat, considering a climatic niche conservatism context. Therefore, we performed a similarity analysis of the climatic niche between each species of the genus Xenosaurus. Our results suggest that a substantial decrease in suitable habitat for all species will occur by 2070. Among the most affected species, X. tzacualtipantecus will not have suitable conditions according to its climatic niche requirements and X. phalaroanthereon will lose 85.75% of its current suitable area. On the other hand, we found low values of conservatism of the climatic niche among species. Given the limited capacity of dispersion and the habitat specificity of these lizards, it seems unlikely that fast changes would occur in the distribution of these species facing climate change. The low conservatism in climatic niche we found in Xenosaurus suggests that these species might have the capacity to adapt to the new environmental conditions originated by climate change.
Collapse
Affiliation(s)
- Christian Berriozabal‐Islas
- Ecología de PoblacionesCentro de Investigaciones BiológicasUniversidad Autónoma del Estado de HidalgoCiudad Universitaria (Ciudad del Conocimiento)HidalgoMéxico
| | | | - Aurelio Ramírez‐Bautista
- Ecología de PoblacionesCentro de Investigaciones BiológicasUniversidad Autónoma del Estado de HidalgoCiudad Universitaria (Ciudad del Conocimiento)HidalgoMéxico
| | - Jorge L. Becerra‐López
- Laboratorio de Cambio Climático y Conservación de Recursos NaturalesCentro de Estudios EcológicosFacultad de Ciencias BiológicasUniversidad Juárez del Estado de DurangoGomez PalacioMéxico
| | - Adrián Nieto‐Montes de Oca
- Museo de ZoologíaDepartamento de Biología EvolutivaFacultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
20
|
Hu J, Jiang J. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecol 2018; 18:3. [PMID: 29391060 PMCID: PMC5796512 DOI: 10.1186/s12898-018-0160-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Background Identifying and understanding the mechanisms that shape barriers to dispersal and resulting biogeographic boundaries has been a longstanding, yet challenging, goal in ecology, evolution and biogeography. Characterized by stable, adjacent ranges, without any intervening physical barriers, and limited, if any, range overlap in a narrow contact zone, parapatric species are an interesting system for studying biogeographic boundaries. The geographic ranges of two parapatric frog species, Feirana quadranus and F. taihangnica, meet in a contact zone within the Qinling Mountains, an important watershed for East Asia. To identify possible ecological determinants of the parapatric range boundaries for two closely related frog species, we quantified the extent of their niche differentiation in both geographical and environmental space combining ecological niche models with an ordination technique. We tested two alternative null hypotheses (sharp environmental gradients versus a ribbon of unsuitable habitat dividing two highly suitable regions) for biogeographic boundaries, against the null expectation that environmental variation across a given boundary is no greater than expected by chance. Results We found that the niches of these two parapatric species are more similar than expected by chance, but not equivalent. No sharp environmental gradient was found, while a ribbon of unsuitable habitat did act as a barrier for F. quadranus, but not for F. taihangnica. Conclusions Integrating our findings with historical biogeographic information, our results suggest that at a contact zone, environmental tolerance restricted F. quadranus from dispersing further north, while interspecific competition most likely prevented the southward expansion of F. taihangnica. This study highlights the importance of both climate and competition in exploring ecological explanations for parapatric range boundaries between ecologically similar frog species, in particular under the effects of changing climate. Electronic supplementary material The online version of this article (10.1186/s12898-018-0160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Hu
- Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
21
|
Qiao H, Peterson AT, Ji L, Hu J. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huijie Qiao
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
| | | | - Liqiang Ji
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Junhua Hu
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu China
| |
Collapse
|
22
|
Wang P, Liu Y, Liu Y, Chang Y, Wang N, Zhang Z. The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Mol Phylogenet Evol 2017; 113:1-8. [PMID: 28487259 DOI: 10.1016/j.ympev.2017.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
One of the most contentious theories in current ecology is the ecological niche conservatism, which is defined as conservatism among closely related species; however, the ecological niche can also be shifted, as documented in several cases. Genetic drift and ecological divergent selection may cause ecological niche divergence. The current study aims to test whether the ecological niche is conserved or divergent and to determine the main factor that drives ecological niche divergence or conservation. We analyzed the phylogenetic relationship, ecological niche model (ENM) and demographic history of Eared Pheasants in the genus Crossoptilon (Galliformes: Phasianidae) to test niche conservatism with respect to different geographically distributed patterns. The phylogenetic relationship was reconstructed using ∗BEAST with mitochondrial cytochrome b (cyt b) and 44 unlinked autosomal exonic loci, and ENMs were reconstructed in MAXENT using an average of 41 occurrence sites in each species and 22 bioclimatic variables. A background similarity test was used to detect whether the ecological niche is conserved. Demographic history was estimated using the isolation with migration (IM) model. We found that there was asymmetric gene flow between the allopatric sister species Crossoptilon mantchuricum and C. auritum and the parapatric sister species C. harmani and C. crossoptilon. We found that ecological niches were divergent, not conserved, between C. mantchuricum and C. auritum, which began to diverge at approximately 0.3 million years ago. However, the ecological niches were conserved between C. crossoptilon and C. harmani, which gradually diverged approximately half a million years ago. Ecological niches can be either conserved or divergent, and ecological divergent selection for local adaptation is probably an important factor that promotes and maintains niche divergence in the face of gene flow. This study provides a better understanding of the role that divergent selection has in the initial speciation process. The platform combined demographic processes and ecological niches to offer new insights into the mechanism of biogeography patterns.
Collapse
Affiliation(s)
- Pengcheng Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yang Liu
- State Key Laboratory of Biocontrol, College of Ecology and Evolution/School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yinong Liu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Beijing National Day School, Beijing 100039, PR China
| | - Yajing Chang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Nan Wang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|