1
|
Aghaei M, Khademi R, Far MAJ, Bahreiny SS, Mahdizade AH, Amirrajab N. Genetic variants of dectin-1 and their antifungal immunity impact in hematologic malignancies: A comprehensive systematic review. Curr Res Transl Med 2024; 72:103460. [PMID: 39038414 DOI: 10.1016/j.retram.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Fungal infections pose a significant threat to individuals with hematologic malignancies due to compromised immune systems. Dectin-1, a pivotal pattern recognition receptor, plays a central role in antifungal immune responses. Understanding its genetic variants' impact is crucial for advancing personalized therapeutic approaches. METHODS Employing systematic review methods, studies were meticulously selected and assessed for relevance. Data extraction encompassed Dectin-1 genetic variants, antifungal immune responses, and disease outcomes. RESULTS Findings unveiled a complex relationship between Dectin-1 genetic variants and antifungal immunity in hematologic malignancies. Variable associations emerged, influencing susceptibility to fungal infections and disease prognosis. Moreover, implications for treatment outcomes were explored, suggesting potential avenues for tailored interventions. CONCLUSIONS This systematic review underscores the need for further investigation into the precise influence of Dectin-1 genetic variants on antifungal immunity and disease progression in hematologic malignancies. Insights gained could pave the way for personalized therapeutic strategies, optimizing infection prevention and malignancy management. By delving into the intricate connections between genetic nuances, immune responses, and clinical trajectories, this review contributes to the ongoing discourse surrounding hematologic malignancies, fungal infections, and their multifaceted interplay.
Collapse
Affiliation(s)
- Mojtaba Aghaei
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Jalali Far
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran and Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Cai Y, Wu K. Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential. Curr Oncol 2024; 31:7275-7286. [PMID: 39590166 PMCID: PMC11592733 DOI: 10.3390/curroncol31110536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors like PD-1, PD-L1, and CTLA-4, has revolutionized cancer treatment. However, the role of the innate immune system, especially pattern recognition receptors, in cancer development and immunity is gaining more and more attention. Dectin-1, a C-type lectin receptor primarily involved in antifungal immunity, has emerged as a significant player in cancer biology, exhibiting both pro-tumor and anti-tumor roles. This dual function largely depends on the tumor type and microenvironment. Dectin-1 can promote immune responses against tumors like melanoma and breast cancer by enhancing both innate and adaptive immunity. However, in tumors like pancreatic ductal adenocarcinoma and colorectal cancer, Dectin-1 activation suppresses T cell immunity, facilitating tumor progression. This review explores the complex mechanisms by which Dectin-1 modulates the tumor microenvironment and discusses its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ke Wu
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
3
|
Mashhouri S, Rahmati A, Azimi A, Fava RA, Ismail IH, Walker J, Elahi S. Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model. Cell Oncol (Dordr) 2024; 47:1735-1756. [PMID: 38668817 PMCID: PMC11467025 DOI: 10.1007/s13402-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy. METHODS Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA's role, and bulk RNAseq analyzed curdlan effects on neutrophils. RESULTS Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan's role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients. CONCLUSION Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Collapse
Affiliation(s)
- Siavash Mashhouri
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ako Azimi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Roy A Fava
- Department of Veterans Affairs Medical Center, Research Service, White River Junction, VT, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
4
|
Liu X, Lv K, Wang J, Lin C, Liu H, Zhang H, Li H, Gu Y, Li R, He H, Xu J. C-type lectin receptor Dectin-1 blockade on tumour-associated macrophages improves anti-PD-1 efficacy in gastric cancer. Br J Cancer 2023; 129:721-732. [PMID: 37422529 PMCID: PMC10421860 DOI: 10.1038/s41416-023-02336-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression and clinical significance of Dendritic cell-associated C-type lectin-1 (Dectin-1) in gastric cancer (GC), and to explore the mechanism of Dectin-1 regulating tumour-associated macrophage (TAM)-mediated immune evasion in GC. METHODS The association of Dectin-1+ cells with clinical outcomes was inspected by immunohistochemistry on tumour microarrays. Flow cytometry and RNA sequencing were applied to detect characteristics of T cells, phenotypic and transcriptional features of Dectin-1+ TAMs. The effect of Dectin-1 blockade was evaluated using an in vitro intervention experiment based on fresh GC tissues. RESULTS High infiltration of intratumoral Dectin-1+ cells predicted poor prognosis in GC patients. Dectin-1+ cells were mainly composed of TAMs, and the accumulation of Dectin-1+ TAMs was associated with T-cell dysfunction. Notably, Dectin-1+ TAMs exhibited an immunosuppressive phenotype. Furthermore, blockade of Dectin-1 could reprogramme Dectin-1+ TAMs and reactivate anti-tumour effects of T cells, as well as enhanced PD-1 inhibitor-mediated cytotoxicity of CD8+ T cells against tumour cells. CONCLUSIONS Dectin-1 could affect T-cell anti-tumour immune response by regulating the immunosuppressive function of TAMs, leading to poor prognosis and immune evasion in GC patients. Blockade of Dectin-1 can be used alone or in combination with current therapeutic strategies in GC.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
6
|
Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022; 13:911325. [PMID: 36131933 PMCID: PMC9483128 DOI: 10.3389/fimmu.2022.911325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell therapy, offer novel treatment options with good efficacy for patients with urothelial bladder cancer. However, heterogeneity and therapeutic resistance have limited the use of immunotherapy. Further research into immune-regulatory mechanisms in bladder cancer is urgently required. Emerging evidence demonstrates that the commensal microbiota and its interactions with host immunity play pivotal roles in a variety of physiological and pathological processes, including in cancer. The gut microbiota has been identified as a potentially effective target of treatment that can be synergized with immunotherapy. The urothelial tract is also a key site for multiple microbes, although the immune-regulatory role of the urinary microbiome in the process of carcinogenesis of bladder cancer remains to be elucidated. We performed a comprehensive analysis of the expression and biological functions of C-type lectin receptors (CLRs), which have been recognized as innate pathogen-associated receptors for fungal microbiota, in bladder cancer. In line with previous research on fungal colonization of the urothelial tract, we found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent lectin receptor (Mincle), had a significant association with immune infiltration in bladder cancer. Multiple innate and adaptive pathways are positively correlated with the upregulation of CLRs. In addition, we found a significant correlation between the expression of CLRs and a range of immune-checkpoint proteins in bladder cancer. Based on previous studies and our findings, we hypothesize that the urinary mycobiome plays a key role in the pathogenesis of bladder cancer and call for more research on CLR-mediated anti-fungal immunity against bladder cancer as a novel target for immunotherapy in urothelial bladder cancer.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| |
Collapse
|
7
|
Zhang L, Chai D, Chen C, Li C, Qiu Z, Kuang T, Parveena M, Dong K, Yu J, Deng W, Wang W. Mycobiota and C-Type Lectin Receptors in Cancers: Know thy Neighbors. Front Microbiol 2022; 13:946995. [PMID: 35910636 PMCID: PMC9326027 DOI: 10.3389/fmicb.2022.946995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the importance of gut bacteria in the development of malignancy, while relatively little research has been done on gut mycobiota. As a part of the gut microbiome, the percentage of gut mycobiota is negligible compared to gut bacteria. However, the effect of gut fungi on human health and disease is significant. This review systematically summarizes the research progress on mycobiota, especially gut fungi, in patients with head and neck cancer (HNC), esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer, melanoma, breast cancer, and lung carcinoma-induced cachexia. Moreover, we also describe, for the first time in detail, the role of the fungal recognition receptors, C-type lectin receptors (CLRs) (Dectin-1, Dectin-2, Dectin-3, and Mincle) and their downstream effector caspase recruitment domain-containing protein 9 (CARD9), in tumors to provide a reference for further research on intestinal fungi in the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Mungur Parveena
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Wenhong Deng,
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Weixing Wang,
| |
Collapse
|
8
|
Zheng P, Zhang H, Jiang W, Wang L, Liu L, Zhou Y, Zhou L, Liu H. Establishment of a Prognostic Model of Lung Adenocarcinoma Based on Tumor Heterogeneity. Front Mol Biosci 2022; 9:807497. [PMID: 35480896 PMCID: PMC9035852 DOI: 10.3389/fmolb.2022.807497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the main cancer types due to its persistently high incidence and mortality, yet a simple and effective prognostic model is still lacking. This study aimed to identify independent prognostic genes related to the heterogeneity of lung adenocarcinoma (LUAD), generate a prognostic risk score model, and construct a nomogram in combination with other pathological characteristics to predict patients’ overall survival (OS). A significant amount of data pertaining to single-cell RNA sequencing (scRNA-seq), RNA sequencing (RNA-seq), and somatic mutation were used for data mining. After statistical analyses, a risk scoring model was established based on eight independent prognostic genes, and the OS of high-risk patients was significantly lower than that of low-risk patients. Interestingly, high-risk patients were more sensitive and effective to immune checkpoint blocking therapy. In addition, it was noteworthy that CCL20 not only affected prognosis and differentiation of LUAD but also led to poor histologic grade of tumor cells. Ultimately, combining risk score, clinicopathological information, and CCL20 mutation status, a nomogram with good predictive performance and high accuracy was established. In short, our research established a prognostic model that could be used to guide clinical practice based on the constantly updated big multi-omics data. Finally, this analysis revealed that CCL20 may become a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Zhou
- *Correspondence: Ling Zhou, ; Huiguo Liu,
| | - Huiguo Liu
- *Correspondence: Ling Zhou, ; Huiguo Liu,
| |
Collapse
|
9
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|
10
|
Santorelli L, Stella M, Chinello C, Capitoli G, Piga I, Smith A, Grasso A, Grasso M, Bovo G, Magni F. Does the Urinary Proteome Reflect ccRCC Stage and Grade Progression? Diagnostics (Basel) 2021; 11:2369. [PMID: 34943605 PMCID: PMC8700730 DOI: 10.3390/diagnostics11122369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Due its ability to provide a global snapshot of kidney physiology, urine has emerged as a highly promising, non-invasive source in the search for new molecular indicators of disease diagnosis, prognosis, and surveillance. In particular, proteomics represents an ideal strategy for the identification of urinary protein markers; thus, a urinomic approach could also represent a powerful tool in the investigation of the most common kidney cancer, which is clear cell Renal Cell Carcinoma (ccRCC). Currently, these tumors are classified after surgical removal using the TNM and nuclear grading systems and prognosis is usually predicted based upon staging. However, the aggressiveness and clinical outcomes of ccRCC remain heterogeneous within each stratified group, highlighting the need for novel molecular indicators that can predict the progression of these tumors. In our study, we explored the association between the urinary proteome and the ccRCC staging and grading classification. The urine proteome of 44 ccRCC patients with lesions of varying severity was analyzed via label-free proteomics. MS data revealed several proteins with altered abundance according to clinicopathological stratification. Specifically, we determined a panel of dysregulated proteins strictly related to stage and grade, suggesting the potential utility of MS-based urinomics as a complementary tool in the staging process of ccRCC.
Collapse
Affiliation(s)
- Lucia Santorelli
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| | - Martina Stella
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| | - Giulia Capitoli
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy;
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| | - Angelica Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy; (A.G.); (M.G.)
| | - Marco Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy; (A.G.); (M.G.)
| | - Giorgio Bovo
- Pathology Unit, Vimercate Hospital, 20871 Vimercate, Italy;
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano—Bicocca, 20854 Vedano al Lambro, Italy; (L.S.); (M.S.); (C.C.); (I.P.); (A.S.)
| |
Collapse
|
11
|
Kalia N, Singh J, Kaur M. The role of dectin-1 in health and disease. Immunobiology 2021; 226:152071. [PMID: 33588306 DOI: 10.1016/j.imbio.2021.152071] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as β-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India.
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143001, India.
| |
Collapse
|
12
|
Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12051247. [PMID: 32429253 PMCID: PMC7281398 DOI: 10.3390/cancers12051247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization. To assess which genes and pathways are implicated in tumor drug resistance, we correlated ex vivo drug response data to genome-wide gene expression profiles of 73 primary pediatric AML samples obtained at initial diagnosis. Ex vivo response of primary AML blasts towards cytarabine (Ara C), daunorubicin (DNR), etoposide (VP16), and cladribine (2-CdA) was associated with the expression of 101, 345, 206, and 599 genes, respectively (p < 0.001, FDR 0.004–0.416). Microarray based expression of multiple genes was technically validated using qRT-PCR for a selection of genes. Moreover, expression levels of BRE, HIF1A, and CLEC7A were confirmed to be significantly (p < 0.05) associated with ex vivo drug response in an independent set of 48 primary pediatric AML patients. We present unique data that addresses transcriptomic analyses of the mechanisms underlying ex vivo drug response of primary tumor samples. Our data suggest that distinct gene expression profiles are associated with ex vivo drug response, and may confer a priori drug resistance in leukemic cells. The described associations represent a fundament for the development of interventions to overcome drug resistance in AML, and maximize the benefits of current chemotherapy for sensitive patients.
Collapse
|
13
|
Copy number variations and expression of MPDZ are prognostic biomarkers for clear cell renal cell carcinoma. Oncotarget 2017; 8:78713-78725. [PMID: 29108259 PMCID: PMC5667992 DOI: 10.18632/oncotarget.20220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The vital copy number variation (CNV) plays a crucial role in clear cell renal cell carcinoma (ccRCC). MPDZ inhibit cell polarity associate with osmotic pressure response and cancer-related biological processes. In order to clarify the role of the CNV of MPDZ in the progression of ccRCC, we analyzed the CNV and expression of MPDZ and prognosis in ccRCC patients from The Cancer Genome Atlas data portal. Notably, we found that the deletion of MPDZ was the common CNV, which was present in 28.65% of ccRCC patients. With the development of tumors, the percentage of MPDZ deletion increased significantly (19.38% in stage I; 20.00% in stage II; 40.94% in stage III; and 45.00% in stage IV). The deletion of MPDZ significantly increased ccRCC risk (P=0.0025). Low MPDZ expression associated with its deletion was significantly associated with adverse outcomes in ccRCC patients (P=0.0342). Furthermore, immunohistochemical analysis by tissue microarray showed that MPDZ was expressed at lower levels in tumor tissues compared with adjacent tissues (P<0.01). Kaplan–Meier survival curves showed that ccRCC patients with low MPDZ expression had significantly shorter survival than those with high MPDZ expression (P=0.002). These results indicated that low MPDZ expression associated with CNV is a potential biomarker for the prognosis of ccRCC patients.
Collapse
|