1
|
Li J, Liu M, Qin J, An Y, Zheng X, Mohamad NS, Ramli I. Resting-State Functional MRI Reveals Altered Seed-Based Connectivity in Diabetic Osteoporosis Patients. Clin Interv Aging 2025; 20:649-658. [PMID: 40421199 PMCID: PMC12104670 DOI: 10.2147/cia.s521686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Background Diabetic osteoporosis (DOP) can cause abnormal brain neural activity, but its mechanism is still unclear. This study aims to further explore the abnormal functional connectivity between different brain regions based on the team's previous research. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained from 14 participants diagnosed with type 2 diabetes mellitus (T2DM) and osteoporosis. For comparison, data from 13 T2DM patients without osteoporosis were analyzed. The seed regions for functional connectivity (FC) analysis were chosen according to brain areas previously reported to exhibit abnormal regional homogeneity (ReHo). Results DOP patients exhibited significantly decreased BMD, T-scores, MoCA scores, and osteocalcin (OC) levels compared to controls (p<0.05). FC analysis revealed: 1) Reduced connectivity between the left middle temporal gyrus (increased ReHo) and middle occipital gyrus; 2) Enhanced connectivity between the right angular gyrus (increased ReHo) and left Rolandic operculum; 3) Weakened the left precuneus (increased ReHo) and right superior/left middle frontal gyri. These alterations correlated with deficits in visual processing, working memory, and executive function. Conclusion Distinct FC reorganization in DOP patients reflects synergistic effects of metabolic and skeletal pathologies on neural networks, potentially mediating cognitive decline through visual pathway disruption and prefrontal-default mode network decoupling. The findings highlight neuroimaging biomarkers for metabolic bone disease-related cognitive disorders.
Collapse
Affiliation(s)
- Jiang Li
- Centre for Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Selangor, Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Min Liu
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Jian Qin
- Centre for Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Selangor, Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Yuxiao An
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Xiuzhu Zheng
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, People’s Republic of China
| | - Noor Shafini Mohamad
- Medical Imaging Department, Faculty of Health and Life Sciences, St Luke’s Campus, Exeter, UK
| | - Izzad Ramli
- College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Zhang Z, Novak V, Novak P, Mantzoros C, Ngo L, Lioutas V, Dai W. Intranasal insulin enhances resting-state functional connectivity in Type 2 Diabetes. PLoS One 2025; 20:e0324029. [PMID: 40392946 DOI: 10.1371/journal.pone.0324029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/09/2025] [Indexed: 05/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects cognition and resting-state functional connectivity (rsFC). Intranasal insulin (INI) has emerged as a potential treatment for T2DM-related cognitive decline. We aimed to evaluate the effect of INI treatment on rsFC with medio-prefrontal (mPFC) and left/right hippocampus (lHPC/rHPC), and their relationship with the cognition, hemoglobin A1c (HbA1c), and homeostatic model assessment of insulin resistance (HOMA-IR) and walking speed. An MRI sub-study of the MemAID trial was conducted, involving a 24-week treatment with either intranasal insulin or placebo. Blood oxygen level-dependent (BOLD) functional MRI (fMRI) images were acquired on eighteen DM subjects at baseline and eleven DM subjects (eight DM-INI patients and three DM-Placebo) at the end-of-treatment. Compared to DM-Placebo treated subjects, DM-INI patients showed increased mPFC-postcentral rsFC, lHPC-frontal rsFC, lHPC-postcentral rsFC, rHPC-frontal rsFC, and lHPC-mPFC rsFC (p < 0.05). The decreased HOMA-IR, which was observed in the MemAID trial, was associated with increased mPFC-basal ganglia rsFC (p < 0.05). This sub-study provides insights into potential mechanisms of INI effects on rsFC that require validation in a larger trial.
Collapse
Affiliation(s)
- Zongpai Zhang
- School of Computing, State University of New York at Binghamton, Binghamton, New York, United States of America
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Novak
- Department of Neurology, Massachusetts General Brigham Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center and Department of Medicine Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and School of Public Health, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vasileios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiying Dai
- School of Computing, State University of New York at Binghamton, Binghamton, New York, United States of America
| |
Collapse
|
3
|
Locatelli G, Matus A, Lin CY, Vellone E, Riegel B. Symptom perception in adults with chronic physical disease: A systematic review of insular impairments. Heart Lung 2025; 70:122-140. [PMID: 39662138 DOI: 10.1016/j.hrtlng.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND To perform self-care, individuals with a chronic illness must be able to perceive bodily changes (ie., interoception) so they can respond to symptoms when they arise. Interoception is regulated by the insular cortex of the brain. Symptom perception is poor in various physical diseases, which may be associated with impairments in the insular cortex. OBJECTIVE The purpose of this study was to explore whether patterns of insular impairment exist among adults with chronic physical diseases and to analyze the relationship with disease-related symptoms. METHODS We identified studies that assessed the structure and/or activity of the insula through MRI and/or (f)MRI in adults with chronic physical diseases (vs. healthy controls) by searching five databases. Results are reported as a narrative synthesis. RESULTS Fifty studies were conducted to investigate the structure or activity of the insula among adults with diabetes, cancer, heart failure, or chronic pulmonary disease. In 19 studies investigators found that patients with a chronic disease had lower/damaged insular volume/density/thickness than healthy controls or reduced insular blood flow. When insular activity was explored in 22 studies, most investigators reported higher insular activity and lower neural connectivity. Five studies explored the association between insular volume/activity and symptom severity: four reported a positive trend. CONCLUSION People with chronic physical diseases have lower insular grey matter volume/density/thickness and abnormal insular activity when compared to healthy people. Insular activity may be related to symptom severity. These results suggest that insular structure and/or activity may explain poor symptom perception.
Collapse
Affiliation(s)
- Giulia Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Austin Matus
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chin-Yen Lin
- College of Nursing, Auburn University, Auburn, USA
| | - Ercole Vellone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Department of Nursing and Obstetrics, Wroclaw Medical University, Poland
| | - Barbara Riegel
- Center for Home Care Policy & Research at VNS Health, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, 418 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Oktem EO, Sayman D, Ayyildiz S, Oktem Ç, Ipek L, Ayyildiz B, Aslan F, Altindal EU, Yagci N, Dikici R, Karaca R, Cankaya Ş, Avnioglu S, Velioglu HA, Yulug B. Cognitive Function Deficits Associated With Type 2 Diabetes and Retinopathy: Volumetric Brain MR Imaging Study. Brain Behav 2025; 15:e70387. [PMID: 40022286 PMCID: PMC11870829 DOI: 10.1002/brb3.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus is a ubiquitous chronic inflammatory disease with deleterious effects on various tissues, including the kidney, retina, and peripheral nerves. Studies using histopathology and magnetic resonance imaging have revealed that diabetes-related chronic hyperglycemia may impact the brain's essential functioning by causing microvascular damage. The aim of this study was to examine the cognitive functioning of type 2 diabetic individuals with and without retinopathy by evaluating their morphological, structural, and biochemical differences. METHODS Demographic characteristics, education level, type of diabetes mellitus (DM), disease duration, treatment received, other diabetic complications, such as nephropathy and neuropathy, and detailed medical histories were recorded. All participants underwent an extensive neuropsychological examination with Montreal Cognitive Assessment (MoCA) testing. Brain magnetic resonance imaging was performed to evaluate gray matter volume differences between the groups. RESULTS Gray matter volume differences between the groups were observed. Differences were observed after multiple corrections (age, education, and total intracranial volume [TIV]). First, the diabetic retinopathy group exhibited a significantly smaller gray matter volume in the right inferior temporal gyrus than the diabetic group (p = 0.032). In addition, the diabetic retinopathy group exhibited a significantly smaller gray matter volume than the control group in the right insula (lateral and central part) (p = 0.011). In addition, MoCA scores exhibited significant correlation with the two regions emerging as statistically significant in our analyses (the right inferior temporal gyrus and right insula) (p = 0.003, p = 0.002, respectively). CONCLUSION Our results suggest the presence of a neurodegenerative process associated with cognitive dysfunction that is particularly prominent in the retinopathy stage of DM.
Collapse
Affiliation(s)
- Ece Ozdemir Oktem
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Dila Sayman
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Sevilay Ayyildiz
- School of Medicine, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Çaglar Oktem
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Lutfiye Ipek
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | | | - Fatih Aslan
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Emin Utku Altindal
- Department of OphthalmologyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Nilay Yagci
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Rumeysa Dikici
- Department of anatomyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Ramazan Karaca
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Şeyda Cankaya
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Seda Avnioglu
- Department of anatomyAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| | - Halil Aziz Velioglu
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
| | - Burak Yulug
- Department of Neurology and NeuroscienceAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| |
Collapse
|
5
|
Fu L, Zhang W, Bi Y, Li X, Zhang X, Shen X, Li Q, Zhang Z, Yang S, Yu C, Zhu Z, Zhang B. Altered Dynamics of Brain Spontaneous Activity and Functional Networks Associated With Cognitive Impairment in Patients With Type 2 Diabetes. J Magn Reson Imaging 2024; 60:2547-2561. [PMID: 38488213 DOI: 10.1002/jmri.29306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cognitive impairment is increasingly recognized as an important comorbidity and complication of type 2 diabetes (T2D), affecting patients' quality of life and diabetes management. Dynamic brain activity indicators can reflect changes in key neural activity patterns of cognition and behavior. PURPOSE To investigate dynamic functional connectivity (DFC) changes and spontaneous brain activity based on resting-state functional magnetic resonance imaging (rs-fMRI) in patients with T2D, exploring their correlations with clinical features. STUDY TYPE Retrospective. SUBJECTS Forty-five healthy controls (HCs) (22 males and 23 females) and 102 patients with T2D (57 males and 45 females). FIELD STRENGTH/SEQUENCE 3.0 T/T1-weighted imaging and rs-fMRI with gradient-echo planar imaging sequence. ASSESSMENT Functional networks were created using independent component analysis. DFC states were determined using sliding window approach and k-means clustering. Spontaneous brain activity was assessed using dynamic regional homogeneity (dReHo) variability. STATISTICAL TESTS One-way analysis of variance and post hoc analysis were used to compare the essential information including demographics, clinical data, and features of DFC and dReHo among groups. Diagnostic performance was assessed using receiver operating characteristic (ROC) curve. P-values <0.05 were taken to indicate statistical significance. RESULTS T2D group had significantly decreased mean dwell time and fractional windows in state 4 compared to HC. T2D with mild cognitive impairment showed significantly increased dReHo variability in left superior occipital gyrus compared to T2D with normal cognition. Mean dwell time and number of fractional windows of state 4 both showed significant positive correlations with the Montreal cognitive assessment scores (r = 0.309; r = 0.308, respectively) and the coefficient of variation of dReHo was significantly positively correlated with high-density lipoprotein cholesterol (r = 0.266). The integrated index had an area under the curve of 0.693 (95% confidence interval = 0.592-0.794). DATA CONCLUSION Differences in DFC and dynamic characteristic of spontaneous brain activity associated with T2D-related functional impairment may serve as indicators for predicting symptom progression and assessing cognitive dysfunction. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Linqing Fu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyi Shen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Zhang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sijue Yang
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Congcong Yu
- Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Ge L, Cao Z, Sun Z, Yue X, Rao Y, Zhao K, Qiu W, Li Y, Lu W, Qiu S. Functional connectivity density aberrance in type 2 diabetes mellitus with and without mild cognitive impairment. Front Neurol 2024; 15:1418714. [PMID: 38915801 PMCID: PMC11194391 DOI: 10.3389/fneur.2024.1418714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose The objective of this study was to investigate alterations in functional connectivity density (FCD) mapping and their impact on functional connectivity (FC) among individuals diagnosed with Type 2 diabetes mellitus (T2DM) across different cognitive states. Moreover, the study sought to explore the potential association between aberrant FCD/FC patterns and clinical or cognitive variables. Methods A total of 211 participants were recruited for this study, consisting of 75 healthy controls (HCs), 89 T2DM patients with normal cognitive function (DMCN), and 47 T2DM patients with mild cognitive impairment (DMCI). The study employed FCD analysis to pinpoint brain regions exhibiting significant FCD alterations. Subsequently, these regions showing abnormal FCD served as seeds for FC analysis. Exploratory partial correlations were conducted to explore the relationship between clinical biochemical indicators, neuropsychological test scores, and altered FCD or FC. Results The FCD analysis revealed an increased trend in global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD) within the bilateral supramarginal gyrus (SMG) among individuals with DMCN. Additionally, significant lFCD alterations were observed in the right inferior frontal gyrus and left precuneus when comparing DMCN to HCs and DMCI. Conclusion When comparing individuals with T2DM and healthy controls (HCs), it was revealed that DMCN exhibited significant improvements in FCD. This suggests that the brain may employ specific compensatory mechanisms to maintain normal cognitive function at this stage. Our findings provide a novel perspective on the neural mechanisms involved in cognitive decline associated with T2DM.
Collapse
Affiliation(s)
- Limin Ge
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zidong Cao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhizhong Sun
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomei Yue
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yawen Rao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Kui Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiye Lu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
7
|
Zhai H, Fan W, Xiao Y, Zhu Z, Ding Y, He C, Zhang W, Xu Y, Zhang Y. Convergent and divergent intra- and internetwork connectivity in Parkinson's disease with wearing-off. Neurol Sci 2024; 45:155-169. [PMID: 37578631 PMCID: PMC10761410 DOI: 10.1007/s10072-023-07005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Our study aimed to explore the functional connectivity alterations between cortical nodes of resting-state networks in Parkinson's disease (PD) patients with wearing-off (WO) at different levels. METHODS Resting-state functional magnetic resonance imaging was performed on 36 PD patients without wearing-off (PD-nWO), 30 PD patients with wearing-off (PD-WO), and 35 healthy controls (HCs) to extract functional networks. Integrity, network, and edge levels were calculated for comparison between groups. UPDRS-III, MMSE, MOCA, HAMA, and HAMD scores were collected for further regression analysis. RESULTS We observed significantly reduced connectivity strength in the dorsal attention network and limbic network in the PD-WO group compared with the HC group. The PD-WO group showed a decreased degree of functional connectivity at 12 nodes, including the bilateral orbital part of the superior frontal gyrus, right olfactory cortex, left medial orbital part of the superior frontal gyrus, bilateral gyrus rectus, right parahippocampal gyrus, right thalamus, left Heschl's gyrus, right superior temporal gyrus part of the temporal pole, left middle temporal gyrus part of the temporal pole, and right inferior temporal gyrus. Furthermore, the PD-WO group showed a significantly lower degree of functional connectivity in the left orbital part of the superior frontal gyrus and right gyrus rectus than the PD-nWO group. Internetwork analysis indicated reduced functional connectivity in five pairs of resting-state networks. CONCLUSION Our results demonstrated altered intra- and internetwork connections in PD patients with WO. These findings will facilitate a better understanding of the distinction between the network changes in PD pathophysiology.
Collapse
Affiliation(s)
- Heng Zhai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Province, Guangzhou, 510080, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Wenliang Fan
- Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Yan Xiao
- Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Zhipeng Zhu
- Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Ying Ding
- Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Province, Guangzhou, 510080, China
| | - Wei Zhang
- Department of Radiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Province, Guangzhou, 510080, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Lyu W, Wu Y, Huang H, Chen Y, Tan X, Liang Y, Ma X, Feng Y, Wu J, Kang S, Qiu S, Yap PT. Aberrant dynamic functional network connectivity in type 2 diabetes mellitus individuals. Cogn Neurodyn 2023; 17:1525-1539. [PMID: 37969945 PMCID: PMC10640562 DOI: 10.1007/s11571-022-09899-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Radiology, Jingzhou First People’s Hospital of Hubei Province, Jingzhou, Hubei China
| | - Yue Feng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Jinjian Wu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shangyu Kang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
9
|
Tang X, Chen Y, Tan H, Fang J, Yu D, Chen C, Li X, Hu Z, Ding L, Zhang Y. Micro- and macro-changes in early-stage type 2 diabetes mellitus without cognitive impairment: a diffusion tensor imaging (DTI) and surface-based morphometry (SBM) study. Front Neurol 2023; 14:1115634. [PMID: 37475732 PMCID: PMC10354865 DOI: 10.3389/fneur.2023.1115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/26/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Brain structure and function changes are considered major brain damages in type 2 diabetes mellitus (T2DM), which likely has a close relationship with cognitive impairment. Many previous studies have shown by using brain structural and functional magnetic resonance imaging (MRI) methods that brain white and gray matter are damaged in T2DM, leading to cognitive impairment. Researches neglected patients of T2DM without cognitive dysfunction might also have brain changes. Methods In this study, subjects with early stage T2DM with no cognitive dysfunction were enrolled to detect brain damages using the tract-based spatial statistics analysis (TBSS) method to demonstrate white matter (WM) micro changes and surface-based morphometry (SBM) method to assess cerebral cortex macro changes. Results The whole-brain TBSS analysis revealed that there were no statistically significant changes in fractional anisotropy (FA) and mean diffusivity (MD), but the FA declined in some area of cerebral WM (p < 0.1). The SBM results showed no changes in cortical thickness (CT), cortical volume (CV), surface area (SA), and cortical sulcal curve (CSC) between these two groups, but pial local gyration index (LGI) was decreased in the precuneus (-log10, p = -3.327). Discussion In conclusion, early stage T2DM patients without cognitive impairment had brain micro and macro structural damages, suggesting the potential use of MRI as an imaging marker to detect brain changes in early stage T2DM, which could not be observed and assessed clinically.
Collapse
Affiliation(s)
- Xiangyong Tang
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Yanzi Chen
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Hui Tan
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jinzhi Fang
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Dafei Yu
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Cuimei Chen
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Xiao Li
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Ziqi Hu
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Ling Ding
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| | - Yuzhong Zhang
- Department of Medical Imaging, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
10
|
Zhang D, Liu S, Huang Y, Gao J, Liu W, Liu W, Ai K, Lei X, Zhang X. Altered Functional Connectivity Density in Type 2 Diabetes Mellitus with and without Mild Cognitive Impairment. Brain Sci 2023; 13:brainsci13010144. [PMID: 36672125 PMCID: PMC9856282 DOI: 10.3390/brainsci13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Although disturbed functional connectivity is known to be a factor influencing cognitive impairment, the neuropathological mechanisms underlying the cognitive impairment caused by type 2 diabetes mellitus (T2DM) remain unclear. To characterize the neural mechanisms underlying T2DM-related brain damage, we explored the altered functional architecture patterns in different cognitive states in T2DM patients. Thirty-seven T2DM patients with normal cognitive function (DMCN), 40 T2DM patients with mild cognitive impairment (MCI) (DMCI), and 40 healthy controls underwent neuropsychological assessments and resting-state functional MRI examinations. Functional connectivity density (FCD) analysis was performed, and the relationship between abnormal FCD and clinical/cognitive variables was assessed. The regions showing abnormal FCD in T2DM patients were mainly located in the temporal lobe and cerebellum, but the abnormal functional architecture was more extensive in DMCI patients. Moreover, in comparison with the DMCN group, DMCI patients showed reduced long-range FCD in the left superior temporal gyrus (STG), which was correlated with the Rey auditory verbal learning test score in all T2DM patients. Thus, DMCI patients show functional architecture abnormalities in more brain regions involved in higher-level cognitive function (executive function and auditory memory function), and the left STG may be involved in the neuropathology of auditory memory in T2DM patients. These findings provide some new insights into understanding the neural mechanisms underlying T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Shasha Liu
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Yang Huang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Weirui Liu
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Wanting Liu
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi’an 710000, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
- Correspondence: ; Tel.: +86-13087581380
| |
Collapse
|
11
|
Aranyi SC, Képes Z, Nagy M, Opposits G, Garai I, Káplár M, Emri M. Topological dissimilarities of hierarchical resting networks in type 2 diabetes mellitus and obesity. J Comput Neurosci 2023; 51:71-86. [PMID: 36056275 PMCID: PMC9840595 DOI: 10.1007/s10827-022-00833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is reported to cause widespread changes in brain function, leading to cognitive impairments. Research using resting-state functional magnetic resonance imaging data already aims to understand functional changes in complex brain connectivity systems. However, no previous studies with dynamic causal modelling (DCM) tried to investigate large-scale effective connectivity in diabetes. We aimed to examine the differences in large-scale resting state networks in diabetic and obese patients using combined DCM and graph theory methodologies. With the participation of 70 subjects (43 diabetics, 27 obese), we used cross-spectra DCM to estimate connectivity between 36 regions, subdivided into seven resting networks (RSN) commonly recognized in the literature. We assessed group-wise connectivity of T2DM and obesity, as well as group differences, with parametric empirical Bayes and Bayesian model reduction techniques. We analyzed network connectivity globally, between RSNs, and regionally. We found that average connection strength was higher in T2DM globally and between RSNs, as well. On the network level, the salience network shows stronger total within-network connectivity in diabetes (8.07) than in the obese group (4.02). Regionally, we measured the most significant average decrease in the right middle temporal gyrus (-0.013 Hz) and the right inferior parietal lobule (-0.01 Hz) relative to the obese group. In comparison, connectivity increased most notably in the left anterior prefrontal cortex (0.01 Hz) and the medial dorsal thalamus (0.009 Hz). In conclusion, we find the usage of complex analysis of large-scale networks suitable for diabetes instead of focusing on specific changes in brain function.
Collapse
Affiliation(s)
- Sándor Csaba Aranyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marianna Nagy
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Opposits
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary ,Translational Research Centre, ScanoMed Ltd., Debrecen, Hungary
| | - Miklós Káplár
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Huang Y, Zhang D, Zhang X, Cheng M, Yang Z, Gao J, Tang M, Ai K, Lei X, Zhang X. Altered functional hubs and connectivity in type 2 diabetes mellitus with and without mild cognitive impairment. Front Neurol 2022; 13:1062816. [PMID: 36578308 PMCID: PMC9792165 DOI: 10.3389/fneur.2022.1062816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment in type 2 diabetes mellitus (T2DM) is associated with functional and structural abnormalities of brain networks, especially the damage to hub nodes in networks. This study explored the abnormal hub nodes of brain functional networks in patients with T2DM under different cognitive states. Sixty-five patients with T2DM and 34 healthy controls (HCs) underwent neuropsychological assessment. Then, degree centrality (DC) analysis and seed-based functional connectivity (FC) analysis were performed to identify the abnormal hub nodes and the FC patterns of these hubs in T2DM patients with mild cognitive impairment (MCI) (DMCI group, N = 31) and without MCI (DMCN group, N = 34). Correlation analyzes examined the relationship between abnormal DC and FC and clinical/cognitive variables. Compared with HCs, both T2DM groups showed decreased DC values in the visual cortex, and the T2DM patients with MCI (DMCI) showed more extensive alterations in the right parahippocampal gyrus (PHG), bilateral posterior cingulate cortex (PCC), and left superior frontal gyrus (SFG) regions than T2DM patients with normal cognitive function. Seed-based FC analysis of PHG and PCC nodes showed that functional disconnection mainly occurred in visual and memory connectivity in patients with DMCI. Multiple abnormal DC values correlated with neuropsychological tests in patients with T2DM. In conclusion, this study found that the DMCI group displayed more extensive alterations in hub nodes and FC in vision and memory-related brain regions, suggesting that visual-related regions dysfunctions and disconnection may be involved in the neuropathology of visuospatial function impairment in patients with DMCI.
Collapse
Affiliation(s)
- Yang Huang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhen Yang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China,Xiaoyan Lei
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China,*Correspondence: Xiaoling Zhang
| |
Collapse
|
13
|
Sjuls GS, Specht K. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters. Brain Connect 2022; 12:870-882. [PMID: 35473334 PMCID: PMC9807254 DOI: 10.1089/brain.2021.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Replicability has become an increasing focus within the scientific communities with the ongoing "replication crisis." One area that appears to struggle with unreliable results is resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous factors that contribute to inter-individual variability. Methods: Arterial blood pressure (BP), body mass, hematocrit, and glycated hemoglobin were investigated as potential sources of between-subject variability in rs-fMRI, in healthy individuals. Whether changes in resting-state networks (rs-networks) could be attributed to variability in the blood-oxygen-level-dependent (BOLD)-signal, changes in neuronal activity, or both was of special interest. Within-subject parameters were estimated by utilizing dynamic-causal modeling, as it allows to make inferences on the estimated hemodynamic (BOLD-signal dynamics) and neuronal parameters (effective connectivity) separately. Results: The results of the analyses imply that BP and body mass can cause between-subject and between-group variability in the BOLD-signal and that all the included factors can affect the underlying connectivity. Discussion: Given the results of the current and previous studies, rs-fMRI results appear to be susceptible to a range of factors, which is likely to contribute to the low degree of replicability of these studies. Interestingly, the highest degree of variability seems to appear within the much-studied default mode network and its connections to other networks. Impact statement We believe that thanks to the evidence that we have collected by analyzing the well-controlled data of the Human Connectome Project with dynamic-causal modeling (DCM) and by focusing not only on the effective connectivity, which is the typical way of using DCM, but also by analyzing the underlying hemodynamic parameters, we were able to explore the underlying vascular dependencies in a much broader perspective. Our results challenge the premise for studying changes in the default mode network as a clinical marker of disease, and we add to the growing list of factors that contribute to resting-state network variability.
Collapse
Affiliation(s)
- Guro Stensby Sjuls
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway.,Address correspondence to: Guro Stensby Sjuls, Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Savelieff MG, Chen KS, Elzinga SE, Feldman EL. Diabetes and dementia: Clinical perspective, innovation, knowledge gaps. J Diabetes Complications 2022; 36:108333. [PMID: 36240668 PMCID: PMC10076101 DOI: 10.1016/j.jdiacomp.2022.108333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 10/31/2022]
Abstract
The world faces a pandemic-level prevalence of type 2 diabetes. In parallel with this massive burden of metabolic disease is the growing prevalence of dementia as the population ages. The two health issues are intertwined. The Lancet Commission on dementia prevention, intervention, and care was convened to tackle the growing global concern of dementia by identifying risk factors. It concluded, along with other studies, that diabetes as well as obesity and the metabolic syndrome more broadly, which are frequently comorbid, raise the risk of developing dementia. Type 2 diabetes is a modifiable risk factor; however, it is uncertain whether anti-diabetic drugs mitigate risk of developing dementia. Reasons are manifold but constitute a critical knowledge gap in the field. This review outlines studies of type 2 diabetes on risk of dementia, illustrating key concepts. Moreover, it identifies knowledge gaps, reviews strategies to help fill these gaps, and concludes with a series of recommendations to mitigate risk and advance understanding of type 2 diabetes and dementia.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S Chen
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Lin L, Zhang J, Liu Y, Hao X, Shen J, Yu Y, Xu H, Cong F, Li H, Wu J. Aberrant brain functional networks in type 2 diabetes mellitus: A graph theoretical and support-vector machine approach. Front Hum Neurosci 2022; 16:974094. [PMID: 36310847 PMCID: PMC9597867 DOI: 10.3389/fnhum.2022.974094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is a high risk of cognitive decline and dementia, but the underlying mechanisms are not yet clearly understood. This study aimed to explore the functional connectivity (FC) and topological properties among whole brain networks and correlations with impaired cognition and distinguish T2DM from healthy controls (HC) to identify potential biomarkers for cognition abnormalities. Methods A total of 80 T2DM and 55 well-matched HC were recruited in this study. Subjects’ clinical data, neuropsychological tests and resting-state functional magnetic resonance imaging data were acquired. Whole-brain network FC were mapped, the topological characteristics were analyzed using a graph-theoretic approach, the FC and topological characteristics of the network were compared between T2DM and HC using a general linear model, and correlations between networks and clinical and cognitive characteristics were identified. The support vector machine (SVM) model was used to identify differences between T2DM and HC. Results In patients with T2DM, FC was higher in two core regions [precuneus/posterior cingulated cortex (PCC)_1 and later prefrontal cortex_1] in the default mode network and lower in bilateral superior parietal lobes (within dorsal attention network), and decreased between the right medial frontal cortex and left auditory cortex. The FC of the right frontal medial-left auditory cortex was positively correlated with the Montreal Cognitive Assessment scales and negatively correlated with the blood glucose levels. Long-range connectivity between bilateral auditory cortex was missing in the T2DM. The nodal degree centrality and efficiency of PCC were higher in T2DM than in HC (P < 0.005). The nodal degree centrality in the PCC in the SVM model was 97.56% accurate in distinguishing T2DM patients from HC, demonstrating the reliability of the prediction model. Conclusion Functional abnormalities in the auditory cortex in T2DM may be related to cognitive impairment, such as memory and attention, and nodal degree centrality in the PCC might serve as a potential neuroimaging biomarker to predict and identify T2DM.
Collapse
Affiliation(s)
- Lin Lin
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jindi Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yutong Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Xinyu Hao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yang Yu
- Department of Endocrinology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Huashuai Xu
- Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fengyu Cong
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Huanjie Li
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- Huanjie Li,
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Jianlin Wu,
| |
Collapse
|
16
|
Li ZY, Ma T, Yu Y, Hu B, Han Y, Xie H, Ni MH, Chen ZH, Zhang YM, Huang YX, Li WH, Wang W, Yan LF, Cui GB. Changes of brain function in patients with type 2 diabetes mellitus measured by different analysis methods: A new coordinate-based meta-analysis of neuroimaging. Front Neurol 2022; 13:923310. [PMID: 36090859 PMCID: PMC9449648 DOI: 10.3389/fneur.2022.923310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Neuroimaging meta-analysis identified abnormal neural activity alterations in patients with type 2 diabetes mellitus (T2DM), but there was no consistency or heterogeneity analysis between different brain imaging processing strategies. The aim of this meta-analysis was to determine consistent changes of regional brain functions in T2DM via the indicators obtained by using different post-processing methods. Methods Since the indicators obtained using varied post-processing methods reflect different neurophysiological and pathological characteristics, we further conducted a coordinate-based meta-analysis (CBMA) of the two categories of neuroimaging literature, which were grouped according to similar data processing methods: one group included regional homogeneity (ReHo), independent component analysis (ICA), and degree centrality (DC) studies, while the other group summarized the literature on amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF). Results The final meta-analysis included 23 eligible trials with 27 data sets. Compared with the healthy control group, when neuroimaging studies were combined with ReHo, ICA, and DC measurements, the brain activity of the right Rolandic operculum, right supramarginal gyrus, and right superior temporal gyrus in T2DM patients decreased significantly. When neuroimaging studies were combined with ALFF and CBF measurements, there was no clear evidence of differences in the brain function between T2DM and HCs. Conclusion T2DM patients have a series of spontaneous abnormal brain activities, mainly involving brain regions related to learning, memory, and emotion, which provide early biomarkers for clarifying the mechanism of cognitive impairment and neuropsychiatric disorders in diabetes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=247071, PROSPERO [CRD42021247071].
Collapse
Affiliation(s)
- Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang-Ming Zhang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Xiang Huang
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Hua Li
- Battalion of the Second Regiment of Cadets of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- *Correspondence: Guang-Bin Cui ;
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Lin-Feng Yan
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Wen Wang
| |
Collapse
|
17
|
Wu J, Kang S, Su J, Liu K, Fan L, Ma X, Tan X, Huang H, Feng Y, Chen Y, Lyu W, Zeng L, Qiu S, Hu D. Altered Functional Network Connectivity of Precuneus and Executive Control Networks in Type 2 Diabetes Mellitus Without Cognitive Impairment. Front Neurosci 2022; 16:887713. [PMID: 35833084 PMCID: PMC9271612 DOI: 10.3389/fnins.2022.887713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In epidemiological studies, type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment and dementia, but studies about functional network connectivity in T2DM without cognitive impairment are limited. This study aimed to explore network connectivity alterations that may help enhance our understanding of damage-associated processes in T2DM. MRI data were analyzed from 82 patients with T2DM and 66 normal controls. Clinical, biochemical, and neuropsychological assessments were conducted in parallel with resting-state functional magnetic resonance imaging, and the cognitive status of the patients was assessed using the Montreal Cognitive Assessment-B (MoCA-B) score. Independent component analysis revealed a positive correlation between the salience network and the visual network and a negative connection between the left executive control network and the default mode network in patients with T2DM. The differences in dynamic brain network connectivity were observed in the precuneus, visual, and executive control networks. Internal network connectivity was primarily affected in the thalamus, inferior parietal lobe, and left precuneus. Hemoglobin A1c level, body mass index, MoCA-B score, and grooved pegboard (R) assessments indicated significant differences between the two groups (p < 0.05). Our findings show that key changes in functional connectivity in diabetes occur in the precuneus and executive control networks that evolve before patients develop cognitive deficits. In addition, the current study provides useful information about the role of the thalamus, inferior parietal lobe, and precuneus, which might be potential biomarkers for predicting the clinical progression, assessing the cognitive function, and further understanding the neuropathology of T2DM.
Collapse
Affiliation(s)
- Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyu Kang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xiaomeng Ma
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lyu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shijun Qiu,
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
- Dewen Hu,
| |
Collapse
|
18
|
Wang M, Zhang D, Gao J, Qi F, Su Y, Lei Y, Shao Z, Ai K, Tang M, Zhang X. Abnormal functional connectivity in the right dorsal anterior insula associated with cognitive dysfunction in patients with type 2 diabetes mellitus. Brain Behav 2022; 12:e2553. [PMID: 35543304 PMCID: PMC9226846 DOI: 10.1002/brb3.2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a chronic disease with a high incidence worldwide. T2DM can cause cognitive impairment, but its neuropathological basis is unclear. A variety of neuropsychiatric studies have found that abnormal functional connectivity (FC) in the central executive network (CEN), default-mode network (DMN), and salience network (SN) may be the neuropathological basis of cognitive dysfunction. The right dorsal anterior insula (dAI) is the core SN area. It plays an important role in regulating the CEN and the DMN. However, few studies have explored the relationship between cognitive impairment and FC among the right dAI, CEN, and DMN in patients with T2DM. METHODS Resting-state functional magnetic resonance imaging was used to investigate FC between the right dAI and the CEN and DMN in 44 patients with T2DM and 41 sex-, age-, and education-matched healthy controls, as well as its relationship with clinical/cognitive variables. RESULTS In patients with T2DM, FC between the right dAI and multiple brain regions of the CEN and DMN was generally decreased, and FC strength between the right dAI and the inferior frontal gyrus negatively correlated with trail making test A score (r = -0.421, p = 0.004). CONCLUSIONS Patients with T2DM exhibit abnormal FC between the right dAI and the CEN and DMN. This may be one of the neuromechanisms of cognitive impairment in patients with T2DM. In addition, reduced FC between the right dAI and the right inferior frontal gyrus may be related to abnormal attention regulation in patients with T2DM.
Collapse
Affiliation(s)
- Man Wang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Fei Qi
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yu Su
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yumeng Lei
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhirong Shao
- Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Kai Ai
- Philips Healthcare, Xi'an, Shaanxi, People's Republic of China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| |
Collapse
|
19
|
Tadevosyan NE, Khachunts AS, Gohargani M, Sahakyan AA, Tumanyan AA. Voluntary Attention and Quality of Life in Patients With Type 1 and Type 2 Diabetes Mellitus: Differences in Changes Depending on Disease Type and Duration. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zeng W, Fan W, Kong X, Liu X, Liu L, Cao Z, Zhang X, Yang X, Cheng C, Wu Y, Xu Y, Cao X, Xu Y. Altered Intra- and Inter-Network Connectivity in Drug-Naïve Patients With Early Parkinson’s Disease. Front Aging Neurosci 2022; 14:783634. [PMID: 35237144 PMCID: PMC8884479 DOI: 10.3389/fnagi.2022.783634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of our study was to investigate differences in whole brain connectivity at different levels between drug-naïve individuals with early Parkinson’s disease (PD) and healthy controls (HCs). Resting-state functional magnetic resonance imaging data were collected from 47 patients with early-stage, drug-naïve PD and 50 HCs. Functional brain connectivity was analyzed at the integrity, network, and edge levels; UPDRS-III, MMSE, MOCA, HAMA, and HAMD scores, reflecting the symptoms of PD, were collected for further regression analysis. Compared with age-matched HCs, reduced functional connectivity were mainly observed in the visual (VSN), somatomotor (SMN), limbic (LBN), and deep gray matter networks (DGN) at integrity level [p < 0.05, false discovery rate (FDR) corrected]. Intra-network analysis indicated decreased functional connectivity in DGN, SMN, LBN, and ventral attention networks (VAN). Inter-network analysis indicated reduced functional connectivity in nine pairs of resting-state networks. At the edge level, the LBN was the center of abnormal functional connectivity (p < 0.05, FDR corrected). MOCA score was associated with the intra-network functional connectivity strength (FC) of the DGN, and inter-network FC of the DGN-VAN. HAMA and HAMD scores were associated with the FC of the SMN and DGN, and either the LBN or VAN, respectively. We demonstrated variations in whole brain connections of drug-naïve patients with early PD. Major changes involved the SMN, DGN, LBN, and VSN, which may be relevant to symptoms of early PD. Additionally, our results support PD as a disconnection syndrome.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqin Cao
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xuebing Cao,
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yan Xu,
| |
Collapse
|
21
|
Liu J, Zhu Q, Zhu L, Yang Y, Zhang Y, Liu X, Zhang L, Jia Y, Peng Q, Wang J, Sun P, Fan W, Wang J. Altered brain network in first-episode, drug-naive patients with major depressive disorder. J Affect Disord 2022; 297:1-7. [PMID: 34656674 DOI: 10.1016/j.jad.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging has been widely used for the assessment of brain functional network, yet with inconsistent results. The present study aimed to investigate intranetwork and internetwork connectivity differences between patients with major depressive disorder (MDD) and healthy controls at the integrity, network and edge levels of 8 well-defined resting state networks. METHODS Thirty patients with MDD and sixty-three healthy control subjects were recruited in this study. RESULTS Compared with healthy controls, patients with MDD showed increased node degree in the right amygdala and putamen, increased connectivity strength in the deep gray matter network (DGN) and increased functional connectivity in intranetwork and internetwork. Meanwhile, MDD showed decreased connectivity strength in visual network-DGN pair. LIMITATIONS The sample size was small, and all patients in this study were of Asian ethnicity, especially Han individuals. CONCLUSIONS These findings demonstrate that MDD cases and healthy controls may have divergent intranetwork and internetwork connectivity at an early stage without confounding influence of medication. These differences may underlie cognitive and behavioral alterations in patients with MDD. And these differences may help with the discrimination of patients and healthy people at an early stage of MDD. More studies in the future are warranted to assist in the diagnosis of this burdensome disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yun Yang
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, China
| | - Yiran Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Peng Sun
- MSC Clinical and Technical Solutions, Philips Healthcare, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
22
|
Lei Y, Zhang D, Qi F, Gao J, Tang M, Ai K, Yan X, Lei X, Shao Z, Su Y, Zhang X. Dysfunctional Interaction Between the Dorsal Attention Network and the Default Mode Network in Patients With Type 2 Diabetes Mellitus. Front Hum Neurosci 2022; 15:796386. [PMID: 35002661 PMCID: PMC8741406 DOI: 10.3389/fnhum.2021.796386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of cognitive impairment in patients with type 2 diabetes mellitus (T2DM) is significantly higher than that in the general population, but the exact neurophysiological mechanism underlying this is still unclear. An abnormal change in the intrinsic anticorrelation of the dorsal attention network (DAN) and the default mode network (DMN) is thought to be the mechanism underlying cognitive deficits that occur in many psychiatric disorders, but this association has rarely been tested in T2DM. This study explored the relationship between the interaction patterns of the DAN-DMN and clinical/cognitive variables in patients with T2DM. Forty-four patients with T2DM and 47 sex-, age-, and education-matched healthy controls (HCs) underwent neuropsychological assessments, independent component analysis (ICA), and functional network connection analysis (FNC). The relationship of DAN-DMN anticorrelation with the results of a battery of neuropsychological tests was also assessed. Relative to the HC group, the DMN showed decreased functional connectivity (FC) in the right precuneus, and the DAN showed decreased FC in the left inferior parietal lobule (IPL) in patients with T2DM. Subsequent FNC analysis revealed that, compared with the HC group, the T2DM patients displayed significantly increased inter-network connectivity between the DAN and DMN. These abnormal changes were correlated with the scores of multiple neuropsychological assessments (P < 0.05). These findings indicate abnormal changes in the interaction patterns of the DAN-DMN may be involved in the neuropathology of attention and general cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yumeng Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhirong Shao
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
23
|
Lei H, Hu R, Luo G, Yang T, Shen H, Deng H, Chen C, Zhao H, Liu J. Altered Structural and Functional MRI Connectivity in Type 2 Diabetes Mellitus Related Cognitive Impairment: A Review. Front Hum Neurosci 2022; 15:755017. [PMID: 35069149 PMCID: PMC8770326 DOI: 10.3389/fnhum.2021.755017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment in many domains. There are several pieces of evidence that changes in neuronal neuropathies and metabolism have been observed in T2DM. Structural and functional MRI shows that abnormal connections and synchronization occur in T2DM brain circuits and related networks. Neuroplasticity and energy metabolism appear to be principal effector systems, which may be related to amyloid beta (Aβ) deposition, although there is no unified explanation that includes the complex etiology of T2DM with cognitive impairment. Herein, we assume that cognitive impairment in diabetes may lead to abnormalities in neuroplasticity and energy metabolism in the brain, and those reflected to MRI structural connectivity and functional connectivity, respectively.
Collapse
|
24
|
Li Y, Li M, Feng Y, Ma X, Tan X, Chen Y, Qin C, Huang H, Liang Y, Qiu S. Aberrant Brain Spontaneous Activity and Synchronization in Type 2 Diabetes Mellitus Subjects Without Mild Cognitive Impairment. Front Neurosci 2022; 15:749730. [PMID: 34975372 PMCID: PMC8716545 DOI: 10.3389/fnins.2021.749730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
Objective: We aimed to explore whether the percent amplitude of fluctuation (PerAF) measurement could provide supplementary information for amplitude of low-frequency fluctuation (ALFF) about spontaneous activity alteration in type 2 diabetes mellitus (T2DM) subjects without mild cognitive impairment (MCI). Then we further evaluated the synchronization through the method of functional connectivity (FC) to better demonstrate brain changes in a more comprehensive manner in T2DM. Methods: Thirty T2DM subjects without MCI and thirty well-matched healthy subjects were recruited in this study. Subjects' clinical data, neuropsychological test results, and resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired. Voxel-based group difference comparisons between PerAF and ALFF were conducted. Then, seed-based FC between the recognized brain regions based on PerAF and ALFF and the rest of the whole brain was performed. Results: Compared with healthy group, T2DM group had significantly decreased PerAF in the bilateral middle occipital gyrus and the right calcarine, increased ALFF in the right orbital inferior frontal gyrus and decreased ALFF in the right calcarine. Seed-based FC analysis showed that the right middle occipital gyrus of T2DM subjects exhibited significantly decreased FC with the right caudate nucleus and right putamen. According to the partial correlation analyses, hemoglobin A1c (HbA1c) and immediate memory scores on the auditory verbal learning test (AVLT) were negatively correlated in the T2DM group. However, we found that total cholesterol was positively correlated with symbol digit test (SDT) scores. Conclusion: PerAF and ALFF may have different sensitivities in detecting the abnormal spontaneous brain activity in T2DM subjects. We suggest PerAF values may add supplementary information and indicate additional potential neuronal spontaneous activity in T2DM subjects without MCI, which may provide new insights into the neuroimaging mechanisms underlying early diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingrui Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Yao L, Li M, Sun S, Xu M, Yu S, Zhang Z, Zhang L, Zheng H, Zhong Z, Ma S, Huang H, Wang H. Multimodal brain imaging effect of "Adjust Zang-fu and Arouse Spirit" electroacupuncture on diabetic cognitive impairment: study protocol of a randomized, sham-controlled pilot trial. Trials 2021; 22:847. [PMID: 34823569 PMCID: PMC8620192 DOI: 10.1186/s13063-021-05842-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic cognitive impairment (DCI) is a serious chronic complication caused by diabetes. The pathogenesis of DCI is complex, but brain nerve injury and brain nerve cell apoptosis are important pathological changes. Multimodal brain imaging is one of the most important techniques to study the neural mechanism of the brain. For the clinical treatment of DCI, there is no effective targeted Western medicine and a lack of clear drug intervention methods. Therefore, there is an urgent need to find effective complementary and alternative methods and clarify their mechanism. This research seeks to explore the multimodal brain imaging effect of "Adjust Zang-fu and Arouse Spirit" electroacupuncture for DCI. METHODS This clinical research will be a randomized, sham-controlled pilot trial. Eligible participants will be randomly assigned to the intervention group (n = 60) and the control group (n = 30). The intervention group will be divided into the "Adjust Zang-fu and Arouse Spirit" electroacupuncture group (n = 30) and sham electroacupuncture group (n = 30). All participants will continue to receive routine hypoglycemic therapy. The treatment period is the same in both groups. The primary outcomes include functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), Montreal Cognitive Assessment Scale (MoCA), and Clinical Dementia Rating (CDR). The secondary outcomes include blood glucose and blood lipid tests, Instrumental Activities of Daily Living Scale (IADL), Hachinski Ischemic Scale (HIS), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Outcomes will be assessed at baseline and before and after treatment, and adverse events will be examined. Inter- and intragroup analyses will be performed. DISCUSSION This randomized controlled study, combined with multimodal brain imaging techniques and a clinical evaluation scale, was designed to explore the mechanism of "Adjust Zang-fu and Arouse Spirit" electroacupuncture in improving the central nervous system in DCI. TRIAL REGISTRATION Chinese Clinical Trial Registration ChiCTR2000040268 . Registered on 26 November 2020.
Collapse
Affiliation(s)
- Lin Yao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Mengyuan Li
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Shunan Sun
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Ming Xu
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Shuo Yu
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Ziyang Zhang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Liying Zhang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Haizhu Zheng
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Zhen Zhong
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Shiqi Ma
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Haipeng Huang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China
| | - Hongfeng Wang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Nanguan District, Changchun, Jilin, 130117, China.
| |
Collapse
|
26
|
Deng L, Liu H, Liu H, Liu J, Liu W, Liu Y, Zhang Y, Rong P, Liang Q, Wang W. Concomitant functional impairment and reorganization in the linkage between the cerebellum and default mode network in patients with type 2 diabetes mellitus. Quant Imaging Med Surg 2021; 11:4310-4320. [PMID: 34603986 PMCID: PMC8408787 DOI: 10.21037/qims-21-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increasing evidence shows that the default mode network (DMN) and cerebellum are prone to structural and functional abnormalities in patients with type 2 diabetes mellitus (T2DM). However, the type of change in the functional connection between the DMN and cerebellum is still unknown. METHODS In this study, seed-based functional connectivity (FC) analysis was used to examine the intrinsic FC of the cerebellum-DMN between healthy controls (HCs) and T2DM patients. Pearson correlation analysis was used to explore the relationship between clinical variables and changes in FC. RESULTS Compared with HCs, T2DM patients showed significantly increased FC of the left crus I-left medial superior frontal gyrus, left crus I-right medial superior frontal gyrus, and right crus I-left medial orbitofrontal cortex. Compared with HCs, T2DM patients showed decreased FC of the lobule IX-the right angular gyrus. Moreover, diabetes duration was positively correlated with increased FC of the left crus I-right medial superior frontal gyrus (r=0.438, P=0.007). CONCLUSIONS Concomitant functional impairment and reorganization in the linkage between the cerebellum and DMN in patients with T2DM may be a biomarker of early brain damage that can help us better understand the pathogenesis of cognitive impairment in T2DM.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huanghui Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Chen Y, Zhou Z, Liang Y, Tan X, Li Y, Qin C, Feng Y, Ma X, Mo Z, Xia J, Zhang H, Qiu S, Shen D. Classification of type 2 diabetes mellitus with or without cognitive impairment from healthy controls using high-order functional connectivity. Hum Brain Mapp 2021; 42:4671-4684. [PMID: 34213081 PMCID: PMC8410559 DOI: 10.1002/hbm.25575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment and may progress to dementia. However, the brain functional mechanism of T2DM-related dementia is still less understood. Recent resting-state functional magnetic resonance imaging functional connectivity (FC) studies have proved its potential value in the study of T2DM with cognitive impairment (T2DM-CI). However, they mainly used a mass-univariate statistical analysis that was not suitable to reveal the altered FC "pattern" in T2DM-CI, due to lower sensitivity. In this study, we proposed to use high-order FC to reveal the abnormal connectomics pattern in T2DM-CI with a multivariate, machine learning-based strategy. We also investigated whether such patterns were different between T2DM-CI and T2DM without cognitive impairment (T2DM-noCI) to better understand T2DM-induced cognitive impairment, on 23 T2DM-CI and 27 T2DM-noCI patients, as well as 50 healthy controls (HCs). We first built the large-scale high-order brain networks based on temporal synchronization of the dynamic FC time series among multiple brain region pairs and then used this information to classify the T2DM-CI (as well as T2DM-noCI) from the matched HC based on support vector machine. Our model achieved an accuracy of 79.17% in T2DM-CI versus HC differentiation, but only 59.62% in T2DM-noCI versus HC classification. We found abnormal high-order FC patterns in T2DM-CI compared to HC, which was different from that in T2DM-noCI. Our study indicates that there could be widespread connectivity alterations underlying the T2DM-induced cognitive impairment. The results help to better understand the changes in the central neural system due to T2DM.
Collapse
Affiliation(s)
- Yuna Chen
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Zhen Zhou
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yi Liang
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xin Tan
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Yifan Li
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Chunhong Qin
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Yue Feng
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaomeng Ma
- The First School of Clinical MedicineGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhanhao Mo
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of RadiologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Jing Xia
- Institute of Brain‐Intelligence Technology, Zhangjiang LabShanghaiChina
| | - Han Zhang
- Institute of Brain‐Intelligence Technology, Zhangjiang LabShanghaiChina
| | - Shijun Qiu
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Dinggang Shen
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
- Department of Artificial IntelligenceKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
28
|
Li M, Yao L, Huang H, Zheng H, Cao J, Wang G, Liu Y, Wang H. Study on acupuncture in the treatment of painful diabetic peripheral neuropathy based on rs-fMRI: a protocol for systematic review and meta-analysis. BMJ Open 2021; 11:e055874. [PMID: 34433612 PMCID: PMC8388266 DOI: 10.1136/bmjopen-2021-055874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Studies have shown that acupuncture has significant therapeutic effects on painful diabetic peripheral neuropathy (PDPN) yet the precise mechanism of action underpinning these effects remains controversial. Resting-state functional MRI (rs-fMRI) is an advanced imaging technique that can be used to monitor changes in the activity of the brain, particularly in PDPN. However, the data from several studies remain inconclusive and there is currently no systematic review and meta-analysis for the use of rs-fMRI in PDPN. METHODS AND ANALYSIS In this study, we will select all eligible studies published on or before 30 June 2021. Four English and four Chinese databases will be searched, specifically, PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, WanFang database, China Science Technology Journal Database (VIP) and China Doctor/Master Dissertations Full-text Database. Only clinical trials and the first cycle of a cross-over trial linked to acupuncture for PDPN will be included in the analysis. The main outcomes include the amplitude of low-frequency fluctuation, regional homogeneity, functional connectivity of the brain, bilateral superficial peroneal nerve sensory nerve conduction velocity, bilateral dorsal current perception threshold values and the degree of subjective pain. The secondary outcomes include biochemical indicators, the degree of depression and anxiety and changes in efficiency. The study selection, data extraction and risk of bias assessment will be performed by two investigators. For statistical analyses, Review Manager V.5.4 software will be used. If necessary, heterogeneity testing, data synthesis, and subgroup analysis will be performed. ETHICS AND DISSEMINATION Our systematic review and meta-analysis will be based on published literature for data extraction and will not include the use of individual patient data and so no ethical approval required. PROSPERO REGISTRATION NUMBER CRD42021211644.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lin Yao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiazhen Cao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guan Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanze Liu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
29
|
Xiong Y, Tian T, Fan Y, Yang S, Xiong X, Zhang Q, Zhu W. Diffusion Tensor Imaging Reveals Altered Topological Efficiency of Structural Networks in Type-2 Diabetes Patients With and Without Mild Cognitive Impairment. J Magn Reson Imaging 2021; 55:917-927. [PMID: 34382716 DOI: 10.1002/jmri.27884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Some patients with type 2 diabetes mellitus (T2DM) progress towards mild cognitive impairment (MCI), while some patients can always maintain normal cognitive function. Network topologic alterations at global and nodal levels between T2DM individuals with and without cognitive impairment may underlie the difference. PURPOSE To investigate the topological alterations of the whole-brain white matter (WM) structural connectome in T2DM patients with and without MCI and characterize its relationship with disease severity. STUDY TYPE Cross-sectional and prospective study. SUBJECTS Forty-four (63.6% females) T2DM patients, 22 with mild cognitive impairment (DM-MCI) and 22 with normal cognition (DM-NC), and 34 (58.8% females) healthy controls (HC). FIELD STRENGTH/SEQUENCE 3 T/diffusion tensor imaging. ASSESSMENT Graph theoretical analysis was used to investigate the topological organization of the structural networks. The global topological properties and nodal efficiency were investigated and compared. Relationship between network metrics and clinical measurements was characterized. STATISTICAL TESTS Student's t-test, chi-square test, ANOVA, partial correlation analyses, and multiple comparisons correction. RESULTS The global topological organization of WM networks was significantly disrupted in T2DM patients with cognitive impairment (reduced global and local efficiency and increased shortest path length) but not in those with normal cognition, compared with controls. The DM-MCI group had significantly decreased network efficiency compared with the DM-NC group. Compared with controls, decreased nodal efficiency was detected in three regions in DM-NC group. More regions with decreased nodal efficiency were found in the DM-MCI group. Altered global network properties and nodal efficiency of some regions were correlated with diabetic duration, HbA1c levels, and cognitive assessment scores. DATA CONCLUSION The more disrupted WM connections and weaker organized network are found in DM-MCI patients relative to DM-NC patients and controls. Network analyses provide information for the neuropathology of cognitive decline in T2DM patients. Altered nodal efficiency may act as potential markers for early detection of T2DM-related MCI. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Fan
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Shaolin Yang
- Department of Bioengineering, Psychiatry and Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaoxiao Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Zhang D, Lei Y, Gao J, Qi F, Yan X, Ai K, Zhe X, Cheng M, Wang M, Su Y, Tang M, Zhang X. Right Frontoinsular Cortex: A Potential Imaging Biomarker to Evaluate T2DM-Induced Cognitive Impairment. Front Aging Neurosci 2021; 13:674288. [PMID: 34122050 PMCID: PMC8193040 DOI: 10.3389/fnagi.2021.674288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
Cognitive impairment in type 2 diabetes mellitus (T2DM) is associated with functional and structural abnormalities in the intrinsic brain network. The salience network (SN) is a neurocognitive network that maintains normal cognitive function, but it has received little attention in T2DM. We explored SN changes in patients with T2DM with normal cognitive function (DMCN) and in patients with T2DM with mild cognitive impairment (DMCI). Sixty-five T2DM patients and 31 healthy controls (HCs) underwent a neuropsychological assessment, independent component analysis (ICA), and voxel-based morphometry (VBM) analysis. The ICA extracted the SN for VBM to compare SN functional connectivity (FC) and gray matter (GM) volume (GMV) between groups. A correlation analysis examined the relationship between abnormal FC and GMV and clinical/cognitive variables. Compared with HCs, DMCN patients demonstrated increased FC in the left frontoinsular cortex (FIC), right anterior insula, and putamen, while DMCI patients demonstrated decreased right middle/inferior frontal gyrus FC. Compared with DMCN patients, DMCI patients showed decreased right FIC FC. There was no significant difference in SN GMV in DMCN and DMCI patients compared with HCs. FIC GMV was decreased in the DMCI patients compared with DMCN patients. In addition, right FIC FC and SN GMV positively correlated with Montreal Cognitive Assessment and Mini-Mental State Examination (MMSE) scores. These findings indicate that changes in SN FC, and GMV are complex non-linear processes accompanied by increased cognitive dysfunction in patients with T2DM. The right FIC may be a useful imaging biomarker for supplementary assessment of early cognitive dysfunction in patients with T2DM.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yumeng Lei
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
31
|
QIN DONGXUE, QIAN HAOTIAN, QI SHOULIANG, TENG YUEYANG, WU JIANLIN. ANALYSIS OF RS-FMRI IMAGES CLARIFIES BRAIN ALTERATIONS IN TYPE 2 DIABETES MELLITUS PATIENTS WITH COGNITIVE IMPAIRMENT. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) increases the risk of cognitive impairment (CI); however, the underlying pathophysiological mechanisms are still not well understood. We propose to clarify the altered spontaneous brain activity and functional connectivity implicated in CI of T2DM by analyzing resting state functional MRI (rs-fMRI) data. Totally 22 T2DM patients with cognitive impairment (T2DM-CI) and 31 T2DM patients with normal cognition (T2DM-NC) are included in this study. The whole brain amplitude of low frequency fluctuation (ALFF) value, regional homogeneity (ReHo) value and functional connectivity (FC) analysis using posterior cingulate cortex (PCC) as a seed region are investigated through comparison between groups of T2DM-CI and T2DM-NC. It is found that, compared with T2DM-NC, T2DM-CI demonstrates the decreased ALFF in the regions of precuneus, posterior cingulate gyrus, middle occipital gyrus and left superior/middle frontal gyrus, but the increased ALFF in the left middle frontal gyrus and left superior temporal gyrus. In T2DM-CI, ReHo decreases in bilateral posterior cingulate gyrus, right precuneus, right inferior frontal gyrus, but increases in the middle frontal gyrus and right superior occipital gyrus. Higher FC between PCC and bilateral inferior parietal lobule and right middle/inferior frontal gyrus, lower FC between PCC and bilateral precuneus and right superior frontal gyrus are observed in T2DM-CI group. Compared with T2DM-NC, patients with T2DM-CI have presented altered ALFF, ReHo and FC in and between important brain regions. The observed alterations are thought to be implicated with cognitive impairment of T2DM as the potential imaging pathophysiological basis.
Collapse
Affiliation(s)
- DONGXUE QIN
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P. R. China
| | - HAOTIAN QIAN
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - SHOULIANG QI
- College of Medicine and Biological Information Engineering, Northeastern University, Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, P. R. China
| | - YUEYANG TENG
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - JIANLIN WU
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116023, P. R. China
| |
Collapse
|
32
|
Pongpipat EE, Kennedy KM, Foster CM, Boylan MA, Rodrigue KM. Functional Connectivity Within and Between n-Back Modulated Regions: An Adult Lifespan Psychophysiological Interaction Investigation. Brain Connect 2021; 11:103-118. [PMID: 33317393 PMCID: PMC7984940 DOI: 10.1089/brain.2020.0791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Working memory (WM) and its blood-oxygen-level-dependent-related parametric modulation under load decrease with age. Functional connectivity (FC) generally increases with WM load; however, how aging impacts connectivity and whether this is load-dependent, region-dependent, or associated with cognitive performance is unclear. Methods: This study examines these questions in 170 healthy adults (meanage = 52.99 ± 19.18) who completed functional magnetic resonance imaging scanning during an n-back task (0-, 2-, 3-, and 4-back). The FC was estimated by utilizing a modified generalized psychophysiological interaction approach with seeds from fronto-parietal (FP) and default mode (DM) regions that modulated to n-back difficulty. The FC analyses focused on both connectivity during WM engagement (task vs. control) and connectivity in response to increased WM load (linear slope across conditions). Each analysis utilized within- and between-region FC, predicted by age (linear or quadratic), and its associations with in- and out-of-scanner task performance. Results: Engaging in WM either generally (task vs. control) or as a function of difficulty strengthened integration within- and between-FP and DM regions. Notably, these task-sensitive functional connections were robust to the effects of age. Stronger negative FC between FP and DM regions was also associated with better WM performance in an age-dependent manner, occurring selectively in middle-aged and older adults. Discussion: These results suggest that FC is critical for engaging in cognitively demanding tasks, and its lack of sensitivity to healthy aging may provide a means to maintain cognition across the adult lifespan. Thus, this study highlights the contribution of maintenance in brain function to support working memory processing with aging.
Collapse
Affiliation(s)
- Ekarin E. Pongpipat
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kristen M. Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Chris M. Foster
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Maria A. Boylan
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Karen M. Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
33
|
Sadler JR, Shearrer GE, Burger KS. Alterations in ventral attention network connectivity in individuals with prediabetes. Nutr Neurosci 2021; 24:140-147. [PMID: 31030631 PMCID: PMC6817402 DOI: 10.1080/1028415x.2019.1609646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective: Type 2 diabetes (T2D) is associated with aberrant neural functioning; however, the point at which brain function alterations occur in the progression of T2D is unknown. Here, we tested for differences in functional connectivity in adults with prediabetes and healthy individuals. We hypothesized that prediabetes, defined by glycated hemoglobin (HbA1c) 5.7-6.4% would be associated with disruptions in default mode network (DMN) connectivity. Methods: Fourteen brain networks were tested in 88 adults (prediabetes: n = 44; HbA1c = 5.8±0.2%; healthy: n = 44; HbA1c = 4.7±0.2%) matched for sex, age, and BMI. Results: We did not find differences in DMN connectivity between groups. Individuals with prediabetes showed stronger connectivity between the ventral attention network and (1) a visual network (p FWE = 0.0001); (2) a somatosensory network (p FWE = 0.0027). Individuals with healthy HbA1c showed stronger connectivity of the ventral attention network and (1) cingulo-opercular network (p FWE = 0.002); (2) a thalamic-striatal-visual network (p FWE = 0.001). Conclusions: Relative to individuals with prediabetes, those with a healthy HbA1c showed stronger connectivity between brain networks underlying self-control and attention to stimuli. In contrast, those with prediabetes demonstrated stronger connectivity between brain networks associated with sensory and attention to stimuli. While T2D reported contribute to decreased DMN connectivity, prediabetes is characterized by a shift in functional connectivity from a self-control network towards increasing connectivity in sensory network.
Collapse
Affiliation(s)
- Jennifer R Sadler
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Grace E Shearrer
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Kyle S Burger
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill School of Medicine
| |
Collapse
|
34
|
Qian H, Qin D, Qi S, Teng Y, Li C, Yao Y, Wu J. Less Is Better: Single-Digit Brain Functional Connections Predict T2DM and T2DM-Induced Cognitive Impairment. Front Neurosci 2021; 14:588684. [PMID: 33505236 PMCID: PMC7829678 DOI: 10.3389/fnins.2020.588684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) leads to a higher risk of brain damage and adversely affects cognition. The underlying neural mechanism of T2DM-induced cognitive impairment (T2DM-CI) remains unclear. This study proposes to identify a small number of dysfunctional brain connections as imaging biomarkers, distinguishing between T2DM-CI, T2DM with normal cognition (T2DM-NC), and healthy controls (HC). We have recruited 22 T2DM-CI patients, 31 T2DM-NC patients, and 39 HCs. The structural Magnetic Resonance Imaging (MRI) and resting state fMRI images are acquired, and neuropsychological tests are carried out. Amplitude of low frequency fluctuations (ALFF) is analyzed to identify impaired brain regions implicated with T2DM and T2DM-CI. The functional network is built and all connections connected to impaired brain regions are selected. Subsequently, L1-norm regularized sparse canonical correlation analysis and sparse logistic regression are used to identify discriminative connections and Support Vector Machine is trained to realize three two-category classifications. It is found that single-digit dysfunctional connections predict T2DM and T2DM-CI. For T2DM-CI versus HC, T2DM-NC versus HC, and T2DM-CI versus T2DM-NC, the number of connections is 6, 7, and 5 and the area under curve (AUC) can reach 0.912, 0.901, and 0.861, respectively. The dysfunctional connection is mainly related to Default Model Network (DMN) and long-distance links. The strength of identified connections is significantly different among groups and correlated with cognitive assessment score (p < 0.05). Via ALFF analysis and further feature selection algorithms, a small number of dysfunctional brain connections can be identified to predict T2DM and T2DM-CI. These connections might be the imaging biomarkers of T2DM-CI and targets of intervention.
Collapse
Affiliation(s)
- Haotian Qian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Dongxue Qin
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
35
|
Cheng P, Song S, Li Y, Zhang Y, Yi J, Xu X, Zhou H, Zuo Z. Aberrant Functional Connectivity of the Posterior Cingulate Cortex in Type 2 Diabetes Without Cognitive Impairment and Microvascular Complications. Front Endocrinol (Lausanne) 2021; 12:722861. [PMID: 34759889 PMCID: PMC8573207 DOI: 10.3389/fendo.2021.722861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We aimed to investigate the alterations of brain functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without clinical evidence of cognitive impairment and microvascular complications (woCIMC-T2DM) using resting-state functional MRI (rs-fMRI) and to determine whether its value was correlated with clinical indicators. METHODS A total of 27 T2DM and 26 healthy controls (HCs) were prospectively examined. Cognitive impairment was excluded using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) scales, and microvascular complications were excluded by fundus photography, microalbuminuria, and other indicators. The correlation maps, derived from rs-fMRI with posterior cingulate cortex (PCC) as the seed, were compared between T2DM patients and HCs. Pearson's correlation analysis was performed to determine the relationship between the FC of PCC and the clinical indicators. RESULTS Compared with HC, woCIMC-T2DM patients showed significantly decreased FCs with PCC (PCC-FCs) in the anterior cingulate cortex (ACC), right superior frontal gyrus, right medial frontal gyrus, and right angular gyrus. Meanwhile, increased PCC-FCs was observed in the right superior temporal gyrus and calcarine fissure (CAL). The FC of PCC-ACC was negatively correlated with glycosylated hemoglobin (HbA1c) and diabetes duration, and the FC of PCC-CAL was significantly positively correlated with HbA1c and diabetes duration. CONCLUSION The FC, especially of the PCC with cognitive and visual brain regions, was altered before clinically measurable cognitive impairment and microvascular complications occurred in T2DM patients. In addition, the FC of the PCC with cognitive and visual brain regions was correlated with HbA1c and diabetes duration. This indicates that clinicians should pay attention not only to blood glucose control but also to brain function changes before the occurrence of adverse complications, which is of great significance for the prevention of cognitive dysfunction and visual impairment.
Collapse
Affiliation(s)
- Panpan Cheng
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyan Song
- College of Electrics and Information Engineering, South-Central University for Nationalities, Wuhan, China
| | - Yumin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yi
- Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmei Zhou, ; Zhentao Zuo,
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain and Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongmei Zhou, ; Zhentao Zuo,
| |
Collapse
|
36
|
Cao C, Liu W, Zhang Q, Wu JL, Sun Y, Li D, Fan H, Wang F. Irregular structural networks of gray matter in patients with type 2 diabetes mellitus. Brain Imaging Behav 2020; 14:1477-1486. [PMID: 30977031 DOI: 10.1007/s11682-019-00070-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) induces dementia and cognitive decrements indicating the impairment of the central nervous system. While there is evidence showing abnormalities in white-matter structural networks in T2DM, the topological features of gray matter are still unknown. The study enrolled 30 right-handed T2DM patients and 20 healthy control subjects with matched age, gender, handedness, and education. Graph theoretical analysis of magnetic resonance imaging on gray matter volume was conducted to explore large-scale structural networks of brain. Although retaining small-worldness characteristics, the structural networks of grey matter in the T2DM group exhibited an increased clustering coefficient, prolonged characteristic path, decreased global efficiency, and more vulnerability to random failures or targeted attacks compared with controls. Additionally, the degree of structural networks in both T2DM and control groups was distributed exponentially in truncated power law. Our findings suggest that T2DM disturbed the overall topological features of gray matter networks, which provides a novel insight into the neurobiological mechanisms accounting for the cognitive impairment of T2DM patients.
Collapse
Affiliation(s)
- Chuanlong Cao
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Wanqing Liu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| | - Jian-Lin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| | - Yumei Sun
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Danyang Li
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Hongyu Fan
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, No. 6, Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Feifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Zhang D, Qi F, Gao J, Yan X, Wang Y, Tang M, Zhe X, Cheng M, Wang M, Xie Q, Su Y, Zhang X. Altered Cerebellar-Cerebral Circuits in Patients With Type 2 Diabetes Mellitus. Front Neurosci 2020; 14:571210. [PMID: 33071743 PMCID: PMC7541847 DOI: 10.3389/fnins.2020.571210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The role of the cerebellum in type 2 diabetes mellitus (T2DM) has been receiving increased attention. However, the functional connectivity (FC) between the cerebellar subregions and the cerebral cortex has not been investigated in T2DM. Therefore, the purpose of this study was to investigate cerebellar-cerebral FC and the relationship between FC and clinical/cognitive variables in patients with T2DM. A total of 34 patients with T2DM and 30 healthy controls were recruited for this study to receive a neuropsychological assessment and undergo resting-state FC. We selected four subregions of the cerebellum (bilateral lobules IX, right and left Crus I/II, and left lobule VI) as regions of interest (ROIs) to examine the differences in cerebellar-cerebral circuits in patients with T2DM compared to healthy controls. Correlation analysis was performed to examine the relationship between FC and clinical/cognitive variables in the patients. Compared to healthy controls, patients with T2DM showed significantly decreased cerebellar-cerebral FC in the default-mode network (DMN), executive control network (ECN), and visuospatial network (VSN). In the T2DM group, the FC between the left cerebellar lobule VI and the right precuneus was negatively correlated with the Trail Making Test A (TMT-A) score (r = −0.430, P = 0.013), after a Bonferroni correction. In conclusion, patients with T2DM have altered FC between the cerebellar subregions and the cerebral networks involved in cognitive and emotional processing. This suggests that a range of cerebellar-cerebral circuits may be involved in the neuropathology of T2DM cognitive dysfunction.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yarong Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Qingming Xie
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
38
|
Li Y, Liang Y, Tan X, Chen Y, Yang J, Zeng H, Qin C, Feng Y, Ma X, Qiu S. Altered Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Without Mild Cognitive Impairment. Front Neurol 2020; 11:1016. [PMID: 33071928 PMCID: PMC7533640 DOI: 10.3389/fneur.2020.01016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM)-related cognitive decline is associated with neuroimaging changes. However, only a few studies have focused on early functional alteration in T2DM prior to mild cognitive impairment (MCI). This study aimed to investigate the early changes of global connectivity patterns in T2DM by using a resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods: Thirty-four T2DM subjects and 38 age-, sex-, and education-matched healthy controls (HCs) underwent rs-fMRI in a 3T MRI scanner. Degree centrality (DC) was used to identify the functional hubs of the whole brain in T2DM without MCI. Then the functional connectivity (FC) between hubs and the rest of the brain was assessed by using the hub-based approach. Results: Compared with HCs, T2DM subjects showed increased DC in the right cerebellum lobules III-V. Hub-based FC analysis found that the right cerebellum lobules III-V of T2DM subjects had increased FC with the right cerebellum crus II and lobule VI, the right temporal inferior/middle gyrus, and the right hippocampus. Conclusions: Increased DC in the right cerebellum regions III-V, as well as increased FC within cerebellar regions and ipsilateral cerebrocerebellar regions, may indicate an important pathophysiological mechanism for compensation in T2DM without MCI.
Collapse
Affiliation(s)
- Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinquan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Cardiometabolic determinants of early and advanced brain alterations: Insights from conventional and novel MRI techniques. Neurosci Biobehav Rev 2020; 115:308-320. [DOI: 10.1016/j.neubiorev.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
|
40
|
Zhang D, Gao J, Yan X, Tang M, Zhe X, Cheng M, Chen W, Zhang X. Altered functional connectivity of brain regions based on a meta-analysis in patients with T2DM: A resting-state fMRI study. Brain Behav 2020; 10:e01725. [PMID: 32558376 PMCID: PMC7428490 DOI: 10.1002/brb3.1725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To explore the neural mechanisms of brain impairment in type 2 diabetes mellitus (T2DM), abnormal changes to the functional connections between brain regions in the resting state were investigated based on a meta-analysis. METHODS Resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessment were performed on 38 patients with T2DM and 33 healthy controls (HCs). Functional connectivity between regions based on a meta-analysis and other voxels in the brain was calculated and compared between the two groups using a two-sample t test. A correlation analysis was conducted between clinical/cognitive variables and functional connection values from the regions with significant differences in the above comparison. RESULTS Patients in the T2DM group showed a significantly decreased functional connection between the right posterior cerebellum and the right middle/inferior occipital gyrus, left middle temporal gyrus, left superior frontal gyrus, left middle frontal gyrus, left insula, left precuneus, and right paracentral lobule/left precuneus when compared with HC group. The functional connection values between the right insula and left medial frontal gyrus, left supplementary motor area, and between the left lingual gyrus and right middle/inferior occipital gyrus in patients with T2DM were significantly decreased. Moreover, the functional connection values between the right posterior cerebellum and left middle frontal gyrus, and between the right posterior cerebellum and left precuneus were negatively correlated with HbA1c in the T2DM group (r = -.356, p = .03; r = -.334, p = .043). CONCLUSIONS Our study showed a wide range of cerebellar-cerebral circuit abnormalities in patients with T2DM, which provides a new direction to investigate the neuropathological mechanisms of T2DM from the perspective of the cerebellum.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | | | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
41
|
Li W, Wen W, Chen X, Ni B, Lin X, Fan W, The Alzheimer's Disease Neuroimaging Initiative. Functional Evolving Patterns of Cortical Networks in Progression of Alzheimer's Disease: A Graph-Based Resting-State fMRI Study. Neural Plast 2020; 2020:7839536. [PMID: 32684923 PMCID: PMC7341396 DOI: 10.1155/2020/7839536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
AD is a common chronic progressive neurodegenerative disorder. However, the understanding of the dynamic longitudinal change of the brain in the progression of AD is still rough and sometimes conflicting. This paper analyzed the brain networks of healthy people and patients at different stages (EMCI, LMCI, and AD). The results showed that in global network properties, most differences only existed between healthy people and patients, and few were discovered between patients at different stages. However, nearly all subnetwork properties showed significant differences between patients at different stages. Moreover, the most interesting result was that we found two different functional evolving patterns of cortical networks in progression of AD, named 'temperature inversion' and "monotonous decline," but not the same monotonous decline trend as the external functional assessment observed in the course of disease progression. We suppose that those subnetworks, showing the same functional evolving pattern in AD progression, may have something the same in work mechanism in nature. And the subnetworks with 'temperature inversion' evolving pattern may play a special role in the development of AD.
Collapse
Affiliation(s)
- Wei Li
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen Wen
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Chen
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - BingJie Ni
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuefeng Lin
- The School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
- Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | | |
Collapse
|
42
|
Tan X, Liang Y, Zeng H, Qin C, Li Y, Yang J, Qiu S. Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment. Brain Imaging Behav 2020; 13:1699-1707. [PMID: 30612339 DOI: 10.1007/s11682-018-0017-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The posterior cingulate cortex (PCC) has been suggested to be a cortical hub of the default mode network (DMN). Our goal in the current study was to determine whether there were alterations in the PCC's functional connectivity (FC) with whole brain regions in type 2 diabetes mellitus (T2DM) and to determine their relationships with cognitive dysfunction. In this study, the FC of the PCC was characterized by using resting-state functional MRI and a seed-based whole-brain correlation method in 24 T2DM patients and compared with 24 well-matched healthy controls. Spearman correlation analysis was performed to determine the relationships between the FC of the PCC and cognitive dysfunction. T2DM was associated with a significantly decreased FC of the PCC to widespread brain regions (p < 0.05, corrected for AlphaSim). We also found that the FC of the PCC in these brain regions was positively correlated with several neuropsychological test scores, such as the FC to the right angular gyrus (AnG) and the bilateral middle temporal gyrus (MTG) with the Auditory Verbal Learning Test (AVLT) and the FC to the bilateral inferior frontal gyrus (IFG) with the digit span test (DST). Moreover, the FCs of the PCC to the right superior parietal lobule (SPL), bilateral temporal lobes and left cerebrum were detected as negatively correlated with the Trail Making Test (TMT). No such correlations were detected in healthy controls. The present study provides useful information about the effect of the FC of the PCC on the underlying neuropathological process of T2DM-related cognitive dysfunction and may provide supporting evidence for further molecular biology studies.
Collapse
Affiliation(s)
- Xin Tan
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi Liang
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Zeng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunhong Qin
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yifan Li
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinquan Yang
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Qiu
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Zhang H, Giannakopoulos P, Haller S, Lee SW, Qiu S, Shen D. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment. Neuroinformatics 2020; 17:547-561. [PMID: 30739281 DOI: 10.1007/s12021-018-9413-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Little is known about the high-order interactions among brain regions measured by the similarity of higher-order features (other than the raw blood-oxygen-level-dependent signals) which can characterize higher-level brain functional connectivity (FC). Previously, we proposed FC topographical profile-based high-order FC (HOFC) and found that this metric could provide supplementary information to traditional FC for early Alzheimer's disease (AD) detection. However, whether such findings apply to network-level brain functional integration is unknown. In this paper, we propose an extended HOFC method, termed inter-network high-order FC (IN-HOFC), as a useful complement to the traditional inter-network FC methods, for characterizing more complex organizations among the large-scale brain networks. In the IN-HOFC, both network definition and inter-network FC are defined in a high-order manner. To test whether IN-HOFC is more sensitive to cognition decline due to brain diseases than traditional inter-network FC, 77 mild cognitive impairments (MCIs) and 89 controls are compared among the conventional methods and our IN-HOFC. The result shows that IN-HOFCs among three temporal lobe-related high-order networks are dampened in MCIs. The impairment of IN-HOFC is especially found between the anterior and posterior medial temporal lobe and could be a potential MCI biomarker at the network level. The competing network-level low-order FC methods, however, either revealing less or failing to detect any group difference. This work demonstrates the biological meaning and potential diagnostic value of the IN-HOFC in clinical neuroscience studies.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, CB#7513, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | | | - Sven Haller
- Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Carouge, Switzerland
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, 510405, Guangdong, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, CB#7513, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
44
|
Ferris JK, Inglis JT, Madden KM, Boyd LA. Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes 2020; 69:3-11. [PMID: 31862690 DOI: 10.2337/db19-0321] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/20/2019] [Indexed: 11/13/2022]
Abstract
Diabetes is associated with a loss of somatosensory and motor function, leading to impairments in gait, balance, and manual dexterity. Data-driven neuroimaging studies frequently report a negative impact of diabetes on sensorimotor regions in the brain; however, relationships with sensorimotor behavior are rarely considered. The goal of this review is to consider existing diabetes neuroimaging evidence through the lens of sensorimotor neuroscience. We review evidence for diabetes-related disruptions to three critical circuits for movement control: the cerebral cortex, the cerebellum, and the basal ganglia. In addition, we discuss how central nervous system (CNS) degeneration might interact with the loss of sensory feedback from the limbs due to peripheral neuropathy to result in motor impairments in individuals with diabetes. We argue that our understanding of movement impairments in individuals with diabetes is incomplete without the consideration of disease complications in both the central and peripheral nervous systems. Neuroimaging evidence for disrupted central sensorimotor circuitry suggests that there may be unrecognized behavioral impairments in individuals with diabetes. Applying knowledge from the existing literature on CNS contributions to motor control and motor learning in healthy individuals provides a framework for hypothesis generation for future research on this topic.
Collapse
Affiliation(s)
- Jennifer K Ferris
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - J Timothy Inglis
- Department of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, Canada
| | - Kenneth M Madden
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Liu Z, Liu J, Yuan H, Liu T, Cui X, Tang Z, Du Y, Wang M, Lin Y, Tian J. Identification of Cognitive Dysfunction in Patients with T2DM Using Whole Brain Functional Connectivity. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:441-452. [PMID: 31786312 PMCID: PMC6943769 DOI: 10.1016/j.gpb.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
Abstract
Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism of these cognitive impairments remains unclear. We aimed to investigate the correlation between whole brain resting state functional connections (RSFCs) and the cognitive status in 95 patients with T2DM. We constructed an elastic net model to estimate the Montreal Cognitive Assessment (MoCA) scores, which served as an index of the cognitive status of the patients, and to select the RSFCs for further prediction. Subsequently, we utilized a machine learning technique to evaluate the discriminative ability of the connectivity pattern associated with the selected RSFCs. The estimated and chronological MoCA scores were significantly correlated with R = 0.81 and the mean absolute error (MAE) = 1.20. Additionally, cognitive impairments of patients with T2DM can be identified using the RSFC pattern with classification accuracy of 90.54% and the area under the receiver operating characteristic (ROC) curve (AUC) of 0.9737. This connectivity pattern not only included the connections between regions within the default mode network (DMN), but also the functional connectivity between the task-positive networks and the DMN, as well as those within the task-positive networks. The results suggest that an RSFC pattern could be regarded as a potential biomarker to identify the cognitive status of patients with T2DM.
Collapse
Affiliation(s)
- Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jiangang Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China
| | - Huijuan Yuan
- Department of Endocrinology and Metabolism, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Taiyuan Liu
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingwei Cui
- Cooperative Innovation Center for Internet Healthcare & School of Software, Zhengzhou University, Zhengzhou 450003, China
| | - Zhenchao Tang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Weihai 264209, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Yusong Lin
- Cooperative Innovation Center for Internet Healthcare & School of Software, Zhengzhou University, Zhengzhou 450003, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China.
| |
Collapse
|
46
|
Liu H, Liu J, Liu H, Peng L, Feng Z, Rong P, Shen H, Hu D, Zeng LL, Wang W. Pathological Between-Network Positive Connectivity in Early Type 2 Diabetes Patients Without Cerebral Small Vessel Diseases. Front Neurosci 2019; 13:731. [PMID: 31379485 PMCID: PMC6646694 DOI: 10.3389/fnins.2019.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Previous neuroimaging studies have demonstrated type 2 diabetes (T2D)-related brain structural and functional changes are partly associated with cognitive decline. However, less is known about the underlying mechanisms. Chronic hyperglycemia and microvascular complications are the two of most important risk factors related to cognitive decline in diabetes. Cerebral small vessel diseases (CSVDs), such as those defined by lacunar infarcts, white matter hyperintensities (WMHs) and microhemorrhages, are also associated with an increased risk of cognitive decline and dementia. In this study, we examined brain magnetic resonance imaging (MRI) changes in patients in the early stages of T2D without CSVDs to focus on glucose metabolism factors and to avoid the interference of vascular risk factors on T2D-related brain damage. Methods T2D patients with disease durations of less than 5 years and without any signs of CSVDs (n = 34) were compared with healthy control subjects (n = 24). Whole-brain region-based functional connectivity was analyzed with network-based statistics (NBS), and brain surface morphology was examined. In addition, the Montreal Cognitive Assessment (MoCA) was conducted for all subjects. Results At the whole-brain region-based functional connectivity level, thirty-three functional connectivities were changed in T2D patients relative to those in controls, mostly manifested as pathological between-network positive connectivity and located mainly between the sensory-motor network and auditory network. Some of the connectivities were positively correlated with blood glucose level, insulin resistance, and MoCA scores in the T2D group. The network-level analysis showed between-network hyperconnectivity in T2D patients, but no significant changes in within-network connectivity. In addition, there were no significant differences in MoCA scores or brain morphology measures, including cortical thickness, surface area, mean curvature, and gray/white matter volume, between the two groups. Conclusion The findings indicate that pathological between-network positive connectivity occurs in the early stages of T2D without CSVDs. The abnormal connectivity may indicate that the original balance of mutual antagonistic/cooperative relationships between the networks is broken, which may be a neuroimaging basis for predicting cognitive decline in early T2D patients.
Collapse
Affiliation(s)
- Huanghui Liu
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huasheng Liu
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Limin Peng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
| | - Zhichao Feng
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Rong
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Shen
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
| | - Dewen Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
| | - Ling-Li Zeng
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, China
| | - Wei Wang
- Department of Medical Imaging, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
47
|
Fang F, Lai MY, Huang JJ, Kang M, Ma MM, Li KA, Lian JG, Wang Z, Yin DZ, Wang YF. Compensatory Hippocampal Connectivity in Young Adults With Early-Stage Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:3025-3038. [PMID: 30817818 DOI: 10.1210/jc.2018-02319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/25/2019] [Indexed: 01/15/2023]
Abstract
CONTEXT Middle-aged to elderly patients with type 2 diabetes mellitus (T2DM) exhibit reduced functional connectivity and brain atrophy underlying cognitive decrements; however, little is known about brain abnormalities in young patients. OBJECTIVE To detect brain anatomical and functional changes in young patients with T2DM during the early disease stage. DESIGN Case-control study. SETTING Tertiary referral hospital. PARTICIPANTS Thirty-five young patients with T2DM (<40 years of age) with no detectable microangiopathy and 32 nondiabetic control subjects. INTERVENTION None. MAIN OUTCOME MEASURES Subjects underwent neuropsychological assessments and structural and resting-state functional MRI. Both voxel-based morphometry and resting-state functional connectivity analyses were performed. RESULTS No significant differences in brain volume were observed between the patients with T2DM and the controls after controlling for age, sex, education, and body mass index. Compared with the controls, the patients showed greater connectivity of the left hippocampus with the left inferior frontal gyrus and the left inferior parietal lobule. Moreover, the enhanced functional connectivity of left hippocampus with the left inferior frontal gyrus significantly correlated with disease severity (urinary albumin-to-creatinine ratio) (r = 0.613, P < 0.001) and executive function (completion time of Stroop Color and Word Test) (r = -0.461, P = 0.005) after false discovery rate correction. CONCLUSIONS Our findings suggest an adaptive compensation of brain function to counteract the insidious cognitive decrements during the early stage of T2DM. Additionally, the functional alterations occurring before changes in brain structure and peripheral microangiopathy might serve as early biomarkers related to cognitive decrements.
Collapse
Affiliation(s)
- Fang Fang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Yu Lai
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Jing Huang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Kang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Ma
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kang-An Li
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Ge Lian
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Da-Zhi Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Fan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Yu Y, Yan LF, Sun Q, Hu B, Zhang J, Yang Y, Dai YJ, Cui WX, Xiu SJ, Hu YC, Heng CN, Liu QQ, Hou JF, Pan YY, Zhai LH, Han TH, Cui GB, Wang W. Neurovascular decoupling in type 2 diabetes mellitus without mild cognitive impairment: Potential biomarker for early cognitive impairment. Neuroimage 2019; 200:644-658. [PMID: 31252056 DOI: 10.1016/j.neuroimage.2019.06.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant risk factor for mild cognitive impairment (MCI) and the acceleration of MCI to dementia. The high glucose level induce disturbance of neurovascular (NV) coupling is suggested to be one potential mechanism, however, the neuroimaging evidence is still lacking. To assess the NV decoupling pattern in early diabetic status, 33 T2DM without MCI patients and 33 healthy control subjects were prospectively enrolled. Then, they underwent resting state functional MRI and arterial spin labeling imaging to explore the hub-based networks and to estimate the coupling of voxel-wise cerebral blood flow (CBF)-degree centrality (DC), CBF-mean amplitude of low-frequency fluctuation (mALFF) and CBF- mean regional homogeneity (mReHo). We further evaluated the relationship between NV coupling pattern and cognitive performance (false discovery rate corrected). T2DM without MCI patients displayed significant decrease in the absolute CBF-mALFF, CBF-mReHo coupling of CBFnetwork and in the CBF-DC coupling of DCnetwork. Besides, networks which involved CBF and DC hubs mainly located in the default mode network (DMN). Furthermore, less severe disease and better cognitive performance in T2DM patients were significantly correlated with higher coupling of CBF-DC, CBF-mALFF or CBF-mReHo, especially for the cognitive dimensions of general function and executive function. Thus, coupling of CBF-DC, CBF-mALFF and CBF-mReHo may serve as promising indicators to reflect NV coupling state and to explain the T2DM related early cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Qian Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Bo Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Jie Dai
- Department of Clinical Nutrition, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), 15 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Wu-Xun Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Si-Jie Xiu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Chun-Ni Heng
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Qing-Quan Liu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Jun-Feng Hou
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Yu-Yun Pan
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Liang-Hao Zhai
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Teng-Hui Han
- Student Brigade, Fourth Military Medical University (Air Force Medical University), 169 Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
49
|
Abstract
Neurodegeneration is defined as the progressive loss of structure or function of the neurons. As the nature of degenerative cell loss is currently not clear, there is no specific molecular marker to measure neurodegeneration. Therefore, researchers have been using apoptotic markers to measure neurodegeneration. However, neurodegeneration is completely different from apoptosis by morphology and time course. Lacking specific molecular marker has been the major hindrance in research of neurodegenerative disorders. Alzheimer's disease (AD) is the most common neurodegenerative disorder, and tau accumulation forming neurofibrillary tangles is a hallmark pathology in the AD brains, suggesting that tau must play a critical role in AD neurodegeneration. Here we review part of our published papers on tau-related studies, and share our thoughts on the nature of tau-associated neurodegeneration in AD.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and The Collaborative Innovation Center for Brain Science, Key Laboratory of Hubei Province and Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Xiong Y, Zhang S, Shi J, Fan Y, Zhang Q, Zhu W. Application of neurite orientation dispersion and density imaging to characterize brain microstructural abnormalities in type-2 diabetics with mild cognitive impairment. J Magn Reson Imaging 2019; 50:889-898. [PMID: 30779402 DOI: 10.1002/jmri.26687] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffusion-tensor-imaging (DTI) is sensitive in detecting white matter changes in type-2 diabetes mellitus (T2DM). However, DTI indices can be affected by either neurite density or spatial variation. A novel diffusion MRI technique, termed neurite orientation dispersion and density imaging (NODDI), can provide distinct indices of fiber density and dispersion. PURPOSE To characterize brain microstructural alterations in T2DM patients with mild cognitive impairment (MCI) using the NODDI model. STUDY TYPE Cross-sectional. SUBJECTS Twenty T2DM patients with (DM-MCI group), 18 age- and gender-matched T2DM patients with normal cognition (DM-NC group), and 28 euglycemic healthy controls (HC). FIELD STRENGTH/SEQUENCE 3T/NODDI. ASSESSMENT Diffusion data were analyzed using tract-based-spatial-statistics (TBSS) analysis in white matter and voxel-based analysis in both white and gray matter. NODDI indices, including intracellular volume fraction (Vic) and orientation dispersion index (ODI), were estimated from multiple regions and compared among these groups. STATISTICAL TESTS Differences between groups were compared by Student's t-test, Pearson chi-square test, or analysis of variance when appropriate. Correlation analyses were performed to investigate the relationship between NODDI variables and clinical measurements. RESULTS Whole-brain TBSS revealed that 2.29% and 2.02% of the white matter regions exhibited decreased fractional anisotropy and Vic, respectively, between the DM-NC and HC, while considerably larger white matter areas showed decreased fractional anisotropy (38.38%) and Vic (34.64%) between the DM-MCI and HC (Student's t-test, P < 0.05). However, the angular variation of neurites, characterized by ODI, exhibited very little (0.1%, P < 0.05) or no difference (P > 0.05) between either the DM-MCI or DM-NC groups and HC. Decreased Vic values in the genu of the corpus callosum (R = 0.580, 0.551 and 0.586, P < 0.01) and thalamus (R = 0.570, 0.616, and 0.595, P < 0.05) correlated with glycosylated hemoglobin A1c level, disease duration, and neuropsychological scores, respectively. DATA CONCLUSION T2DM patients with cognitive decline had reduced Vic, which indicated decreased density of axons and dendrites. NODDI might be able to help probe microstructural changes in white and gray matter and provide information on diabetic encephalopathy, including those with cognitive impairment. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:889-898.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuoqi Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Qiang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|