1
|
Morey-León G, Mejía-Ponce PM, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Fresia P, Berná L. Global epidemiology of Mycobacterium tuberculosis lineage 4 insights from Ecuadorian genomic data. Sci Rep 2025; 15:3823. [PMID: 39885182 PMCID: PMC11782492 DOI: 10.1038/s41598-025-86079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Tuberculosis is a global public health concern, and understanding Mycobacterium tuberculosis transmission routes and genetic diversity of M. tuberculosis is crucial for outbreak control. This study aimed to explore the genomic epidemiology and genetic diversity of M. tuberculosis in Ecuador by analyzing 88 local isolates and 415 public genomes from 19 countries within the Euro-American lineage (L4). Our results revealed significant genomic diversity among the isolates, particularly in the genes related to protein processing, carbohydrate metabolism, lipid metabolism, and xenobiotic biodegradation and metabolism. The population structure analysis showed that sub-lineages 4.3.2/3 (35.4%), 4.1.2.1 (22.7%), 4.4.1 (12.7%), and 4.1.1. (10.7%) were the most prevalent. Phylogenetic and transmission network analyses suggest that these isolates circulating within Ecuador share genetic ties with isolates from other continents, implying historical and ongoing intercontinental transmission events. Our findings underscore the importance of integrating genomic data into public health strategies for tuberculosis control and suggest that enhanced genomic surveillance is essential for understanding and mitigating the global spread of M. tuberculosis. This study provides a comprehensive genomic framework for future epidemiological investigations and control measures targeting M. tuberculosis L4 in Ecuador.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
- Universidad de la República, Montevideo, Uruguay.
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Paulina M Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Fernández-Cadena
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Forshaw TRJ, Moldow B. Eales' Disease in Inuit: A Short Report and Clinical Update. Int Med Case Rep J 2025; 18:157-161. [PMID: 39871860 PMCID: PMC11771164 DOI: 10.2147/imcrj.s505170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025] Open
Abstract
Purpose We report a case of Eales disease in Inuit and reflect on advances in telemedicine and treatment of retinal disease since the first report of Eales' disease in Greenlandic Inuit was published. Patients and Methods A 41-year-old Inuit female complaining of blurred vision was referred to our eye department. There had been no sign of diabetic retinopathy during diabetic eye screening and the patient had been treated for tuberculosis in 2010. Telemedical assessment was suspicious for vitritis or vitreous hemorrhage in the right eye, and the patient was flown from Greenland to Denmark, where examination revealed mild vitritis in the right eye, vitreous hemorrhage in the left eye and retinal neovascularization in both eyes. Fundus fluorescein angiography showed vessel leakage and areas of retinal non-perfusion. There was left epiretinal membrane with retinal thickening on macular optical coherence tomography. Results Based on the patient's clinical findings and history of tuberculosis infection, a diagnosis of Eales' disease was made. The left eye was treated with pars plana vitrectomy with epiretinal membrane peeling, endodiathermy and endolaser. The right eye was treated in outpatients with sectoral laser photocoagulation. At seven weeks' follow-up, the visual acuity had improved from 6/12 to 6/6 (right eye) and from 6/36 to 6/7.5 (left eye). Conclusion The prevalence of tuberculosis in Greenland is very high and it is recommended that clinicians remain alert to the possibility of Eales' disease, as beneficial visual outcomes are associated with prompt diagnosis and treatment. Telemedicine allows more frequent follow-up of Greenlander patients.
Collapse
Affiliation(s)
- Thomas Richard Johansen Forshaw
- Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Ophthalmology, Sygehus Sønderjylland, Sønderborg, Denmark
| | - Birgitte Moldow
- Department of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Sadovska D, Ozere I, Pole I, Ķimsis J, Vaivode A, Vīksna A, Norvaiša I, Bogdanova I, Ulanova V, Čapligina V, Bandere D, Ranka R. Unraveling tuberculosis patient cluster transmission chains: integrating WGS-based network with clinical and epidemiological insights. Front Public Health 2024; 12:1378426. [PMID: 38832230 PMCID: PMC11144917 DOI: 10.3389/fpubh.2024.1378426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Tuberculosis remains a global health threat, and the World Health Organization reports a limited reduction in disease incidence rates, including both new and relapse cases. Therefore, studies targeting tuberculosis transmission chains and recurrent episodes are crucial for developing the most effective control measures. Herein, multiple tuberculosis clusters were retrospectively investigated by integrating patients' epidemiological and clinical information with median-joining networks recreated based on whole genome sequencing (WGS) data of Mycobacterium tuberculosis isolates. Methods Epidemiologically linked tuberculosis patient clusters were identified during the source case investigation for pediatric tuberculosis patients. Only M. tuberculosis isolate DNA samples with previously determined spoligotypes identical within clusters were subjected to WGS and further median-joining network recreation. Relevant clinical and epidemiological data were obtained from patient medical records. Results We investigated 18 clusters comprising 100 active tuberculosis patients 29 of whom were children at the time of diagnosis; nine patients experienced recurrent episodes. M. tuberculosis isolates of studied clusters belonged to Lineages 2 (sub-lineage 2.2.1) and 4 (sub-lineages 4.3.3, 4.1.2.1, 4.8, and 4.2.1), while sub-lineage 4.3.3 (LAM) was the most abundant. Isolates of six clusters were drug-resistant. Within clusters, the maximum genetic distance between closely related isolates was only 5-11 single nucleotide variants (SNVs). Recreated median-joining networks, integrated with patients' diagnoses, specimen collection dates, sputum smear microscopy, and epidemiological investigation results indicated transmission directions within clusters and long periods of latent infection. It also facilitated the identification of potential infection sources for pediatric patients and recurrent active tuberculosis episodes refuting the reactivation possibility despite the small genetic distance of ≤5 SNVs between isolates. However, unidentified active tuberculosis cases within the cluster, the variable mycobacterial mutation rate in dormant and active states, and low M. tuberculosis genetic variability inferred precise transmission chain delineation. In some cases, heterozygous SNVs with an allelic frequency of 10-73% proved valuable in identifying direct transmission events. Conclusion The complex approach of integrating tuberculosis cluster WGS-data-based median-joining networks with relevant epidemiological and clinical data proved valuable in delineating epidemiologically linked patient transmission chains and deciphering causes of recurrent tuberculosis episodes within clusters.
Collapse
Affiliation(s)
- Darja Sadovska
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Ozere
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
- Department of Infectology, Riga Stradiņš University, Riga, Latvia
| | - Ilva Pole
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Jānis Ķimsis
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Annija Vaivode
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Anda Vīksna
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
- Department of Infectology, Riga Stradiņš University, Riga, Latvia
| | - Inga Norvaiša
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Ineta Bogdanova
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Viktorija Ulanova
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Valentīna Čapligina
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Renāte Ranka
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
4
|
Żukowska L, Zygała-Pytlos D, Struś K, Zabost A, Kozińska M, Augustynowicz-Kopeć E, Dziadek J, Minias A. An overview of tuberculosis outbreaks reported in the years 2011-2020. BMC Infect Dis 2023; 23:253. [PMID: 37081448 PMCID: PMC10116450 DOI: 10.1186/s12879-023-08197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In many countries tuberculosis (TB) remains a highly prevalent disease and a major contributor to infectious disease mortality. The fight against TB requires surveillance of the population of strains circulating worldwide and the analysis of the prevalence of certain strains in populations. Nowadays, whole genome sequencing (WGS) allows for accurate tracking of TB transmission. Currently, there is a lack of a comprehensive summary of the characteristics of TB outbreaks. METHODS We systematically analyzed studies reporting TB outbreaks worldwide, monitored through WGS of Mycobacterium tuberculosis. We 1) mapped the reported outbreaks from 2011- 2020, 2) estimated the average size of the outbreaks, 3) indicated genetic lineages causing the outbreaks, and 4) determined drug-resistance patterns of M. tuberculosis strains involved in the outbreaks. RESULTS Most data originated from Europe, Asia, and North America. We found that TB outbreaks were reported throughout the globe, on all continents, and in countries with both high and low incidences. The detected outbreaks contained a median of five M. tuberculosis isolates. Most strains causing the outbreaks belonged to lineage four, more rarely to lineage two. Reported outbreak isolates were often drug resistant. CONCLUSIONS We conclude that more WGS surveillance of M. tuberculosis outbreaks is needed. Globally standardized procedures might improve the control of M. tuberculosis infections.
Collapse
Affiliation(s)
- Lidia Żukowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Daria Zygała-Pytlos
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Struś
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Monika Kozińska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Alina Minias
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
5
|
Pan J, Li X, Zhang M, Lu Y, Zhu Y, Wu K, Wu Y, Wang W, Chen B, Liu Z, Wang X, Gao J. TransFlow: a Snakemake workflow for transmission analysis of Mycobacterium tuberculosis whole-genome sequencing data. Bioinformatics 2022; 39:6873737. [PMID: 36469333 PMCID: PMC9825751 DOI: 10.1093/bioinformatics/btac785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Whole-genome sequencing (WGS) is increasingly used to aid the understanding of Mycobacterium tuberculosis (MTB) transmission. The epidemiological analysis of tuberculosis based on the WGS technique requires a diverse collection of bioinformatics tools. Effectively using these analysis tools in a scalable and reproducible way can be challenging, especially for non-experts. RESULTS Here, we present TransFlow (Transmission Workflow), a user-friendly, fast, efficient and comprehensive WGS-based transmission analysis pipeline. TransFlow combines some state-of-the-art tools to take transmission analysis from raw sequencing data, through quality control, sequence alignment and variant calling, into downstream transmission clustering, transmission network reconstruction and transmission risk factor inference, together with summary statistics and data visualization in a summary report. TransFlow relies on Snakemake and Conda to resolve dependencies among consecutive processing steps and can be easily adapted to any computation environment. AVAILABILITY AND IMPLEMENTATION TransFlow is free available at https://github.com/cvn001/transflow. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Mingwu Zhang
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang 310020, China
| | - Yelei Zhu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Kunyang Wu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yiwen Wu
- Department of Medical Oncology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weixin Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang 310020, China
| | - Bin Chen
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Zhengwei Liu
- To whom correspondence should be addressed. or or
| | | | - Junshun Gao
- To whom correspondence should be addressed. or or
| |
Collapse
|
6
|
Jäger HY, Maixner F, Pap I, Szikossy I, Pálfi G, Zink AR. Metagenomic analysis reveals mixed Mycobacterium tuberculosis infection in a 18th century Hungarian midwife. Tuberculosis (Edinb) 2022; 137:102181. [PMID: 35210171 DOI: 10.1016/j.tube.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023]
Abstract
The Vác Mummy Collection comprises 265 well documented mummified individuals from the late 16th to the early 18th century that were discovered in 1994 inside a crypt in Vác, Hungary. This collection offers a unique opportunity to study the relationship between humans and pathogens in the pre-antibiotic era, as previous studies have shown a high proportion of tuberculosis (TB) infections among the individuals. In this study, we recovered ancient DNA with shotgun sequencing from a rib bone sample of a 18th century midwife. This individual is part of the collection and shows clear skeletal changes that are associated with tuberculosis and syphilis. To provide molecular proof, we applied a metagenomic approach to screen for ancient pathogen DNA. While we were unsuccessful to recover any ancient Treponema pallidum DNA, we retrieved high coverage ancient TB DNA and identified a mixed infection with two distinct TB strains by detailed single-nucleotide polymorphism and phylogenetic analysis. Thereby, we have obtained comprehensive results demonstrating the long-time prevalence of mixed infections with the sublineages L4.1.2.1/Haarlem and L4.10/PGG3 within the local community in preindustrial Hungary and put them in context of sociohistorical factors.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Ildikó Pap
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary; Department of Biological Anthropology, Eötvös Loránd University, Faculty of Science, 1117, Budapest, Pázmány Péter sétány 1/c, Hungary.
| | - Ildikó Szikossy
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary.
| | - György Pálfi
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary.
| | - Albert R Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| |
Collapse
|
7
|
Cancino-Muñoz I, López MG, Torres-Puente M, Villamayor LM, Borrás R, Borrás-Máñez M, Bosque M, Camarena JJ, Colijn C, Colomer-Roig E, Colomina J, Escribano I, Esparcia-Rodríguez O, García-García F, Gil-Brusola A, Gimeno C, Gimeno-Gascón A, Gomila-Sard B, Gónzales-Granda D, Gonzalo-Jiménez N, Guna-Serrano MR, López-Hontangas JL, Martín-González C, Moreno-Muñoz R, Navarro D, Navarro M, Orta N, Pérez E, Prat J, Rodríguez JC, Ruiz-García MM, Vanaclocha H, Comas I. Population-based sequencing of Mycobacterium tuberculosis reveals how current population dynamics are shaped by past epidemics. eLife 2022; 11:76605. [PMID: 35880398 PMCID: PMC9323001 DOI: 10.7554/elife.76605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Transmission is a driver of tuberculosis (TB) epidemics in high-burden regions, with assumed negligible impact in low-burden areas. However, we still lack a full characterization of transmission dynamics in settings with similar and different burdens. Genomic epidemiology can greatly help to quantify transmission, but the lack of whole genome sequencing population-based studies has hampered its application. Here, we generate a population-based dataset from Valencia region and compare it with available datasets from different TB-burden settings to reveal transmission dynamics heterogeneity and its public health implications. We sequenced the whole genome of 785 Mycobacterium tuberculosis strains and linked genomes to patient epidemiological data. We use a pairwise distance clustering approach and phylodynamic methods to characterize transmission events over the last 150 years, in different TB-burden regions. Our results underscore significant differences in transmission between low-burden TB settings, i.e., clustering in Valencia region is higher (47.4%) than in Oxfordshire (27%), and similar to a high-burden area as Malawi (49.8%). By modeling times of the transmission links, we observed that settings with high transmission rate are associated with decades of uninterrupted transmission, irrespective of burden. Together, our results reveal that burden and transmission are not necessarily linked due to the role of past epidemics in the ongoing TB incidence, and highlight the need for in-depth characterization of transmission dynamics and specifically tailored TB control strategies.
Collapse
Affiliation(s)
- Irving Cancino-Muñoz
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Mariana G López
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Manuela Torres-Puente
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Luis M Villamayor
- Unidad Mixta "Infección y Salud Pública" (FISABIO-CSISP), Valencia, Spain
| | - Rafael Borrás
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
| | - María Borrás-Máñez
- Microbiology and Parasitology Service, Hospital Universitario de La Ribera, Alzira, Spain
| | | | - Juan J Camarena
- Microbiology Service, Hospital Universitario Dr Peset, Valencia, Spain
| | - Caroline Colijn
- Department of Mathematics, Faculty of Science, Simon Fraser University, Burnaby, Canada
| | - Ester Colomer-Roig
- Unidad Mixta "Infección y Salud Pública" (FISABIO-CSISP), Valencia, Spain.,Microbiology Service, Hospital Universitario Dr Peset, Valencia, Spain
| | - Javier Colomina
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
| | - Isabel Escribano
- Microbiology Laboratory, Hospital Virgen de los Lirios, Alcoy, Spain
| | | | | | - Ana Gil-Brusola
- Microbiology Service, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Concepción Gimeno
- Microbiology Service, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Bárbara Gomila-Sard
- Microbiology Service, Hospital General Universitario de Castellón, Castellón, Spain
| | | | | | | | | | - Coral Martín-González
- Microbiology Service, Hospital Universitario de San Juan de Alicante, Alicantes, Spain
| | - Rosario Moreno-Muñoz
- Microbiology Service, Hospital General Universitario de Castellón, Castellón, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
| | - María Navarro
- Microbiology Service, Hospital de la Vega Baixa, Orihuela, Spain
| | - Nieves Orta
- Microbiology Service, Hospital Universitario de San Juan de Alicante, Alicantes, Spain
| | - Elvira Pérez
- Subdirección General de Epidemiología y Vigilancia de la Salud y Sanidad Ambiental de Valencia (DGSP), Valencia, Spain
| | - Josep Prat
- Microbiology Service, Hospital de Sagunto, Sagunto, Spain
| | | | | | - Hermelinda Vanaclocha
- Subdirección General de Epidemiología y Vigilancia de la Salud y Sanidad Ambiental de Valencia (DGSP), Valencia, Spain
| | | | - Iñaki Comas
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
8
|
Ordaz-Vázquez A, Torres-González P, Cruz-Hervert P, Ferreyra-Reyes L, Delgado-Sánchez G, García-García L, Kato-Maeda M, Ponce-De-León A, Sifuentes-Osornio J, Bobadilla-Del-Valle M. Genetic diversity and primary drug resistance transmission in Mycobacterium tuberculosis in southern Mexico. INFECTION GENETICS AND EVOLUTION 2021; 93:104994. [PMID: 34245908 DOI: 10.1016/j.meegid.2021.104994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Abstract
Tuberculosis is a global human health threat, especially in developing countries. The present study aimed to describe the genetic diversity of Mycobacterium tuberculosis and to measure the transmission rates of primary and acquired resistance. A total of 755 M. tuberculosis isolates from a cohort study of patients with culture-confirmed pulmonary tuberculosis in Orizaba, Veracruz, performed between 1995 and 2010 were genotyped by the 24-locus mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) method. Drug susceptibility was determined. Logistic regression models were constructed to identify the variables associated with resistance and clusters. The recent transmission index (RTI), the Hunter-Gaston discrimination index (HGDI) for the MIRU-VNTR test and allelic diversity (h) were calculated. The Haarlem and LAM lineages were the most common in the population. A total of 519 isolates were grouped into 128 clusters. The overall drug resistance rate was 19%, isoniazid monoresistance (10%) was the most common, and 3.4% of the isolates were multidrug resistant. Among the 116 isolates resistant to at least one drug, the primary and acquired resistance rates were 81.9% and 18.1%, respectively. Primary resistance was associated with belonging to a cluster (aOR 4.05, 95% CI 1.5-11.2, p = 0.007). Previous treatment history (aOR 9.05, 95% CI 3.6-22.5, p < 0.001) and LAM lineage (aOR 4.25, 95% CI 1.4-12.7, p = 0.010) were associated with multidrug-resistant tuberculosis (MDR-TB). The RTI was 51.7%, and the 24-locus MIRU-VNTR HGDI was 0.98. The alleles with the greatest diversity were 4056-QUB26 (h = 0.84), 2163b-QUB11b (h = 0.79), and 424-Mtub04 (h = 0.72). Primary resistance transmission, high LAM lineage prevalence and its association with MDR-TB represent public health problems. The implementation of molecular tools is needed to improve the existing control surveillance tuberculosis program.
Collapse
Affiliation(s)
- Anabel Ordaz-Vázquez
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Pedro Torres-González
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Pablo Cruz-Hervert
- Departamento de Salud Pública y Epidemiología Oral, Facultad de Odontología, Universidad Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Leticia Ferreyra-Reyes
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Guadalupe Delgado-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Lourdes García-García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Midori Kato-Maeda
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alfredo Ponce-De-León
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - José Sifuentes-Osornio
- Departamento de Medicina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Miriam Bobadilla-Del-Valle
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Alvarez GG, Zwerling AA, Duncan C, Pease C, Van Dyk D, Behr MA, Lee RS, Mulpuru S, Pakhale S, Cameron DW, Aaron SD, Patterson M, Allen J, Sullivan K, Jolly A, Sharma MK, Jamieson FB. Molecular Epidemiology of Mycobacterium tuberculosis To Describe the Transmission Dynamics Among Inuit Residing in Iqaluit Nunavut Using Whole-Genome Sequencing. Clin Infect Dis 2021; 72:2187-2195. [PMID: 32293676 DOI: 10.1093/cid/ciaa420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/10/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the last decade, tuberculosis (TB) incidence among Inuit in the Canadian Arctic has been rising. Our aim was to better understand the transmission dynamics of TB in this remote region of Canada using whole-genome sequencing. METHODS Isolates from patients who had culture-positive pulmonary TB in Iqaluit, Nunavut, between 2009 and 2015 underwent whole-genome sequencing (WGS). The number of transmission events between cases within clusters was calculated using a threshold of a ≤3 single nucleotide polymorphism (SNP) difference between isolates and then combined with detailed epidemiological data using a reproducible novel algorithm. Social network analysis of epidemiological data was used to support the WGS data analysis. RESULTS During the study period, 140 Mycobacterium tuberculosis isolates from 135 cases were sequenced. Four clusters were identified, all from Euro-American lineage. One cluster represented 62% of all cases that were sequenced over the entire study period. In this cluster, 2 large chains of transmission were associated with 3 superspreading events in a homeless shelter. One of the superspreading events was linked to a nonsanctioned gambling house that resulted in further transmission. Shelter to nonshelter transmission was also confirmed. An algorithm developed for the determination of transmission events demonstrated very good reproducibility (κ score .98, 95% confidence interval, .97-1.0). CONCLUSIONS Our study suggests that socioeconomic factors, namely residing in a homeless shelter and spending time in a gambling house, combined with the superspreading event effect may have been significant factors explaining the rise in cases in this predominantly Inuit Arctic community.
Collapse
Affiliation(s)
- Gonzalo G Alvarez
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,McGill International Tuberculosis Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alice A Zwerling
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,McGill International Tuberculosis Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Carla Duncan
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Christopher Pease
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Marcel A Behr
- McGill International Tuberculosis Centre, McGill University Health Centre, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Robyn S Lee
- McGill International Tuberculosis Centre, McGill University Health Centre, Montreal, Quebec, Canada.,The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sunita Mulpuru
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Smita Pakhale
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - D William Cameron
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Shawn D Aaron
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Michael Patterson
- Department of Health, Government of Nunavut, Iqaluit, Nunavut, Canada
| | - Jean Allen
- Nunavut Tunngavik Inc, Iqaluit, Nunavut, Canada
| | - Kathryn Sullivan
- School of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne Jolly
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Meenu K Sharma
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frances B Jamieson
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada.,Department of Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Menardo F, Gagneux S, Freund F. Multiple Merger Genealogies in Outbreaks of Mycobacterium tuberculosis. Mol Biol Evol 2021; 38:290-306. [PMID: 32667991 PMCID: PMC8480183 DOI: 10.1093/molbev/msaa179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders). Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sébastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabian Freund
- Department of Plant Biodiversity and Breeding Informatics, Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Cheng B, Behr MA, Howden BP, Cohen T, Lee RS. Reporting practices for genomic epidemiology of tuberculosis: a systematic review of the literature using STROME-ID guidelines as a benchmark. THE LANCET. MICROBE 2021; 2:e115-e129. [PMID: 33842904 PMCID: PMC8034592 DOI: 10.1016/s2666-5247(20)30201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pathogen genomics have become increasingly important in infectious disease epidemiology and public health. The Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) guidelines were developed to outline a minimum set of criteria that should be reported in genomic epidemiology studies to facilitate assessment of study quality. We evaluate such reporting practices, using tuberculosis as an example. METHODS For this systematic review, we initially searched MEDLINE, Embase Classic, and Embase on May 3, 2017, using the search terms "tuberculosis" and "genom* sequencing". We updated this initial search on April 23, 2019, and also included a search of bioRxiv at this time. We included studies in English, French, or Spanish that recruited patients with microbiologically confirmed tuberculosis and used whole genome sequencing for typing of strains. Non-human studies, conference abstracts, and literature reviews were excluded. For each included study, the number and proportion of fulfilled STROME-ID criteria were recorded by two reviewers. A comparison of the mean proportion of fulfilled STROME-ID criteria before and after publication of the STROME-ID guidelines (in 2014) was done using a two-tailed t test. Quasi-Poisson regression and tobit regression were used to examine associations between study characteristics and the number and proportion of fulfilled STROME-ID criteria. This study was registered with PROSPERO, CRD42017064395. FINDINGS 976 titles and abstracts were identified by our primary search, with an additional 16 studies identified in bioRxiv. 114 full texts (published between 2009 and 2019) were eligible for inclusion. The mean proportion of STROME-ID criteria fulfilled was 50% (SD 12; range 16-75). The proportion of criteria fulfilled was similar before and after STROME-ID publication (51% [SD 11] vs 46% [14], p=0·26). The number of criteria reported (among those applicable to all studies) was not associated with impact factor, h-index, country of affiliation of senior author, or sample size of isolates. Similarly, the proportion of criteria fulfilled was not associated with these characteristics, with the exception of a sample size of isolates of 277 or more (the highest quartile). In terms of reproducibility, 100 (88%) studies reported which bioinformatic tools were used, but only 33 (33%) reported corresponding version numbers. Sequencing data were available for 86 (75%) studies. INTERPRETATION The reporting of STROME-ID criteria in genomic epidemiology studies of tuberculosis between 2009 and 2019 was low, with implications for assessment of study quality. The considerable proportion of studies without bioinformatics version numbers or sequencing data available highlights a key concern for reproducibility.
Collapse
Affiliation(s)
- Brianna Cheng
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Marcel A Behr
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Benjamin P Howden
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Robyn S Lee
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Jiménez-Ruano AC, Madrazo-Moya CF, Cancino-Muñoz I, Mejía-Ponce PM, Licona-Cassani C, Comas I, Muñiz-Salazar R, Zenteno-Cuevas R. Whole genomic sequencing based genotyping reveals a specific X3 sublineage restricted to Mexico and related with multidrug resistance. Sci Rep 2021; 11:1870. [PMID: 33479318 PMCID: PMC7820219 DOI: 10.1038/s41598-020-80919-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023] Open
Abstract
Whole genome sequencing (WGS) has been shown to be superior to traditional procedures of genotyping in tuberculosis (TB), nevertheless, reports of its use in drug resistant TB (DR-TB) isolates circulating in Mexico, are practically unknown. Considering the above the main of this work was to identify and characterize the lineages and genomic transmission clusters present in 67 DR-TB isolates circulating in southeastern Mexico. The results show the presence of three major lineages: L1 (3%), L2 (3%) and L4 (94%), the last one included 16 sublineages. Sublineage 4.1.1.3 (X3) was predominant in 18 (27%) of the isolates, including one genomic cluster, formed by eleven multidrug resistant isolates and sharing the SIT 3278, which seems to be restricted to Mexico. By the use of WGS, it was possible to identify the high prevalence of L4 and a high number of sublineages circulating in the region, also was recognized the presence of a novel X3 sublineage, formed exclusively by multidrug resistant isolates and with restrictive circulation in Mexico for at least the past 17 years.
Collapse
Affiliation(s)
- Ana Cristina Jiménez-Ruano
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Animas, 91190, Xalapa, Veracruz, México
| | - Carlos Francisco Madrazo-Moya
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
- Biomedical Institute of Valencia IBV-CSIC, Valencia, Spain
| | | | - Paulina M Mejía-Ponce
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, Mexico
| | | | - Iñaki Comas
- Biomedical Institute of Valencia IBV-CSIC, Valencia, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
| | - Raquel Muñiz-Salazar
- Laboratorio de Epidemiología y Ecología y Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Baja California, México
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City, Mexico
| | - Roberto Zenteno-Cuevas
- Programa de Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México.
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, A.P. 57, Col. Industrial Animas, 91190, Xalapa, Veracruz, México.
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City, Mexico.
| |
Collapse
|
13
|
Identification of a predominant genotype of Mycobacterium tuberculosis in Brazilian indigenous population. Sci Rep 2021; 11:1224. [PMID: 33441660 PMCID: PMC7806709 DOI: 10.1038/s41598-020-79621-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
After nearly a century of vaccination and six decades of drug therapy, tuberculosis (TB) kills more people annually than any other infectious disease. Substantial challenges to disease eradication remain among vulnerable and underserved populations. The Guarani-Kaiowá people are an indigenous population in Paraguay and the Brazilian state of Mato Grosso do Sul. This community, marginalized in Brazilian society, experiences severe poverty. Like other South American indigenous populations, their TB prevalence is high, but the disease has remained largely unstudied in their communities. Herein, Mycobacterium tuberculosis isolates from local clinics were whole genome sequenced, and a population genetic framework was generated. Phylogenetics show M. tuberculosis isolates in the Guarani-Kaiowá people cluster away from selected reference strains, suggesting divergence. Most cluster in a single group, further characterized as M. tuberculosis sublineage 4.3.3. Closer analysis of SNPs showed numerous variants across the genome, including in drug resistance-associated genes, and with many unique changes fixed in each group. We report that local M. tuberculosis strains have acquired unique polymorphisms in the Guarani-Kaiowá people, and drug resistance characterization is urgently needed to inform public health to ensure proper care and avoid further evolution and spread of drug-resistant TB.
Collapse
|
14
|
Population Structure of Mycobacterium bovis in Germany: a Long-Term Study Using Whole-Genome Sequencing Combined with Conventional Molecular Typing Methods. J Clin Microbiol 2020; 58:JCM.01573-20. [PMID: 32817084 DOI: 10.1128/jcm.01573-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium bovis is the primary cause of bovine tuberculosis (bTB) and infects a wide range of domestic animal and wildlife species and humans. In Germany, bTB still emerges sporadically in cattle herds, free-ranging wildlife, diverse captive animal species, and humans. In order to understand the underlying population structure and estimate the population size fluctuation through time, we analyzed 131 M. bovis strains from animals (n = 38) and humans (n = 93) in Germany from 1999 to 2017 by whole-genome sequencing (WGS), mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing, and spoligotyping. Based on WGS data analysis, 122 out of the 131 M. bovis strains were classified into 13 major clades, of which 6 contained strains from both human and animal cases and 7 only strains from human cases. Bayesian analyses suggest that the M. bovis population went through two sharp anticlimaxes, one in the middle of the 18th century and another one in the 1950s. WGS-based cluster analysis grouped 46 strains into 13 clusters ranging in size from 2 to 11 members and involving strains from distinct host types, e.g., only cattle and also mixed hosts. Animal strains of four clusters were obtained over a 9-year span, pointing toward autochthonous persistent bTB infection cycles. As expected, WGS had a higher discriminatory power than spoligotyping and MIRU-VNTR typing. In conclusion, our data confirm that WGS and suitable bioinformatics constitute the method of choice to implement prospective molecular epidemiological surveillance of M. bovis The population of M. bovis in Germany is diverse, with subtle, but existing, interactions between different host groups.
Collapse
|
15
|
Jajou R, Kohl TA, Walker T, Norman A, Cirillo DM, Tagliani E, Niemann S, de Neeling A, Lillebaek T, Anthony RM, van Soolingen D. Towards standardisation: comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases. ACTA ACUST UNITED AC 2020; 24. [PMID: 31847944 PMCID: PMC6918587 DOI: 10.2807/1560-7917.es.2019.24.50.1900130] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Whole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them. Aim To compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases. Methods From the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles. Results The cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively. Conclusion Concordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable.
Collapse
Affiliation(s)
- Rana Jajou
- These authors contributed equally.,Center of Epidemiology and Surveillance of infectious diseases, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Thomas A Kohl
- German Center for Infection Research, Borstel site, Borstel, Germany.,Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany.,These authors contributed equally
| | - Timothy Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.,Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Borstel, Germany
| | - Albert de Neeling
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Troels Lillebaek
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Richard M Anthony
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
16
|
Mycobacterium tuberculosis polyclonal infections through treatment and recurrence. PLoS One 2020; 15:e0237345. [PMID: 32813724 PMCID: PMC7437862 DOI: 10.1371/journal.pone.0237345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Background Mixed/polyclonal infections due to different genotypes are reported in Tuberculosis. The current study was designed to understand the fate of mixed infections during the course of treatment and follow-up and its role in disease pathogenesis. Methods Sputum samples were collected on 0,1,2,3,6,12 and 24 months from 157 treatment-naïve patients, cultures subjected to Drug-Susceptibility-testing (MGIT 960), spoligotyping, MIRU-VNTR and SNP genotyping. All isolated colonies on thin layer agar (7H11) were subjected to spoligotyping. Findings One thirty three baseline cultures were positive (133/157, 84.7%), 43(32.3%) had mixture of genotypes. Twenty-four of these patients (55.8%) showed change in genotype while six showed different drug-susceptibility patterns while on treatment. Twenty-three (53.5%) patients with polyclonal infections showed resistance to at least one drug compared to 10/90 (11.1%) monoclonal infections (P<0.0001). Eight patients had recurrent TB, two with a new genotype and two with altered phenotypic DST. Conclusions The coexistence of different genotypes and change of genotypes during the same disease episode, while on treatment, confirms constancy of polyclonal infections. The composition of the mixture of genotypes and the relative predominance may be missed by culture due to its limit of detection. Polyclonal infections in TB could be a rule rather than exception and challenges the age-old dogma of reactivation/reinfection.
Collapse
|
17
|
Genomic epidemiology of Mycobacterium tuberculosis in Santa Catarina, Southern Brazil. Sci Rep 2020; 10:12891. [PMID: 32732910 PMCID: PMC7393130 DOI: 10.1038/s41598-020-69755-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the pathogen responsible for tuberculosis (TB) poses as the major cause of death among infectious diseases. The knowledge about the molecular diversity of M.tb enables the implementation of more effective surveillance and control measures and, nowadays, Whole Genome Sequencing (WGS) holds the potential to produce high-resolution epidemiological data in a high-throughput manner. Florianópolis, the state capital of Santa Catarina (SC) in south Brazil, shows a high TB incidence (46.0/100,000). Here we carried out a WGS-based evaluation of the M.tb strain diversity, drug-resistance and ongoing transmission in the capital metropolitan region. Resistance to isoniazid, rifampicin, streptomycin was identified respectively in 4.0% (n = 6), 2.0% (n = 3) and 1.3% (n = 2) of the 151 studied strains by WGS. Besides, resistance to pyrazinamide and ethambutol was detected in 0.7% (n = 1) and reistance to ethionamide and fluoroquinolone (FQ) in 1.3% (n = 2), while a single (0.7%) multidrug-resistant (MDR) strain was identified. SNP-based typing classified all isolates into M.tb Lineage 4, with high proportion of sublineages LAM (60.3%), T (16.4%) and Haarlem (7.9%). The average core-genome distance between isolates was 420.3 SNPs, with 43.7% of all isolates grouped across 22 genomic clusters thereby showing the presence of important ongoing TB transmission events. Most clusters were geographically distributed across the study setting which highlights the need for an urgent interruption of these large transmission chains. The data conveyed by this study shows the presence of important and uncontrolled TB transmission in the metropolitan area and provides precise data to support TB control measures in this region.
Collapse
|
18
|
Salvato RS, Costa ERD, Reis AJ, Schiefelbein SH, Halon ML, Barcellos RB, Unis G, Dias CF, Viveiros M, Portugal I, da Silva PEA, Kritski AL, Perdigão J, Rossetti MLR. First insights into circulating XDR and pre-XDR Mycobacterium tuberculosis in Southern Brazil. INFECTION GENETICS AND EVOLUTION 2020; 78:104127. [DOI: 10.1016/j.meegid.2019.104127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 11/30/2022]
|
19
|
Guthrie JL, Strudwick L, Roberts B, Allen M, McFadzen J, Roth D, Jorgensen D, Rodrigues M, Tang P, Hanley B, Johnston J, Cook VJ, Gardy J. Comparison of routine field epidemiology and whole genome sequencing to identify tuberculosis transmission in a remote setting. Epidemiol Infect 2020; 148:e15. [PMID: 32014080 PMCID: PMC7019559 DOI: 10.1017/s0950268820000072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Yukon Territory (YT) is a remote region in northern Canada with ongoing spread of tuberculosis (TB). To explore the utility of whole genome sequencing (WGS) for TB surveillance and monitoring in a setting with detailed contact tracing and interview data, we used a mixed-methods approach. Our analysis included all culture-confirmed cases in YT (2005-2014) and incorporated data from 24-locus Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) genotyping, WGS and contact tracing. We compared field-based (contact investigation (CI) data + MIRU-VNTR) and genomic-based (WGS + MIRU-VNTR + basic case data) investigations to identify the most likely source of each person's TB and assessed the knowledge, attitudes and practices of programme personnel around genotyping and genomics using online, multiple-choice surveys (n = 4) and an in-person group interview (n = 5). Field- and genomics-based approaches agreed for 26 of 32 (81%) cases on likely location of TB acquisition. There was less agreement in the identification of specific source cases (13/22 or 59% of cases). Single-locus MIRU-VNTR variants and limited genetic diversity complicated the analysis. Qualitative data indicated that participants viewed genomic epidemiology as a useful tool to streamline investigations, particularly in differentiating latent TB reactivation from the recent transmission. Based on this, genomic data could be used to enhance CIs, focus resources, target interventions and aid in TB programme evaluation.
Collapse
Affiliation(s)
- J. L. Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - L. Strudwick
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - B. Roberts
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - M. Allen
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - J. McFadzen
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - D. Roth
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - D. Jorgensen
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - M. Rodrigues
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - P. Tang
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - B. Hanley
- Department of Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - J. Johnston
- British Columbia Centre for Disease Control, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - V. J. Cook
- British Columbia Centre for Disease Control, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - J.L. Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| |
Collapse
|
20
|
Folkvardsen DB, Norman A, Rasmussen EM, Lillebaek T, Jelsbak L, Andersen ÅB. Recurrent tuberculosis in patients infected with the predominant Mycobacterium tuberculosis outbreak strain in Denmark. New insights gained through whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2020; 80:104169. [PMID: 31918042 DOI: 10.1016/j.meegid.2020.104169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Recurrent tuberculosis (TB) is defined by more than one TB episode per patient and is caused by reinfection with a new M. tuberculosis (Mtb) strain or relapse with the previous strain. In Denmark, a major TB outbreak caused by one specific Mtb genotype "DKC2" is ongoing. Of the 892 patients infected with DKC2 between 1992 and 2014, 32 had recurrent TB with 67 TB episodes in total. METHODS The 32 cases were evaluated in terms of number of single-nucleotide polymorphism (SNP) differences and time between episodes derived from whole-genome sequencing data. RESULTS For four TB cases, the subsequent episodes could be confirmed as relapse and for one case as reinfection. Eight cases with SNP differences <6, theoretically indicating relapse, could be classified as likely reinfections based on phylogenetic analysis in combination with geographical data. Subsequent TB episodes for the remaining 19 cases could not be classified as relapse or reinfection even though they all had a SNP difference of <6 SNPs. CONCLUSIONS In newer studies, investigating recurrent TB with the use of WGS, the number of SNPs has been used to distinguish between relapse and reinfection. The algorithm proposed for this is not valid in the Danish TB outbreak setting as our findings challenge the interpretation of few SNP differences as representing relapse. However, when including phylogenetic analysis and geographical data in the analysis, classification of 13 of the 32 cases were possible.
Collapse
Affiliation(s)
- Dorte Bek Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Denmark.
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | | | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Åse Bengård Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark; Research Unit for Infectious Diseases, Department of Clinical Research, University of Southern Denmark, Denmark
| |
Collapse
|
21
|
Mulholland CV, Shockey AC, Aung HL, Cursons RT, O'Toole RF, Gautam SS, Brites D, Gagneux S, Roberts SA, Karalus N, Cook GM, Pepperell CS, Arcus VL. Dispersal of Mycobacterium tuberculosis Driven by Historical European Trade in the South Pacific. Front Microbiol 2019; 10:2778. [PMID: 31921003 PMCID: PMC6915100 DOI: 10.3389/fmicb.2019.02778] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a globally distributed bacterial pathogen whose population structure has largely been shaped by the activities of its obligate human host. Oceania was the last major global region to be reached by Europeans and is the last region for which the dispersal and evolution of Mtb remains largely unexplored. Here, we investigated the evolutionary history of the Euro-American L4.4 sublineage and its dispersal to the South Pacific. Using a phylodynamics approach and a dataset of 236 global Mtb L4.4 genomes we have traced the origins and dispersal of L4.4 strains to New Zealand. These strains are predominantly found in indigenous Māori and Pacific people and we identify a clade of European, likely French, origin that is prevalent in indigenous populations in both New Zealand and Canada. Molecular dating suggests the expansion of European trade networks in the early 19th century drove the dispersal of this clade to the South Pacific. We also identify historical and social factors within the region that have contributed to the local spread and expansion of these strains, including recent Pacific migrations to New Zealand and the rapid urbanization of Māori in the 20th century. Our results offer new insight into the expansion and dispersal of Mtb in the South Pacific and provide a striking example of the role of historical European migrations in the global dispersal of Mtb.
Collapse
Affiliation(s)
- Claire V Mulholland
- School of Science, University of Waikato, Hamilton, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Abigail C Shockey
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Htin L Aung
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ray T Cursons
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Ronan F O'Toole
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.,School of Molecular Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Sanjay S Gautam
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Vickery L Arcus
- School of Science, University of Waikato, Hamilton, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Diel R, Kohl TA, Maurer FP, Merker M, Meywald Walter K, Hannemann J, Nienhaus A, Supply P, Niemann S. Accuracy of whole-genome sequencing to determine recent tuberculosis transmission: an 11-year population-based study in Hamburg, Germany. Eur Respir J 2019; 54:1901154. [PMID: 31467121 PMCID: PMC6881715 DOI: 10.1183/13993003.01154-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/10/2019] [Indexed: 01/29/2023]
Abstract
Controlling human-to-human tuberculosis (TB) transmission is key for achieving the targets of the End TB Strategy set by the World Health Organization (WHO) [1, 2]. Stopping TB transmission, in large cities especially, is a challenging top priority worldwide [3]. Metropolitan areas have higher TB case notification rates than the rest of a country, as they concentrate high-risk groups, such as homeless people, drug users and migrants often from (other) high TB incidence settings. Opportunities for transmission are amplified by population density and complex social interactions, regularly leading to large, temporally extended transmission networks [3]. Targeted interventions to interrupt transmission require the combination of effective genotyping of TB strains with enhanced epidemiological investigation. While classic IS6110 DNA fingerprinting and 24-locus MIRU–VNTR (mycobacterial interspersed repetitive units–variable number of tandem repeats) typing provide standardised and easily computable typing results with an online nomenclature system, several studies have now demonstrated that whole-genome sequencing (WGS) has a superior discriminatory power, allowing for an unparalleled resolution of outbreak strains [4–10]. However, predictivity of WGS for detecting transmission in metropolitan areas has not yet been quantified versus most deterministic references, i.e. tangible epidemiological links identified by ad hoc investigation, at extended time and population scales. WGS typing with a five-SNP c:d:ut-off delineates recent transmission chains with highest accuracy and also provides high-resolution resistance patterns, thus enabling direct clinical benefits http://bit.ly/2Pk37Wo
Collapse
Affiliation(s)
- Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
- Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services (BGW), Hamburg, Germany
- Both authors contributed equally
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Both authors contributed equally
| | - Florian P Maurer
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | | | - Jörg Hannemann
- Public Health Department Hamburg-Central, Hamburg, Germany
| | - Albert Nienhaus
- Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services (BGW), Hamburg, Germany
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8204, Center for Infection and Immunity of Lille, Lille, France
- Université Lille Nord de France, Center for Infection and Immunity of Lille, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
23
|
Resolving a clinical tuberculosis outbreak using palaeogenomic genome reconstruction methodologies. Tuberculosis (Edinb) 2019; 119:101865. [PMID: 31563810 DOI: 10.1016/j.tube.2019.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 11/22/2022]
Abstract
This study describes the analysis of DNA from heat-killed (boilate) isolates of Mycobacterium tuberculosis from two UK outbreaks where DNA was of sub-optimal quality for the standard methodologies routinely used in microbial genomics. An Illumina library construction method developed for sequencing ancient DNA was successfully used to obtain whole genome sequences, allowing analysis of the outbreak by gene-by-gene MLST, SNP mapping and phylogenetic analysis. All cases were spoligotyped to the same Haarlem H1 sub-lineage. This is the first described application of ancient DNA library construction protocols to allow whole genome sequencing of a clinical tuberculosis outbreak. Using this method it is possible to obtain epidemiologically meaningful data even when DNA is of insufficient quality for standard methods.
Collapse
|
24
|
Mathiasen VD, Eiset AH, Andersen PH, Wejse C, Lillebaek T. Epidemiology of tuberculous lymphadenitis in Denmark: A nationwide register-based study. PLoS One 2019; 14:e0221232. [PMID: 31415659 PMCID: PMC6695100 DOI: 10.1371/journal.pone.0221232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/01/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tuberculous lymphadenitis (TBLA) is the most common extrapulmonary manifestation of tuberculosis (TB), often claimed to be reactivation. We aimed to describe the epidemiology of TBLA in Denmark, as it has not previously been investigated specifically although extrapulmonary TB has been associated with an increased long-term mortality and delays in the diagnosis. METHODS Register-based study of all patients notified with TBLA in Denmark from 2007 through 2016 utilizing six different nationwide registers. Patients were identified through the national TB surveillance register, and the diagnosis evaluated based on microbiology, pathology and/or clinical assessment. RESULTS In total, 13.5% (n = 489) of all TB patients in Denmark had TBLA with annual proportions from 9.4 to 15.7%. Most patients were immigrants between 25-44 years. Incidence rates ranged from as high as 1,014/100,000 for Nepalese citizens to as a low as 0.06/100,000 for Danes. Danes had a significant higher median age and significant more risk factors and comorbidities, as well as an increased overall mortality, compared with immigrants (p<0.05). A significant and much higher proportion of unique MIRU-VNTR genotypes were seen among TBLA patients compared to other TB manifestations. CONCLUSION In Denmark, TBLA is a common manifestation of TB, especially in young immigrants from high-incidence countries. In Danes, it is a rare disease manifestation and associated with higher morbidity and mortality. To our knowledge, this is the first study suggesting that TBLA is predominantly associated with reactivation of latent TB infection based on genotyping although this remains to be clarified.
Collapse
Affiliation(s)
- Victor Dahl Mathiasen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Halgreen Eiset
- Center for Global Health (GloHAU), Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Henrik Andersen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Wejse
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Center for Global Health (GloHAU), Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
25
|
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11:45. [PMID: 31345251 PMCID: PMC6657377 DOI: 10.1186/s13073-019-0660-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a global infectious threat that is intensified by an increasing incidence of highly drug-resistant disease. Whole-genome sequencing (WGS) studies of Mycobacterium tuberculosis, the causative agent of TB, have greatly increased our understanding of this pathogen. Since the first M. tuberculosis genome was published in 1998, WGS has provided a more complete account of the genomic features that cause resistance in populations of M. tuberculosis, has helped to fill gaps in our knowledge of how both classical and new antitubercular drugs work, and has identified specific mutations that allow M. tuberculosis to escape the effects of these drugs. WGS studies have also revealed how resistance evolves both within an individual patient and within patient populations, including the important roles of de novo acquisition of resistance and clonal spread. These findings have informed decisions about which drug-resistance mutations should be included on extended diagnostic panels. From its origins as a basic science technique, WGS of M. tuberculosis is becoming part of the modern clinical microbiology laboratory, promising rapid and improved detection of drug resistance, and detailed and real-time epidemiology of TB outbreaks. We review the successes and highlight the challenges that remain in applying WGS to improve the control of drug-resistant TB through monitoring its evolution and spread, and to inform more rapid and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, 21205, USA.
| | - Abigail L Manson
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, 2628, XE, Delft, The Netherlands
| | - Ashlee M Earl
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
26
|
Oliveira O, Gaio R, Carvalho C, Correia-Neves M, Duarte R, Rito T. A nationwide study of multidrug-resistant tuberculosis in Portugal 2014-2017 using epidemiological and molecular clustering analyses. BMC Infect Dis 2019; 19:567. [PMID: 31262256 PMCID: PMC6604307 DOI: 10.1186/s12879-019-4189-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/13/2019] [Indexed: 12/03/2022] Open
Abstract
Background Increasing multidrug-resistant tuberculosis (MDR-TB) incidence is a major threat against TB eradication worldwide. We aim to conduct a detailed MDR-TB study in Portugal, an European country with endemic TB, combining genetic analysis and epidemiological data, in order to assess the efficiency of public health containment of MRD-TB in the country. Methods We used published MIRU-VNTR data, that we reanalysed using a phylogenetic analysis to better describe MDR-TB cases transmission occurring in Portugal from 2014 to 2017, further enriched with epidemiological data of these cases. Results We show an MDR-TB transmission scenario, where MDR strains likely arose and are transmitted within local chains. 63% of strains were clustered, suggesting high primary transmission (estimated as 50% using MIRU-VNTR data and 15% considering epidemiological links). These values are higher than those observed across Europe and even for sensitive strains in Portugal using similar methodologies. MDR-TB cases are associated with individuals born in Portugal and evolutionary analysis suggests a local evolution of strains. Consistently the sublineage LAM, the most common in sensitive strains in Europe, is the more frequent in Portugal in contrast with the remaining European MDR-TB picture where immigrant-associated Beijing strains are more common. Conclusions Despite efforts to track and contain MDR-TB strains in Portugal, their transmission patterns are still as uncontrolled as that of sensitive strains, stressing the need to reinforce surveillance and containment strategies. Electronic supplementary material The online version of this article (10.1186/s12879-019-4189-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olena Oliveira
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal.,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - Rita Gaio
- Department of Mathematics, Faculty of Sciences, Porto, Portugal.,Centre of Mathematics, University of Porto, Porto, Portugal
| | - Carlos Carvalho
- Department of Public Health, Northern Regional Health Administration, 4000-078, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-013, Porto, Portugal
| | - Margarida Correia-Neves
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal.,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal
| | - Raquel Duarte
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal.,Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal.,Pulmonology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho EPE, 4400-129, Vila Nova de Gaia, Portugal
| | - Teresa Rito
- Population Health Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal. .,ICVS/3B, PT Government Associate Laboratory, 4710-057 Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
27
|
Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 2019; 17:533-545. [DOI: 10.1038/s41579-019-0214-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Nikolayevskyy V, Niemann S, Anthony R, van Soolingen D, Tagliani E, Ködmön C, van der Werf MJ, Cirillo DM. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infect 2019; 25:1377-1382. [PMID: 30980928 DOI: 10.1016/j.cmi.2019.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a serious public health threat worldwide. Theoretically ultimate resolution of whole genome sequencing (WGS) for Mycobacterium tuberculosis complex (MTBC) strain classification makes this technology very attractive for epidemiological investigations. OBJECTIVES To summarize the evidence available in peer-reviewed publications on the role and place of WGS in detection of TB transmission. SOURCES A total of 69 peer-reviewed publications identified in Pubmed database. CONTENT Evidence from >30 publications suggests that a cut-off value of fewer than six single nucleotide polymorphisms between strains efficiently excludes cases that are not the result of recent transmission and could be used for the identification of drug-sensitive isolates involved in direct human-to-human TB transmission. Sensitivity of WGS to identify epidemiologically linked isolates is high, reaching 100% in eight studies with specificity (17%-95%) highly dependent on the settings. Drug resistance and specific phylogenetic lineages may be associated with accelerated mutation rates affecting genetic distances. WGS can be potentially used to distinguish between true relapses and re-infections but in high-incidence low-diversity settings this would require consideration of epidemiological links and minority alleles. Data from four studies looking into within-host diversity highlight a need for developing criteria for acceptance or rejection of WGS relatedness results depending on the proportion of minority alleles. IMPLICATIONS WGS will potentially allow for more targeted public health actions preventing unnecessary investigations of false clusters. Consensus on standardization of raw data quality control processing criteria, analytical pipelines and reporting language is yet to be reached.
Collapse
Affiliation(s)
- V Nikolayevskyy
- Public Health England, London, UK; Imperial College, London, UK.
| | - S Niemann
- Molecular and Experimental Mycobacteriology, National Reference Centre for Mycobacteria, Research Centre, Borstel, Germany; German Centre for Infection Research, Borstel site, Germany
| | - R Anthony
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D van Soolingen
- Tuberculosis Reference Laboratory, Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - C Ködmön
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - M J van der Werf
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Domínguez J, Acosta F, Pérez-Lago L, Sambrano D, Batista V, De La Guardia C, Abascal E, Chiner-Oms Á, Comas I, González P, Bravo J, Del Cid P, Rosas S, Muñoz P, Goodridge A, García de Viedma D. Simplified Model to Survey Tuberculosis Transmission in Countries Without Systematic Molecular Epidemiology Programs. Emerg Infect Dis 2019; 25:507-514. [PMID: 30789134 PMCID: PMC6390753 DOI: 10.3201/eid2503.181593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Systematic molecular/genomic epidemiology studies for tuberculosis surveillance cannot be implemented in many countries. We selected Panama as a model for an alternative strategy. Mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) analysis revealed a high proportion (50%) of Mycobacterium tuberculosis isolates included in 6 clusters (A-F) in 2 provinces (Panama and Colon). Cluster A corresponded to the Beijing sublineage. Whole-genome sequencing (WGS) differentiated clusters due to active recent transmission, with low single-nucleotide polymorphism-based diversity (cluster C), from clusters involving long-term prevalent strains with higher diversity (clusters A, B). Prospective application in Panama of 3 tailored strain-specific PCRs targeting marker single-nucleotide polymorphisms identified from WGS data revealed that 31.4% of incident cases involved strains A-C and that the Beijing strain was highly represented and restricted mainly to Colon. Rational integration of MIRU-VNTR, WGS, and tailored strain-specific PCRs could be a new model for tuberculosis surveillance in countries without molecular/genomic epidemiology programs.
Collapse
Affiliation(s)
| | | | - Laura Pérez-Lago
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Dilcia Sambrano
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Victoria Batista
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Carolina De La Guardia
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Estefanía Abascal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Álvaro Chiner-Oms
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Iñaki Comas
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Prudencio González
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Jaime Bravo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Pedro Del Cid
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Samantha Rosas
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Patricia Muñoz
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | | | | |
Collapse
|
30
|
Guthrie JL, Strudwick L, Roberts B, Allen M, McFadzen J, Roth D, Jorgensen D, Rodrigues M, Tang P, Hanley B, Johnston J, Cook VJ, Gardy JL. Whole genome sequencing for improved understanding of Mycobacterium tuberculosis transmission in a remote circumpolar region. Epidemiol Infect 2019; 147:e188. [PMID: 31364521 PMCID: PMC6518594 DOI: 10.1017/s0950268819000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/22/2019] [Accepted: 03/17/2019] [Indexed: 11/17/2022] Open
Abstract
Few studies have used genomic epidemiology to understand tuberculosis (TB) transmission in rural and remote settings - regions often unique in history, geography and demographics. To improve our understanding of TB transmission dynamics in Yukon Territory (YT), a circumpolar Canadian territory, we conducted a retrospective analysis in which we combined epidemiological data collected through routine contact investigations with clinical and laboratory results. Mycobacterium tuberculosis isolates from all culture-confirmed TB cases in YT (2005-2014) were genotyped using 24-locus Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) and compared to each other and to those from the neighbouring province of British Columbia (BC). Whole genome sequencing (WGS) of genotypically clustered isolates revealed three sustained transmission networks within YT, two of which also involved BC isolates. While each network had distinct characteristics, all had at least one individual acting as the probable source of three or more culture-positive cases. Overall, WGS revealed that TB transmission dynamics in YT are distinct from patterns of spread in other, more remote Northern Canadian regions, and that the combination of WGS and epidemiological data can provide actionable information to local public health teams.
Collapse
Affiliation(s)
- J. L. Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - L. Strudwick
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - B. Roberts
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - M. Allen
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - J. McFadzen
- Yukon Communicable Disease Control, Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - D. Roth
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - D. Jorgensen
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - M. Rodrigues
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, Canada
| | - P. Tang
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| | - B. Hanley
- Department of Health and Social Services, Government of Yukon, Whitehorse, Canada
| | - J. Johnston
- British Columbia Centre for Disease Control, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - V. J. Cook
- British Columbia Centre for Disease Control, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - J. L. Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| |
Collapse
|
31
|
Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, Zhou Y, Zheng HX, Jiang Q, Gan M, Zuo T, Liu M, Yang C, Jin L, Comas I, Gagneux S, Zhao Y, Pepperell CS, Gao Q. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol 2018; 2:1982-1992. [PMID: 30397300 PMCID: PMC6295914 DOI: 10.1038/s41559-018-0680-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
A small number of high-burden countries account for the majority of tuberculosis cases worldwide. Detailed data are lacking from these regions. To explore the evolutionary history of Mycobacterium tuberculosis in China-the country with the third highest tuberculosis burden-we analysed a countrywide collection of 4,578 isolates. Little genetic diversity was detected, with 99.4% of the bacterial population belonging to lineage 2 and three sublineages of lineage 4. The deeply rooted phylogenetic positions and geographic restriction of these four genotypes indicate that their populations expanded in situ following a small number of introductions to China. Coalescent analyses suggest that these bacterial subpopulations emerged in China around 1,000 years ago, and expanded in parallel from the twelfth century onwards, and that the whole population peaked in the late eighteenth century. More recently, sublineage L2.3, which is indigenous to China and exhibited relatively high transmissibility and extensive global dissemination, came to dominate the population dynamics of M. tuberculosis in China. Our results indicate that historical expansion of four M. tuberculosis strains shaped the current tuberculosis epidemic in China, and highlight the long-term genetic continuity of the indigenous M. tuberculosis population.
Collapse
Affiliation(s)
- Qingyun Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Aijing Ma
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lanhai Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Beibei Wu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tao Luo
- West China School of Basic Medical Sciences and Forensic Medicines, Sichuan University, Chengdu, China
| | - Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Jiang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Mingyu Gan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Tianyu Zuo
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, CSIC and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Caitlin S Pepperell
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- Shenzhen Center for Chronic Disease Control, Shenzhen, China.
| |
Collapse
|
32
|
Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, Utpatel C, Beckert P, Gehre F, Lempens P, Stadler T, Kaswa MK, Kühnert D, Niemann S, de Jong BC. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 2018; 37:410-416. [PMID: 30341041 PMCID: PMC6284411 DOI: 10.1016/j.ebiom.2018.10.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult. METHODS This study combines whole genome sequence (WGS) data derived from 324 isolates collected 2005-2010 in Kinshasa, Democratic Republic of Congo (DRC), a high endemic setting, with phylodynamics to unveil the timing of transmission events posited by a variety of standard genotyping methods. Clustering data based on Spoligotyping, 24-loci MIRU-VNTR typing, WGS based SNP (Single Nucleotide Polymorphism) and core genome multi locus sequence typing (cgMLST) typing were evaluated. FINDINGS Our results suggest that clusters based on Spoligotyping could encompass transmission events that occurred almost 200 years prior to sampling while 24-loci-MIRU-VNTR often represented three decades of transmission. Instead, WGS based genotyping applying low SNP or cgMLST allele thresholds allows for determination of recent transmission events, e.g. in timespans of up to 10 years for a 5 SNP/allele cut-off. INTERPRETATION With the rapid uptake of WGS methods in surveillance and outbreak tracking, the findings obtained in this study can guide the selection of appropriate clustering methods for uncovering relevant transmission chains within a given time-period. For high resolution cluster analyses, WGS-SNP and cgMLST based analyses have similar clustering/timing characteristics even for data obtained from a high incidence setting.
Collapse
Affiliation(s)
- Conor J Meehan
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium.
| | - Pieter Moris
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Adrem Data Lab (Adrem), Department of Mathematics and Computer Science, University of Antwerp, Antwerp 2020, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp 2020, Belgium
| | - Thomas A Kohl
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Jūlija Pečerska
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Suriya Akter
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Matthias Merker
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Christian Utpatel
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Patrick Beckert
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Florian Gehre
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Vaccines and Immunity Theme, Medical Research Council Unit The Gambia, Serekunda, Gambia; Department Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Pauline Lempens
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Tanja Stadler
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Michel K Kaswa
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; National Tuberculosis Program, Kinshasa, DR Congo
| | - Denise Kühnert
- Max Planck Institute for the Science of Human History, 07745 JENA, Germany
| | - Stefan Niemann
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, D-23845 Borstel, Germany; Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, D-23845 Borstel, Germany
| | - Bouke C de Jong
- Unit of Mycobacteriology, Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| |
Collapse
|
33
|
Martin MA, Lee RS, Cowley LA, Gardy JL, Hanage WP. Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission. Microb Genom 2018; 4. [PMID: 30303479 PMCID: PMC6249434 DOI: 10.1099/mgen.0.000217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole genome sequencing in conjunction with traditional epidemiology has been used to reconstruct transmission networks of Mycobacterium tuberculosis during outbreaks. Given its low mutation rate, genetic diversity within M. tuberculosis outbreaks can be extremely limited - making it difficult to determine precisely who transmitted to whom. In addition to consensus SNPs (cSNPs), examining heterogeneous alleles (hSNPs) has been proposed to improve resolution. However, few studies have examined the potential biases in detecting these hSNPs. Here, we analysed genome sequence data from 25 specimens from British Columbia, Canada. Specimens were sequenced to a depth of 112-296×. We observed biases in read depth, base quality, strand distribution and read placement where possible hSNPs were initially identified, so we applied conservative filters to reduce false positives. Overall, there was phylogenetic concordance between the observed 2542 cSNP and 63 hSNP loci. Furthermore, we identified hSNPs shared exclusively by epidemiologically linked patients, supporting their use in transmission inferences. We conclude that hSNPs may add resolution to transmission networks, particularly where the overall genetic diversity is low.
Collapse
Affiliation(s)
- Michael A Martin
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robyn S Lee
- 2Department of Epidemiology, Harvard University, Boston, MA 02115, USA
| | - Lauren A Cowley
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer L Gardy
- 3School of Population and Public Health, University of British Columbia, Vancouver, Canada.,4British Columbia Centre for Disease Control, Vancouver, Canada
| | - William P Hanage
- 1Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
34
|
Kohl TA, Utpatel C, Niemann S, Moser I. Mycobacterium bovis Persistence in Two Different Captive Wild Animal Populations in Germany: a Longitudinal Molecular Epidemiological Study Revealing Pathogen Transmission by Whole-Genome Sequencing. J Clin Microbiol 2018; 56:e00302-18. [PMID: 29950330 PMCID: PMC6113487 DOI: 10.1128/jcm.00302-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a transmissible disease notifiable to the World Organization for Animal Health and to the European Union, with ongoing efforts of surveillance and eradication in every EU member state. In Germany, a country which has been declared officially free from bovine tuberculosis since 1997 by the EU, M. bovis infections still occur sporadically in cattle and other mammals, including humans. Here, the transmission routes of a bTB outbreak in a wildlife park in Germany affecting different cervid species, bison, lynx, and pot-bellied pigs were followed by employing whole-genome sequencing (WGS) combined with spoligotyping and mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing. One single M. bovis strain persisted from 2002 to 2015, and transmission between the park and a distantly located captive cervid farm was verified. The spoligotyping patterns remained identical, while MIRU-VNTR typing of 24 loci of the standardized panel and locus 2163a as an additional locus revealed one change at locus 2165 in a strain from a fallow deer and one at locus 2461 in isolates from red deer over the whole time period. WGS analysis confirmed the close relatedness of the isolates, with a maximum of 12 single nucleotide polymorphisms (SNPs) detected between any two sequenced isolates. In conclusion, our data confirm a longitudinal outbreak of M. bovis in a German wildlife park and provide the first insights into the dynamics of different genotyping markers in M. bovis.
Collapse
Affiliation(s)
- Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, TTU-TB, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, TTU-TB, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, TTU-TB, Borstel, Germany
| | - Irmgard Moser
- Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
35
|
Kohl TA, Harmsen D, Rothgänger J, Walker T, Diel R, Niemann S. Harmonized Genome Wide Typing of Tubercle Bacilli Using a Web-Based Gene-By-Gene Nomenclature System. EBioMedicine 2018; 34:131-138. [PMID: 30115606 PMCID: PMC6116475 DOI: 10.1016/j.ebiom.2018.07.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background Global tuberculosis (TB) control is challenged by uncontrolled transmission of Mycobacterium tuberculosis complex (Mtbc) strains, esp. of multidrug (MDR) or extensively resistant (XDR) variants. Precise analysis of transmission networks is the basis to trace outbreak M/XDR clones and improve TB control. However, classical genotyping tools lack discriminatory power due to the high similarity of strains of particular successful lineages, e.g. Beijing or outbreak strains. This can be overcome by whole genome sequencing (WGS) approaches, but these are not yet standardized to facilitate larger investigations encompassing different laboratories or outbreak tracing across borders. Methods We established and improved a whole genome gene-by-gene multi locus sequence typing approach encompassing a stable set of core genome genes (cgMLST) and linked it to a web-based nomenclature server (cgMLST.org) facilitating assignment and storage of allele numbers. Findings We evaluated and refined a previously suggested cgMLST schema by using a reference strain set (n = 251) reflecting the global diversity of the Mtbc. A set of 2891 genes showed excellent performance with at least 97% of the genes reliably identified in strains of all Mtbc lineages and in discriminating outbreak strains. cgMLST allele numbers were automatically retrieved from and stored at cgMLST.org. Interpretation The refined cgMLST schema provides high resolution genome-based typing of clinical strains of all Mtbc lineages. Combined with a web-based nomenclature server, it facilitates rapid, high-resolution, and harmonized tracing of clinical Mtbc strains needed for prospective local and global surveillance.
Collapse
Affiliation(s)
- Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Dag Harmsen
- Department of Periodontology and Restorative Dentistry, University Hospital Münster, 48149 Münster, Germany
| | | | - Timothy Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, 24105 Kiel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany; German Center for Infection Research, Borstel Site, 23845 Borstel, Germany.
| |
Collapse
|
36
|
Folkvardsen DB, Norman A, Andersen ÅB, Rasmussen EM, Lillebaek T, Jelsbak L. A Major Mycobacterium tuberculosis outbreak caused by one specific genotype in a low-incidence country: Exploring gene profile virulence explanations. Sci Rep 2018; 8:11869. [PMID: 30089859 PMCID: PMC6082827 DOI: 10.1038/s41598-018-30363-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Denmark, a tuberculosis low burden country, still experiences significant active Mycobacterium tuberculosis (Mtb) transmission, especially with one specific genotype named Cluster 2/1112-15 (C2), the most prevalent lineage in Scandinavia. In addition to environmental factors, antibiotic resistance, and human genetics, there is increasing evidence that Mtb strain variation plays a role for the outcome of infection and disease. In this study, we explore the reasons for the success of the C2 genotype by analysing strain specific polymorphisms identified through whole genome sequencing of all C2 isolates identified in Denmark between 1992 and 2014 (n = 952), and the demographic distribution of C2. Of 234 non-synonymous (NS) monomorphic SNPs found in C2 in comparison with Mtb reference strain H37Rv, 23 were in genes previously reported to be involved in Mtb virulence. Of these 23 SNPs, three were specific for C2 including a NS mutation in a gene associated with hyper-virulence. We show that the genotype is readily transmitted to different ethnicities and is also found outside Denmark. Our data suggest that strain specific virulence factor variations are important for the success of the C2 genotype. These factors, likely in combination with poor TB control, seem to be the main drivers of C2 success.
Collapse
Affiliation(s)
- Dorte Bek Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Åse Bengård Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Research Unit for Infectious Diseases, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Jajou R, de Neeling A, van Hunen R, de Vries G, Schimmel H, Mulder A, Anthony R, van der Hoek W, van Soolingen D. Epidemiological links between tuberculosis cases identified twice as efficiently by whole genome sequencing than conventional molecular typing: A population-based study. PLoS One 2018; 13:e0195413. [PMID: 29617456 PMCID: PMC5884559 DOI: 10.1371/journal.pone.0195413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patients with Mycobacterium tuberculosis isolates sharing identical DNA fingerprint patterns can be epidemiologically linked. However, municipal health services in the Netherlands are able to confirm an epidemiological link in only around 23% of the patients with isolates clustered by the conventional variable number of tandem repeat (VNTR) genotyping. This research aims to investigate whether whole genome sequencing (WGS) is a more reliable predictor of epidemiological links between tuberculosis patients than VNTR genotyping. METHODS VNTR genotyping and WGS were performed in parallel on all Mycobacterium tuberculosis complex isolates received at the Netherlands National Institute for Public Health and the Environment in 2016. Isolates were clustered by VNTR when they shared identical 24-loci VNTR patterns; isolates were assigned to a WGS cluster when the pair-wise genetic distance was ≤ 12 single nucleotide polymorphisms (SNPs). Cluster investigation was performed by municipal health services on all isolates clustered by VNTR in 2016. The proportion of epidemiological links identified among patients clustered by either method was calculated. RESULTS In total, 535 isolates were genotyped, of which 25% (134/535) were clustered by VNTR and 14% (76/535) by WGS; the concordance between both typing methods was 86%. The proportion of epidemiological links among WGS clustered cases (57%) was twice as common than among VNTR clustered cases (31%). CONCLUSION When WGS was applied, the number of clustered isolates was halved, while all epidemiologically linked cases remained clustered. WGS is therefore a more reliable tool to predict epidemiological links between tuberculosis cases than VNTR genotyping and will allow more efficient transmission tracing, as epidemiological investigations based on false clustering can be avoided.
Collapse
Affiliation(s)
- Rana Jajou
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Albert de Neeling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rianne van Hunen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- KNCV Tuberculosis Foundation, The Hague, The Netherlands
| | - Gerard de Vries
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- KNCV Tuberculosis Foundation, The Hague, The Netherlands
| | - Henrieke Schimmel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arnout Mulder
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Richard Anthony
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim van der Hoek
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Radboud University Medical Centre, Department of Medical Microbiology, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Occurrence and Nature of Double Alleles in Variable-Number Tandem-Repeat Patterns of More than 8,000 Mycobacterium tuberculosis Complex Isolates in The Netherlands. J Clin Microbiol 2018; 56:JCM.00761-17. [PMID: 29142049 PMCID: PMC5786718 DOI: 10.1128/jcm.00761-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/08/2017] [Indexed: 11/20/2022] Open
Abstract
Since 2004, variable-number tandem-repeat (VNTR) typing of Mycobacterium tuberculosis complex isolates has been applied on a structural basis in The Netherlands to study the epidemiology of tuberculosis (TB). Although this technique is faster and technically less demanding than the previously used restriction fragment length polymorphism (RFLP) typing, reproducibility remains a concern. In the period from 2004 to 2015, 8,532 isolates were subjected to VNTR typing in The Netherlands, with 186 (2.2%) of these exhibiting double alleles at one locus. Double alleles were most common in loci 4052 and 2163b. The variables significantly associated with double alleles were urban living (odds ratio [OR], 1.503; 95% confidence interval [CI], 1.084 to 2.084; P = 0.014) and pulmonary TB (OR, 1.703; 95% CI, 1.216 to 2.386; P = 0.002). Single-colony cultures of double-allele strains were produced and revealed single-allele profiles; a maximum of five single nucleotide polymorphisms (SNPs) was observed between the single- and double-allele isolates from the same patient when whole-genome sequencing (WGS) was applied. This indicates the presence of two bacterial populations with slightly different VNTR profiles in the parental population, related to genetic drift. This observation is confirmed by the fact that secondary cases from TB source cases with double-allele isolates sometimes display only one of the two alleles present in the source case. Double alleles occur at a frequency of 2.2% in VNTR patterns in The Netherlands. They are caused by biological variation rather than by technical aberrations and can be transmitted either as single- or double-allele variants.
Collapse
|
39
|
Abstract
Pathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This is quantified by the trait’s broad-sense heritability, H2. A recent discrepancy between estimates of the heritability of HIV-virulence has opened a debate on the estimators’ accuracy. Here, we show that the discrepancy originates from model limitations and important lifecycle differences between sexually reproducing organisms and transmittable pathogens. In particular, current quantitative genetics methods, such as donor–recipient regression of surveyed serodiscordant couples and the phylogenetic mixed model (PMM), are prone to underestimate H2, because they neglect or do not fit to the loss of resemblance between transmission partners caused by within-host evolution. In a phylogenetic analysis of 8,483 HIV patients from the United Kingdom, we show that the phenotypic correlation between transmission partners decays with the amount of within-host evolution of the virus. We reproduce this pattern in toy-model simulations and show that a phylogenetic Ornstein–Uhlenbeck model (POUMM) outperforms the PMM in capturing this correlation pattern and in quantifying H2. In particular, we show that POUMM outperforms PMM even in simulations without selection—as it captures the mentioned correlation pattern—which has not been appreciated until now. By cross-validating the POUMM estimates with ANOVA on closest phylogenetic pairs, we obtain H2 ≈ 0.2, meaning ∼20% of the variation in HIV-virulence is explained by the virus genome both for European and African data.
Collapse
Affiliation(s)
- Venelin Mitov
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Switzerland
| |
Collapse
|
40
|
Pedersen MK, Lillebaek T, Andersen AB, Soini H, Haanperä M, Groenheit R, Jonsson J, Svensson E. Trends and differences in tuberculosis incidences and clustering among natives in Denmark, Sweden and Finland: comparison of native incidences and molecular epidemiology among three low-incidence countries. Clin Microbiol Infect 2017; 24:717-723. [PMID: 29031789 DOI: 10.1016/j.cmi.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare the epidemiology of tuberculosis (TB) in Denmark, Sweden and Finland, by focusing on the native population in order to identify epidemiologic differences and thus indirectly possible differences in TB control. METHODS TB incidence trends from 1990 through 2015 were compared among the countries. In addition, for the periods 2012-2013 and 2014-2015, genotyping data were compared. Genotyping was performed using the 24-locus mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) method in Denmark and Sweden. For Finland, spoligotyping in conjunction with the 15-locus MIRU-VNTR method was used for 2012-2013 and translated into the 24-locus MIRU-VNTR when feasible, and for 2014-2015 only MIRU-VNTR was used. Both incidence trends and molecular epidemiology were assessed for native cases. RESULTS The average annual rate of change in TB incidence for native Danes was -2.4% vs. -6.1% and -6.9% for native Swedes and Finns respectively. In 2012-2013 Denmark had 52 native cases in the largest transmission chain vs. three cases in Sweden and ten in Finland, and during the same period the clustering rate for native Danes was 48.8% vs. 6.5% and 18.2% for native Swedes and Finns respectively. For 2014-2015, a similar pattern was seen. CONCLUSIONS The decline of TB among natives in Denmark is slower than for Sweden and Finland, and it seems Denmark has more active transmission among natives. The focused assessment on basic native TB epidemiology reveals striking differences in TB transmission among otherwise similar low-TB-incidence countries.
Collapse
Affiliation(s)
- M K Pedersen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
| | - T Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - A B Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - H Soini
- National Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - M Haanperä
- National Institute for Health and Welfare (THL), Department of Health Security, Helsinki, Finland
| | - R Groenheit
- Department of Microbiology, Public Health Agency of Sweden, Stockholm, Sweden
| | - J Jonsson
- Department of Monitoring and Evaluation, Public Health Agency of Sweden, Stockholm, Sweden
| | - E Svensson
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
41
|
Tyler AD, Randell E, Baikie M, Antonation K, Janella D, Christianson S, Tyrrell GJ, Graham M, Van Domselaar G, Sharma MK. Application of whole genome sequence analysis to the study of Mycobacterium tuberculosis in Nunavut, Canada. PLoS One 2017; 12:e0185656. [PMID: 28982116 PMCID: PMC5628838 DOI: 10.1371/journal.pone.0185656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Canada has one of the lowest rates of tuberculosis (TB) in the world, however, among certain sub-populations, disease incidence rates approach those observed in sub-Saharan Africa, and other high incidence regions. In this study, we applied mycobacterial interspersed repetitive unit (MIRU) variable number of tandem repeat (VNTR) and whole genome sequencing (WGS) to the analysis of Mycobacterium tuberculosis isolates obtained from Northern communities in the territory of Nunavut. WGS was carried out using the Illumina MiSeq, with identified variants used to infer phylogenetic relationships and annotated to infer functional implications. Additionally, the sequencing data from these isolates were augmented with publically available WGS to evaluate data from the Nunavut outbreak in the broader Canadian context. In this study, isolates could be classified into four major clusters by MIRU-VNTR analysis. These could be further resolved into sub-clusters using WGS. No evidence for antimicrobial resistance, either genetic or phenotypic, was observed in this cohort. Among most subjects with multiple samples, reactivation/incomplete treatment likely contributed to recurrence. However, isolates from two subjects appeared more likely to have occurred via reinfection, based on the large number of genomic single nucleotide variants detected. Finally, although quite distinct from previously reported Canadian MTB strains, isolates obtained from Nunavut clustered most closely with a cohort of samples originating in the Nunavik region of Northern Quebec. This study demonstrates the benefit of using WGS for discriminatory analysis of MTB in Canada, especially in high incidence regions. It further emphasizes the importance of focusing epidemiological intervention efforts on interrupting transmission chains of endemic TB throughout Northern communities, rather than relying on strategies applied in regions where the majority of TB cases result from importation of foreign strains.
Collapse
Affiliation(s)
- Andrea D. Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | - Kym Antonation
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra Janella
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sara Christianson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gregory J. Tyrrell
- The Division of Diagnostic and Applied Microbiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- The Provincial Laboratory for Public Health (Microbiology), Edmonton, Alberta, Canada
| | - Morag Graham
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meenu K. Sharma
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Folkvardsen DB, Norman A, Andersen ÅB, Michael Rasmussen E, Jelsbak L, Lillebaek T. Genomic Epidemiology of a Major Mycobacterium tuberculosis Outbreak: Retrospective Cohort Study in a Low-Incidence Setting Using Sparse Time-Series Sampling. J Infect Dis 2017; 216:366-374. [PMID: 28666374 DOI: 10.1093/infdis/jix298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/20/2017] [Indexed: 11/14/2022] Open
Abstract
Since 1992, Denmark has documented the largest outbreak of tuberculosis in Scandinavia ascribed to a single genotype, termed C2/1112-15. As of spring 2017, the International Reference Laboratory of Mycobacteriology in Copenhagen has collected and identified isolates from more than a thousand cases belonging to this outbreak via routine mycobacterial interspersed repetitive units-variable number of tandem repeats typing. Here, we present a retrospective analysis of the C2/1112-15 dataset, based on whole-genome data from a sparse time series consisting of 5 randomly selected isolates from 23 years of sampling. Even if these data are derived from only 12% of the collected isolates, we have been able to extract important key information, such as mutation rate and conserved single-nucleotide polymorphisms to identify discrete transmission chains, as well as the possible historical origins of the outbreak.
Collapse
Affiliation(s)
- Dorte Bek Folkvardsen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen
| | - Anders Norman
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby
| | - Åse Bengård Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet.,Research Unit for Infectious Diseases, Department of Clinical Research, University of Southern Denmark, Odense
| | - Erik Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen
| |
Collapse
|
43
|
Bjorn-Mortensen K, Lillebaek T, Koch A, Soborg B, Ladefoged K, Sørensen HCF, Kohl TA, Niemann S, Andersen AB. Extent of transmission captured by contact tracing in a tuberculosis high endemic setting. Eur Respir J 2017; 49:49/3/1601851. [PMID: 28331038 DOI: 10.1183/13993003.01851-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Karen Bjorn-Mortensen
- Dept of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark .,International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.,Greenland's Center of Health Research, Nuuk, Greenland.,Research Unit for Infectious Diseases, Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Dept of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bolette Soborg
- Dept of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Ladefoged
- Dept of Internal Medicine, Queen Ingrid's Hospital, Nuuk, Greenland
| | | | - Thomas Andreas Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Borstel, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany.,German Center for Infection Research (DZIF), partner site Borstel, Borstel, Germany
| | - Aase Bengaard Andersen
- Research Unit for Infectious Diseases, Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark.,Dept of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
44
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|