1
|
Debaere SF, Opinion AGR, Allan BJM, Rummer JL, De Boeck G. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process. J Exp Biol 2024; 227:jeb247685. [PMID: 39535050 DOI: 10.1242/jeb.247685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The role of behaviour in animal physiology is much debated, with researchers divided between the traditional view that separates physiology and behaviour, and a progressive perspective that sees behaviour as a physiological effector. We advocate for the latter, and in this Commentary, we argue that behaviour is inherently a physiological process. To do so, we outline the physiological basis for behaviour and draw parallels with recognised physiological processes. We also emphasise the importance of precise language that is shared across biological disciplines, as clear communication is foundational in integrating behaviour into physiology. Our goal with this Commentary is to set the stage for a debate and persuade readers of the merits of including behaviour within the domain of animal physiology. We argue that recognising behaviour as a physiological process is crucial for advancing a unified understanding of physiology, especially in the context of anthropogenic impacts.
Collapse
Affiliation(s)
- Shamil F Debaere
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | | | - Bridie J M Allan
- Department of Marine Science, University of Otāgo, Dunedin 9016, New Zealand
| | - Jodie L Rummer
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
2
|
Ramírez-Calero S, Paula JR, Otjacques E, Ravasi T, Rosa R, Schunter C. Neuromolecular responses in disrupted mutualistic cleaning interactions under future environmental conditions. BMC Biol 2023; 21:258. [PMID: 37957664 PMCID: PMC10644551 DOI: 10.1186/s12915-023-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mutualistic interactions, which constitute some of the most advantageous interactions among fish species, are highly vulnerable to environmental changes. A key mutualistic interaction is the cleaning service rendered by the cleaner wrasse, Labroides dimidiatus, which involves intricate processes of social behaviour to remove ectoparasites from client fish and can be altered in near-future environmental conditions. Here, we evaluated the neuromolecular mechanisms behind the behavioural disruption of cleaning interactions in response to future environments. We subjected cleaner wrasses and surgeonfish (Acanthurus leucosternon, serving as clients) to elevated temperature (warming, 32 °C), increased levels of CO2 (high CO2, 1000 ppm), and a combined condition of elevated CO2 and temperature (warming and high CO2, 32 °C, and 1000 ppm) for 28 days. RESULTS Each of these conditions resulted in behavioural disruptions concerning the motivation to interact and the quality of interaction (high CO2 - 80.7%, warming - 92.6%, warming and high CO2 - 79.5%, p < 0.001). Using transcriptomics of the fore-, mid-, and hindbrain, we discovered that most transcriptional reprogramming in both species under warming conditions occurred primarily in the hind- and forebrain. The associated functions under warming were linked to stress, heat shock proteins, hypoxia, and behaviour. In contrast, elevated CO2 exposure affected a range of functions associated with GABA, behaviour, visual perception, thyroid hormones and circadian rhythm. Interestingly, in the combined warming and high CO2 condition, we did not observe any expression changes of behaviour. However, we did find signs of endoplasmic reticulum stress and apoptosis, suggesting not only an additive effect of the environmental conditions but also a trade-off between physiological performance and behaviour in the cleaner wrasse. CONCLUSIONS We show that impending environmental shifts can affect the behaviour and molecular processes that sustain mutualistic interactions between L. dimidiatus and its clients, which could have a cascading effect on their adaptation potential and possibly cause large-scale impacts on coral reef ecosystems.
Collapse
Affiliation(s)
- S Ramírez-Calero
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Pg. Marítim de La Barceloneta 37-49, Barcelona, Spain
| | - J R Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - E Otjacques
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, University of Coimbra, 3000-456, Coimbra, Portugal
| | - T Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-Son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - R Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora Do Cabo, 939, 2750-374, Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China.
| |
Collapse
|
3
|
Suresh S, Mirasole A, Ravasi T, Vizzini S, Schunter C. Brain transcriptome of gobies inhabiting natural CO 2 seeps reveal acclimation strategies to long-term acidification. Evol Appl 2023; 16:1345-1358. [PMID: 37492147 PMCID: PMC10363848 DOI: 10.1111/eva.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Ocean acidification (OA) is known to affect the physiology, survival, behaviour and fitness of various fish species with repercussions at the population, community and ecosystem levels. Some fish species, however, seem to acclimate rapidly to OA conditions and even thrive in acidified environments. The molecular mechanisms that enable species to successfully inhabit high CO2 environments have not been fully elucidated especially in wild fish populations. Here, we used the natural CO2 seep in Vulcano Island, Italy to study the effects of elevated CO2 exposure on the brain transcriptome of the anemone goby, a species with high population density in the CO2 seep and investigate their potential for acclimation. Compared to fish from environments with ambient CO2, gobies living in the CO2 seep showed differences in the expression of transcripts involved in ion transport and pH homeostasis, cellular stress, immune response, circadian rhythm and metabolism. We also found evidence of potential adaptive mechanisms to restore the functioning of GABAergic pathways, whose activity can be affected by exposure to elevated CO2 levels. Our findings indicate that gobies living in the CO2 seep may be capable of mitigating CO2-induced oxidative stress and maintaining physiological pH while meeting the consequent increased energetic costs. The conspicuous difference in the expression of core circadian rhythm transcripts could provide an adaptive advantage by increasing the flexibility of physiological processes in elevated CO2 conditions thereby facilitating acclimation. Our results show potential molecular processes of acclimation to elevated CO2 in gobies enabling them to thrive in the acidified waters of Vulcano Island.
Collapse
Affiliation(s)
- Sneha Suresh
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Alice Mirasole
- Department of Integrative Marine EcologyIschia Marine Centre, Stazione Zoologica Anton DohrnNaplesItaly
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Salvatrice Vizzini
- Department of Earth and Marine SciencesUniversity of PalermoPalermoItaly
- CoNISMa, National Inter‐University Consortium for Marine ScienceRomaItaly
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SARChina
| |
Collapse
|
4
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
5
|
Paula JR, Repolho T, Grutter AS, Rosa R. Access to Cleaning Services Alters Fish Physiology Under Parasite Infection and Ocean Acidification. Front Physiol 2022; 13:859556. [PMID: 35755439 PMCID: PMC9213755 DOI: 10.3389/fphys.2022.859556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Cleaning symbioses are key mutualistic interactions where cleaners remove ectoparasites and tissues from client fishes. Such interactions elicit beneficial effects on clients’ ecophysiology, with cascading effects on fish diversity and abundance. Ocean acidification (OA), resulting from increasing CO2 concentrations, can affect the behavior of cleaner fishes making them less motivated to inspect their clients. This is especially important as gnathiid fish ectoparasites are tolerant to ocean acidification. Here, we investigated how access to cleaning services, performed by the cleaner wrasse Labroides dimidiatus, affect individual client’s (damselfish, Pomacentrus amboinensis) aerobic metabolism in response to both experimental parasite infection and OA. Access to cleaning services was modulated using a long-term removal experiment where cleaner wrasses were consistently removed from patch reefs around Lizard Island (Australia) for 17 years or left undisturbed. Only damselfish with access to cleaning stations had a negative metabolic response to parasite infection (maximum metabolic rate—ṀO2Max; and both factorial and absolute aerobic scope). Moreover, after an acclimation period of 10 days to high CO2 (∼1,000 µatm CO2), the fish showed a decrease in factorial aerobic scope, being the lowest in fish without the access to cleaners. We propose that stronger positive selection for parasite tolerance might be present in reef fishes without the access to cleaners, but this might come at a cost, as readiness to deal with parasites can impact their response to other stressors, such as OA.
Collapse
Affiliation(s)
- José Ricardo Paula
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| |
Collapse
|
6
|
Kang J, Nagelkerken I, Rummer JL, Rodolfo‐Metalpa R, Munday PL, Ravasi T, Schunter C. Rapid evolution fuels transcriptional plasticity to ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:3007-3022. [PMID: 35238117 PMCID: PMC9310587 DOI: 10.1111/gcb.16119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 05/16/2023]
Abstract
Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2 , thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.
Collapse
Affiliation(s)
- Jingliang Kang
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SARChina
| | - Ivan Nagelkerken
- Southern Seas Ecology LaboratoriesSchool of Biological Sciences & The Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Riccardo Rodolfo‐Metalpa
- ENTROPIE – UMR 9220 (CNRS, IRD, UR, UNC, IFREMER)IRD Institut de Recherche pour le DéveloppementNouméa cedexNew Caledonia
| | - Philip L. Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong KongHong Kong SARChina
- State Key Laboratory of Marine PollutionCity University of Hong KongHong KongHong Kong SARChina
| |
Collapse
|
7
|
Whitlock KE, Palominos MF. The Olfactory Tract: Basis for Future Evolution in Response to Rapidly Changing Ecological Niches. Front Neuroanat 2022; 16:831602. [PMID: 35309251 PMCID: PMC8927807 DOI: 10.3389/fnana.2022.831602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
Within the forebrain the olfactory sensory system is unique from other sensory systems both in the projections of the olfactory tract and the ongoing neurogenic potential, characteristics conserved across vertebrates. Olfaction plays a crucial role in behaviors such as mate choice, food selection, homing, escape from predators, among others. The olfactory forebrain is intimately associated with the limbic system, the region of the brain involved in learning, memory, and emotions through interactions with the endocrine system and the autonomic nervous system. Previously thought to lack a limbic system, we now know that teleost fishes process emotions, have exceptional memories, and readily learn, behaviors that are often associated with olfactory cues. The association of neuromodulatory hormones, and more recently, the immune system, with odor cues underlies behaviors essential for maintenance and adaptation within natural ecological niches. Increasingly anthropogenic perturbations affecting ecosystems are impacting teleost fishes worldwide. Here we examine the role of the olfactory tract as the neural basis for the integration of environmental cues and resulting behaviors necessary for the regulation of biotic interactions that allow for future adaptation as the climate spins out of control.
Collapse
Affiliation(s)
- Kathleen E. Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
- *Correspondence: Kathleen E. Whitlock
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
8
|
Costa RA, Olvera A, Power DM, Velez Z. Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabream. Biol Open 2022; 11:274528. [PMID: 35199828 PMCID: PMC8935210 DOI: 10.1242/bio.059073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) to 4 weeks' exposure to ocean acidification (OA). Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the 4 weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after 4 weeks' exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after 4 weeks' exposure, except for [Cl−], which remained elevated. This suggests that, in general, there is an early physiological response to OA and by 4 weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity. Summary: Ocean acidification alters fish behaviour. We show altered expression of genes involved in neuroplasticity and neuromodulation in fish exposed to high PCO2, highlighting their possible roles in such behavioural alterations.
Collapse
Affiliation(s)
- Rita A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Aurora Olvera
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| | - Zélia Velez
- Comparative Endocrinology and Integrative Biology Group, Centre for Marine Sciences, University of Algarve, Campus of Gambelas, Building 7, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Dhara K, Chukwuka AV, Saha S, Saha NC, Faggio C. Effects of short-term selenium exposure on respiratory activity and proximate body composition of early-life stages of Catla catla, Labeo rohita and Cirrhinus mrigala. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103805. [PMID: 34974167 DOI: 10.1016/j.etap.2021.103805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Metal exposure impairs respiration, increases metabolic demand, and reduces energy storage/fitness in aquatic species. Respiratory impairment and energy storage was examined in acute selenium-exposed Indian major carps, Catla catla, Labeo rohita and Cirrhinus mrigala fry and were correlated with exposure concentrations. Toxicity effects were determined in a renewal bioassay using 96 h lethal selenium concentrations. Species sensitivity distribution (SSD) was also used to derive predicted no-effect concentrations, toxicity exposure ratios, for selenium exposures to early-life fish stages. Mortality was proportional with increasing concentrations. Oxygen consumption and lipid content compared to moisture and ash and of all protein content in tissues of C. catla and C. mrigala indicates that lowered oxygen consumption is directly predictive of lowered lipid content and selenium-induced hypoxia impacts the energy/nutritional status of the early-life stage of carp. This cross-taxa comparison will have major implications for advancing impact assessment and allow better targeting of species for conservation measures.
Collapse
Affiliation(s)
- Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Govt. of West Bengal, Kulia, Kalyani, Nadia 741 235, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Osun State, Nigeria
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24 Parganas 743611, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
10
|
Hamilton TJ, Radke NH, Bajwa J, Chaput S, Tresguerres M. The dose makes the poison: Non-linear behavioural response to CO 2-induced aquatic acidification in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146320. [PMID: 33725593 DOI: 10.1016/j.scitotenv.2021.146320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
CO2-induced aquatic acidification is predicted to affect fish neuronal GABAA receptors leading to widespread behavioural alterations. However, the large variability in the magnitude and direction of behavioural responses suggests substantial species-specific CO2 threshold differences, life history and parental acclimation effects, experimental artifacts, or a combination of these factors. As an established model organism, zebrafish (Danio rerio) can be reared under stable conditions for multiple generations, which may help control for some of the variability observed in wild-caught fishes. Here, we used two standardized tests to investigate the effect of 1-week acclimatization to four pCO2 levels on zebrafish anxiety-like behaviour, exploratory behaviour, and locomotion. Fish acclimatized to 900 μatm CO2 demonstrated increased anxiety-like behaviour compared to control fish (~480 μatm), however, the behaviour of fish exposed to 2200 μatm CO2 was indistinguishable from that of controls. In addition, fish acclimatized to 4200 μatm CO2 had decreased anxiety-like behaviour; i.e. the opposite response than the 900 μatm CO2 treatment. On the other hand, exploratory behaviour did not differ among any of the pCO2 exposures that were tested. Thus, zebrafish behavioural responses to elevated pCO2 are not linear; with potential important implications for physiological, environmental, and aquatic acidification studies.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | - Jasmin Bajwa
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Shayna Chaput
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA.
| |
Collapse
|
11
|
Ocean Acidification Amplifies the Olfactory Response to 2-Phenylethylamine: Altered Cue Reception as a Mechanistic Pathway? J Chem Ecol 2021; 47:859-876. [PMID: 34014453 PMCID: PMC8613125 DOI: 10.1007/s10886-021-01276-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
With carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.
Collapse
|
12
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
13
|
Laubenstein TD, Jarrold MD, Rummer JL, Munday PL. Beneficial effects of diel CO 2 cycles on reef fish metabolic performance are diminished under elevated temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139084. [PMID: 32480143 DOI: 10.1016/j.scitotenv.2020.139084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/06/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Elevated CO2 levels have been shown to affect metabolic performance in some coral reef fishes. However, all studies to date have employed stable elevated CO2 levels, whereas reef habitats can experience substantial diel fluctuations in pCO2 ranging from ±50 to 600 μatm around the mean, fluctuations that are predicted to increase in magnitude by the end of the century. Additionally, past studies have often investigated the effect of elevated CO2 in isolation, despite the fact that ocean temperatures will increase in tandem with CO2 levels. Here, we tested the effects of stable (1000 μatm) versus diel-cycling (1000 ± 500 μatm) elevated CO2 conditions and elevated temperature (+2 °C) on metabolic traits of juvenile spiny damselfish, Acanthochromis polyacanthus. Resting oxygen uptake rates (ṀO2) were higher in fish exposed to stable elevated CO2 conditions when compared to fish from stable control conditions, but were restored to control levels under diel CO2 fluctuations. However, the benefits of diel CO2 fluctuations were diminished at elevated temperature. Factorial aerobic scope showed a similar pattern, but neither maximal ṀO2 nor absolute aerobic scope was affected by CO2 or temperature. Our results suggest that diel CO2 cycles can ameliorate the increased metabolic cost associated with elevated CO2, but elevated temperature diminishes the benefits of diel CO2 cycles. Thus, previous studies may have misestimated the effect of ocean acidification on the metabolic performance of reef fishes by not accounting for environmental CO2 fluctuations. Our findings provide novel insights into the interacting effects of diel CO2 fluctuations and temperature on the metabolic performance of reef fishes.
Collapse
Affiliation(s)
- Taryn D Laubenstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Michael D Jarrold
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
14
|
Jarrold MD, Welch MJ, McMahon SJ, McArley T, Allan BJM, Watson SA, Parsons DM, Pether SMJ, Pope S, Nicol S, Smith N, Herbert N, Munday PL. Elevated CO 2 affects anxiety but not a range of other behaviours in juvenile yellowtail kingfish. MARINE ENVIRONMENTAL RESEARCH 2020; 157:104863. [PMID: 32275516 DOI: 10.1016/j.marenvres.2019.104863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/11/2023]
Abstract
Elevated seawater CO2 can cause a range of behavioural impairments in marine fishes. However, most studies to date have been conducted on small benthic species and very little is known about how higher oceanic CO2 levels could affect the behaviour of large pelagic species. Here, we tested the effects of elevated CO2, and where possible the interacting effects of high temperature, on a range of ecologically important behaviours (anxiety, routine activity, behavioural lateralization and visual acuity) in juvenile yellowtail kingfish, Seriola lalandi. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO2 (~500 and ~1000 μatm pCO2) and temperature (21 °C and 25 °C). The effects of elevated CO2 were trait-specific with anxiety the only behaviour significantly affected. Juvenile S. lalandi reared at elevated CO2 spent more time in the dark zone during a standard black-white test, which is indicative of increased anxiety. Exposure to high temperature had no significant effect on any of the behaviours tested. Overall, our results suggest that juvenile S. lalandi are largely behaviourally tolerant to future ocean acidification and warming. Given the ecological and economic importance of large pelagic fish species more studies investigating the effect of future climate change are urgently needed.
Collapse
Affiliation(s)
- Michael D Jarrold
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Megan J Welch
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shannon J McMahon
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Tristan McArley
- Leigh Marine Laboratory, The University of Auckland, Leigh, 0985, New Zealand
| | - Bridie J M Allan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia; Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| | - Sue-Ann Watson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, 4810, Australia
| | - Darren M Parsons
- Leigh Marine Laboratory, The University of Auckland, Leigh, 0985, New Zealand; National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
| | - Stephen M J Pether
- National Institute of Water and Atmospheric Research, Northland Marine Research Centre, Station Road, Ruakaka, 0116, New Zealand
| | - Stephen Pope
- National Institute of Water and Atmospheric Research Ltd, Auckland, New Zealand
| | - Simon Nicol
- Insitute for Applied Ecology, University of Canberra, ACT, 2617, Australia
| | - Neville Smith
- Oceanic Fisheries Programme, Pacific Community, CPS - B.P, D5 98848, Noumea, New Caledonia
| | - Neill Herbert
- Leigh Marine Laboratory, The University of Auckland, Leigh, 0985, New Zealand
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
15
|
Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zool 2020; 17:7. [PMID: 32095155 PMCID: PMC7027112 DOI: 10.1186/s12983-020-0350-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/06/2020] [Indexed: 01/16/2023] Open
Abstract
For nearly a decade, the metazoan-focused research community has explored the impacts of ocean acidification (OA) on marine animals, noting that changes in ocean chemistry can impact calcification, metabolism, acid-base regulation, stress response and behavior in organisms that hold high ecological and economic value. Because OA interacts with several key physiological processes in marine organisms, transcriptomics has become a widely-used method to characterize whole organism responses on a molecular level as well as inform mechanisms that explain changes in phenotypes observed in response to OA. In the past decade, there has been a notable rise in studies that examine transcriptomic responses to OA in marine metazoans, and here we attempt to summarize key findings across these studies. We find that organisms vary dramatically in their transcriptomic responses to pH although common patterns are often observed, including shifts in acid-base ion regulation, metabolic processes, calcification and stress response mechanisms. We also see a rise in transcriptomic studies examining organismal response to OA in a multi-stressor context, often reporting synergistic effects of OA and temperature. In addition, there is an increase in studies that use transcriptomics to examine the evolutionary potential of organisms to adapt to OA conditions in the future through population and transgenerational experiments. Overall, the literature reveals complex organismal responses to OA, in which some organisms will face more dramatic consequences than others. This will have wide-reaching impacts on ocean communities and ecosystems as a whole.
Collapse
Affiliation(s)
- Marie E Strader
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,2Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Juliet M Wong
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA.,3Present address: Department of Biological Sciences, Florida International University, North Miami, FL 33181 USA
| | - Gretchen E Hofmann
- 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
16
|
Frommel AY, Carless J, Hunt BPV, Brauner CJ. Physiological resilience of pink salmon to naturally occurring ocean acidification. CONSERVATION PHYSIOLOGY 2020; 8:coaa059. [PMID: 32765881 PMCID: PMC7397481 DOI: 10.1093/conphys/coaa059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/14/2020] [Indexed: 05/12/2023]
Abstract
Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton's K), as well as haematocrit and plasma [Cl-]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl-] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.
Collapse
Affiliation(s)
- Andrea Y Frommel
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Corresponding author: Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Justin Carless
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,, Vancouver, BC, Canada
- Hakai Institute, Quadra Island, BC, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Schunter C, Ravasi T, Munday PL, Nilsson GE. Neural effects of elevated CO 2 in fish may be amplified by a vicious cycle. CONSERVATION PHYSIOLOGY 2019; 7:coz100. [PMID: 31832196 PMCID: PMC6899223 DOI: 10.1093/conphys/coz100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 05/28/2023]
Abstract
Maladaptive behavioural disturbances have been reported in some fishes and aquatic invertebrates exposed to projected future CO2 levels. These disturbances have been linked to altered ion gradients and neurotransmitter function in the brain. Still, it seems surprising that the relatively small ionic changes induced by near-future CO2 levels can have such profound neural effects. Based on recent transcriptomics data, we propose that a vicious cycle can be triggered that amplifies the initial disturbance, explaining how small pH regulatory adjustments in response to ocean acidification can lead to major behavioural alterations in fish and other water-breathing animals. The proposed cycle is initiated by a reversal of the function of some inhibitory GABAA receptors in the direction of neural excitation and then amplified by adjustments in gene expression aimed at suppressing the excitation but in reality increasing it. In addition, the increased metabolic production of CO2 by overexcited neurons will feed into the cycle by elevating intracellular bicarbonate levels that will lead to increased excitatory ion fluxes through GABAA receptors. We also discuss the possibility that an initiation of a vicious cycle could be one of the several factors underlying the differences in neural sensitivity to elevated CO2 displayed by fishes.
Collapse
Affiliation(s)
- Celia Schunter
- Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland 4814, Australia
| | - Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
18
|
Zlatkin RL, Heuer RM. Ocean acidification affects acid-base physiology and behaviour in a model invertebrate, the California sea hare ( Aplysia californica). ROYAL SOCIETY OPEN SCIENCE 2019; 6:191041. [PMID: 31824711 PMCID: PMC6837219 DOI: 10.1098/rsos.191041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/06/2019] [Indexed: 06/07/2023]
Abstract
Behavioural impairment following exposure to ocean acidification-relevant CO2 levels has been noted in a broad array of taxa. The underlying cause of these disruptions is thought to stem from alterations of ion gradients ( HC O 3 - / C l - ) across neuronal cell membranes that occur as a consequence of maintaining pH homeostasis via the accumulation of HC O 3 - . While behavioural impacts are widely documented, few studies have measured acid-base parameters in species showing behavioural disruptions. In addition, current studies examining mechanisms lack resolution in targeting specific neural pathways corresponding to a given behaviour. With these considerations in mind, acid-base parameters and behaviour were measured in a model organism used for decades as a research model to study learning, the California sea hare (Aplysia californica). Aplysia exposed to elevated CO2 increased haemolymph HC O 3 - , achieving full and partial pH compensation at 1200 and 3000 µatm CO2, respectively. Increased CO2 did not affect self-righting behaviour. In contrast, both levels of elevated CO2 reduced the time of the tail-withdrawal reflex, suggesting a reduction in antipredator response. Overall, these results confirm that Aplysia are promising models to examine mechanisms underlying CO2-induced behavioural disruptions since they regulate HC O 3 - and have behaviours linked to neural networks amenable to electrophysiological testing.
Collapse
Affiliation(s)
| | - Rachael M. Heuer
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
19
|
Schlenker LS, Welch MJ, Meredith TL, Mager EM, Lari E, Babcock EA, Pyle GG, Munday PL, Grosell M. Damsels in Distress: Oil Exposure Modifies Behavior and Olfaction in Bicolor Damselfish ( Stegastes partitus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10993-11001. [PMID: 31449401 DOI: 10.1021/acs.est.9b03915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the Deepwater Horizon disaster, exposing marine organisms to this environmental contaminant. We examined the ability of bicolor damselfish (Stegastes partitus), exposed to the water accommodated fraction (WAF) of crude oil, to respond to chemical alarm cue (CAC) using a two-channel flume. Control bicolor damselfish avoided CAC in the flume choice test, whereas WAF-exposed conspecifics did not. This lack of avoidance persisted following 8 days of control water conditions. We then examined the physiological response to CAC, brine shrimp rinse, bile salt, and amino acid cues using the electro-olfactogram (EOG) technique and found that WAF-exposed bicolor damselfish were less likely to detect CAC as an olfactory cue but showed no difference in EOG amplitude or duration compared to controls. These data indicate that a sublethal WAF exposure directly modifies detection and avoidance of CAC beyond the exposure period and may suggest reduced predator avoidance behavior in oil-exposed fish in the wild.
Collapse
Affiliation(s)
- Lela S Schlenker
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| | - Megan J Welch
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville , QLD , Australia 4811
| | - Tricia L Meredith
- Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Edward M Mager
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1511 W. Sycamore Street , Denton , Texas 76203 , United States
| | - Ebrahim Lari
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Elizabeth A Babcock
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| | - Greg G Pyle
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville , QLD , Australia 4811
| | - Martin Grosell
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| |
Collapse
|
20
|
Schwieterman GD, Crear DP, Anderson BN, Lavoie DR, Sulikowski JA, Bushnell PG, Brill RW. Combined Effects of Acute Temperature Change and Elevated pCO 2 on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate ( Rostaraja eglanteria), Summer Flounder ( Paralichthys dentatus), and Thorny Skate ( Amblyraja radiata). BIOLOGY 2019; 8:biology8030056. [PMID: 31357558 PMCID: PMC6783964 DOI: 10.3390/biology8030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population's habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44-105%; p < 0.05) and decreases in hypoxia tolerance (60-84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA.
| | - Daniel P Crear
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | - Brooke N Anderson
- Marine Sciences Department, University of New England, Biddeford, ME 04005, USA
| | - Danielle R Lavoie
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - James A Sulikowski
- School of Mathematical & Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Peter G Bushnell
- Department of Biological Sciences, Indiana University South Bend, South Bend, IN, 46615, USA
| | - Richard W Brill
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
21
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Moses Ndugwa
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Warren Caneos
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
22
|
Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish. Oecologia 2019; 190:689-702. [DOI: 10.1007/s00442-019-04430-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
23
|
Cattano C, Fine M, Quattrocchi F, Holzman R, Milazzo M. Behavioural responses of fish groups exposed to a predatory threat under elevated CO 2. MARINE ENVIRONMENTAL RESEARCH 2019; 147:179-184. [PMID: 31060864 DOI: 10.1016/j.marenvres.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Most of the studies dealing with the effects of ocean acidification (OA) on fish behaviour tested individuals in isolation, even when the examined species live in shoals in the wild. Here we evaluated the effects of elevated CO2 concentrations (i.e. ∼900 μatm) on the shelter use and group cohesion of the gregarious damselfish Chromis viridis using groups of sub-adults exposed to a predatory threat. Results showed that, under predatory threat, fish reared at elevated CO2 concentrations displayed a risky behaviour (i.e. decreased shelter use), whereas their group cohesion was unaffected. Our findings add on increasing evidence to account for social dynamics in OA experiments, as living in groups may compensate for CO2-induced risky behaviour.
Collapse
Affiliation(s)
- C Cattano
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197, Roma. Italy.
| | - M Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| | - F Quattrocchi
- Institute for marine biological resources and biotechnologies, Via Vaccara, 61, 91026, Mazara del Vallo, TP, Italy
| | - R Holzman
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel; Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - M Milazzo
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197, Roma. Italy
| |
Collapse
|
24
|
Draper AM, Weissburg MJ. Impacts of Global Warming and Elevated CO2 on Sensory Behavior in Predator-Prey Interactions: A Review and Synthesis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
25
|
Laubenstein TD, Rummer JL, McCormick MI, Munday PL. A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci Rep 2019; 9:4265. [PMID: 30862781 PMCID: PMC6414711 DOI: 10.1038/s41598-018-36747-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 11/16/2022] Open
Abstract
Many studies have examined the average effects of ocean acidification and warming on phenotypic traits of reef fishes, finding variable, but often negative effects on behavioural and physiological performance. Yet the presence and nature of a relationship between these traits is unknown. A negative relationship between phenotypic traits could limit individual performance and even the capacity of populations to adapt to climate change. Here, we examined the relationship between behavioural and physiological performance of a juvenile reef fish under elevated CO2 and temperature in a full factorial design. Behaviourally, the response to an alarm odour was negatively affected by elevated CO2, but not elevated temperature. Physiologically, aerobic scope was significantly diminished under elevated temperature, but not under elevated CO2. At the individual level, there was no relationship between behavioural and physiological traits in the control and single-stressor treatments. However, a statistically significant negative relationship was detected between the traits in the combined elevated CO2 and temperature treatment. Our results demonstrate that trade-offs in performance between behavioural and physiological traits may only be evident when multiple climate change stressors are considered, and suggest that this negative relationship could limit adaptive potential to climate change.
Collapse
Affiliation(s)
- Taryn D Laubenstein
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
26
|
Williams CR, Dittman AH, McElhany P, Busch DS, Maher M, Bammler TK, MacDonald JW, Gallagher EP. Elevated CO 2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). GLOBAL CHANGE BIOLOGY 2019; 25:963-977. [PMID: 30561876 PMCID: PMC7065673 DOI: 10.1111/gcb.14532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 05/16/2023]
Abstract
Elevated concentrations of CO2 in seawater can disrupt numerous sensory systems in marine fish. This is of particular concern for Pacific salmon because they rely on olfaction during all aspects of their life including during their homing migrations from the ocean back to their natal streams. We investigated the effects of elevated seawater CO2 on coho salmon (Oncorhynchus kisutch) olfactory-mediated behavior, neural signaling, and gene expression within the peripheral and central olfactory system. Ocean-phase coho salmon were exposed to three levels of CO2 , ranging from those currently found in ambient marine water to projected future levels. Juvenile coho salmon exposed to elevated CO2 levels for 2 weeks no longer avoided a skin extract odor that elicited avoidance responses in coho salmon maintained in ambient CO2 seawater. Exposure to these elevated CO2 levels did not alter odor signaling in the olfactory epithelium, but did induce significant changes in signaling within the olfactory bulb. RNA-Seq analysis of olfactory tissues revealed extensive disruption in expression of genes involved in neuronal signaling within the olfactory bulb of salmon exposed to elevated CO2 , with lesser impacts on gene expression in the olfactory rosettes. The disruption in olfactory bulb gene pathways included genes associated with GABA signaling and maintenance of ion balance within bulbar neurons. Our results indicate that ocean-phase coho salmon exposed to elevated CO2 can experience significant behavioral impairments likely driven by alteration in higher-order neural signal processing within the olfactory bulb. Our study demonstrates that anadromous fish such as salmon may share a sensitivity to rising CO2 levels with obligate marine species suggesting a more wide-scale ecological impact of ocean acidification.
Collapse
Affiliation(s)
- Chase R. Williams
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Andrew H. Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E Seattle WA 98112, USA
- Corresponding author at NOAA fisheries, Andrew H. Dittman, Ph.D., Tel: 206-860-3392,
| | - Paul McElhany
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - D. Shallin Busch
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
- Ocean Acidification Program, Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle WA 98112, USA
| | - Michael Maher
- Conservation Biology Division, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 802 Front Street, Mukilteo, WA 98275, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences. University of Washington. Seattle, WA 98105
- Corresponding author at the University of Washington, Evan P. Gallagher, Ph.D., Tel: 1-206-616-4739,
| |
Collapse
|
27
|
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Pousão-Ferreira P, Rosa R, Marques A, Diniz MS. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. ENVIRONMENTAL RESEARCH 2019; 169:7-25. [PMID: 30399468 DOI: 10.1016/j.envres.2018.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Sousa Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
28
|
Brauner CJ, Shartau RB, Damsgaard C, Esbaugh AJ, Wilson RW, Grosell M. Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Jiahuan R, Wenhao S, Xiaofan G, Wei S, Shanjie Z, Maolong H, Haifeng W, Guangxu L. Ocean Acidification Impairs Foraging Behavior by Interfering With Olfactory Neural Signal Transduction in Black Sea Bream, Acanthopagrus schlegelii. Front Physiol 2018; 9:1592. [PMID: 30515101 PMCID: PMC6255911 DOI: 10.3389/fphys.2018.01592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
In recent years, ocean acidification (OA) caused by oceanic absorption of anthropogenic carbon dioxide (CO2) has drawn worldwide concern over its physiological and ecological effects on marine organisms. However, the behavioral impacts of OA and especially the underlying physiological mechanisms causing these impacts are still poorly understood in marine species. Therefore, in the present study, the effects of elevated pCO2 on foraging behavior, in vivo contents of two important neurotransmitters, and the expression of genes encoding key modulatory enzymes from the olfactory transduction pathway were investigated in the larval black sea bream. The results showed that larval sea breams (length of 4.71 ± 0.45 cm) reared in pCO2 acidified seawater (pH at 7.8 and 7.4) for 15 days tend to stall longer at their acclimated zone and swim with a significant slower velocity in a more zigzag manner toward food source, thereby taking twice the amount of time than control (pH at 8.1) to reach the food source. These findings indicate that the foraging behavior of the sea bream was significantly impaired by ocean acidification. In addition, compared to a control, significant reductions in the in vivo contents of γ-aminobutyric acid (GABA) and Acetylcholine (ACh) were detected in ocean acidification-treated sea breams. Furthermore, in the acidified experiment groups, the expression of genes encoding positive regulators, the olfaction-specific G protein (Golf) and the G-protein signaling 2 (RGS2) and negative regulators, the G protein-coupled receptor kinase (GRK) and arrestin in the olfactory transduction pathway were found to be significantly suppressed and up-regulated, respectively. Changes in neurotransmitter content and expression of olfactory transduction related genes indicate a significant disruptive effect caused by OA on olfactory neural signal transduction, which might reveal the underlying cause of the hampered foraging behavior.
Collapse
Affiliation(s)
- Rong Jiahuan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Su Wenhao
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Guan Xiaofan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shi Wei
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zha Shanjie
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - He Maolong
- Lucta (Guangzhou) Flavours Co., Ltd., Guangzhou, China
| | - Wang Haifeng
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Liu Guangxu
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Lee C, Kwon BO, Hong S, Noh J, Lee J, Ryu J, Kang SG, Khim JS. Sub-lethal and lethal toxicities of elevated CO 2 on embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:586-595. [PMID: 29885629 DOI: 10.1016/j.envpol.2018.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The potential leakage from marine CO2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems.
Collapse
Affiliation(s)
- Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwagun, Incheon, Republic of Korea
| | - Seong-Gil Kang
- Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Maulvault AL, Barbosa V, Alves R, Anacleto P, Camacho C, Cunha S, Fernandes JO, Ferreira PP, Rosa R, Marques A, Diniz M. Integrated multi-biomarker responses of juvenile seabass to diclofenac, warming and acidification co-exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:65-79. [PMID: 30007156 DOI: 10.1016/j.aquatox.2018.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical drugs, such as diclofenac (DCF), are frequently detected in the marine environment, and recent evidence has pointed out their toxicity to non-target marine biota. Concomitantly, altered environmental conditions associated with climate change (e.g. warming and acidification) can also affect the physiology of marine organisms. Yet, the underlying interactions between these environmental stressors (pharmaceutical exposure and climate change-related stressors) still require a deeper understanding. Comprehending the influence of abiotic variables on chemical contaminants' toxicological attributes provides a broader view of the ecological consequences of climate change. Hence, the aim of this study was to assess the ecotoxicological responses of juvenile seabass Dicenthrachus labrax under the co-exposure to DCF (from dietary sources, 500 ± 36 ng kg-1 dw), warming (ΔTºC = +5 °C) and acidification (ΔpCO2 ∼1000 μatm, equivalent to ΔpH = -0.4 units), using an "Integrated Biomarker Response" (IBR) approach. Fish were exposed to these three stressors, acting alone or combined, for 28 days in a full cross-factorial design, and blood, brain, liver and muscle tissues were subsequently collected in order to evaluate: i) animal/organ fitness; ii) hematological parameters and iii) molecular biomarkers. Results not only confirmed the toxicological attributes of dietary exposure to DCF in marine fish species at the tissue (e.g. lower HSI), cellular (e.g. increased ENAs and lower erythrocytes viability) and molecular levels (e.g. increased oxidative stress, protein degradation, AChE activity and VTG synthesis), but also showed that such attributes are altered by warming and acidification. Hence, while acidification and/or warming enhanced some effects of DCF exposure (e.g. by further lowering erythrocyte viability, and increasing brain GST activity and Ub synthesis in muscle), the co-exposure to these abiotic stressors also resulted in a reversion/inhibition of some molecular responses (e.g. lower CAT and SOD inhibition and VTG synthesis). IBRs evidenced that an overall higher degree of stress (i.e. high IBR index) was associated with DCF and warming co-exposure, while the effects of acidification were less evident. The distinct responses observed when DCF acted alone or the animals were co-exposed to the drug together with warming and acidification not only highlighted the relevance of considering the interactions between multiple environmental stressors in ecotoxicological studies, but also suggested that the toxicity of pharmaceuticals can be aggravated by climate change-related stressors (particularly warming), thus, posing additional biological challenges to marine fish populations.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal.
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Carolina Camacho
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Sara Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro Pousão Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Diniz
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
33
|
Kelley JL, Chapuis L, Davies WIL, Collin SP. Sensory System Responses to Human-Induced Environmental Change. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Spady BL, Munday PL, Watson SA. Predatory strategies and behaviours in cephalopods are altered by elevated CO 2. GLOBAL CHANGE BIOLOGY 2018; 24:2585-2596. [PMID: 29460508 DOI: 10.1111/gcb.14098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that projected near-future carbon dioxide (CO2 ) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2 . I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2 . Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far-reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.
Collapse
Affiliation(s)
- Blake L Spady
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
35
|
McCormick MI, Watson SA, Simpson SD, Allan BJM. Effect of elevated CO 2 and small boat noise on the kinematics of predator-prey interactions. Proc Biol Sci 2018; 285:20172650. [PMID: 29563262 PMCID: PMC5897633 DOI: 10.1098/rspb.2017.2650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 11/12/2022] Open
Abstract
Oceans of the future are predicted to be more acidic and noisier, particularly along the productive coastal fringe. This study examined the independent and combined effects of short-term exposure to elevated CO2 and boat noise on the predator-prey interactions of a pair of common coral reef fishes (Pomacentrus wardi and its predator, Pseudochromis fuscus). Successful capture of prey by predators was the same regardless of whether the pairs had been exposed to ambient control conditions, the addition of either playback of boat noise, elevated CO2 (925 µatm) or both stressors simultaneously. The kinematics of the interaction were the same for all stressor combinations and differed from the controls. The effects of CO2 or boat noise were the same, suggesting that their effects were substitutive in this situation. Prey reduced their perception of threat under both stressors individually and when combined, and this coincided with reduced predator attack distances and attack speeds. The lack of an additive or multiplicative effect when both stressors co-occurred was notable given the different mechanisms involved in sensory disruptions and highlights the importance of determining the combined effects of key drivers to aid in predicting community dynamics under future environmental scenarios.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Department of Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Stephen D Simpson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Department of Marine Biology and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
36
|
Tresguerres M, Hamilton TJ. Acid-base physiology, neurobiology and behaviour in relation to CO 2-induced ocean acidification. ACTA ACUST UNITED AC 2018; 220:2136-2148. [PMID: 28615486 DOI: 10.1242/jeb.144113] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABAA receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABAA receptor antagonist gabazine on control animals and those exposed to elevated CO2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABAA receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO2-induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada T5J 4S2 .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
37
|
Hannan KD, Rummer JL. Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions. J Exp Biol 2018. [DOI: 10.1242/jeb.154559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Aquatic acidification, caused by elevating levels of atmospheric carbon dioxide (CO2), is increasing in both freshwater and marine ecosystems worldwide. However, few studies have examined how acidification will affect oxygen (O2) transport and, therefore, performance in fishes. Although data are generally lacking, the majority of fishes investigated in this meta-analysis exhibited no effect of elevated CO2 at the level of O2 uptake, suggesting that they are able to maintain metabolic performance during a period of acidosis. Notably, the mechanisms that fish employ to maintain performance and O2 uptake have yet to be verified. Here, we summarize current data related to one recently proposed mechanism underpinning the maintenance of O2 uptake during exposure to aquatic acidification, and reveal knowledge gaps that could be targeted for future research. Most studies have examined O2 uptake rates while fishes were resting and did not calculate aerobic scope, even though aerobic scope can aid in predicting changes to whole-animal metabolic performance. Furthermore, research is lacking on different age classes, freshwater species and elasmobranchs, all of which might be impacted by future acidification conditions. Finally, this Review further seeks to emphasize the importance of developing collaborative efforts between molecular, physiological and ecological approaches in order to provide more comprehensive predictions as to how future fish populations will be affected by climate change.
Collapse
Affiliation(s)
- Kelly D. Hannan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Jodie L. Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
38
|
Weiss LC, Pötter L, Steiger A, Kruppert S, Frost U, Tollrian R. Rising pCO2 in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced Defenses in Daphnia. Curr Biol 2018; 28:327-332.e3. [DOI: 10.1016/j.cub.2017.12.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
|
39
|
Davis BE, Komoroske LM, Hansen MJ, Poletto JB, Perry EN, Miller NA, Ehlman SM, Wheeler SG, Sih A, Todgham AE, Fangue NA. Juvenile rockfish show resilience to CO 2-acidification and hypoxia across multiple biological scales. CONSERVATION PHYSIOLOGY 2018; 6:coy038. [PMID: 30018763 PMCID: PMC6041801 DOI: 10.1093/conphys/coy038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/10/2018] [Accepted: 06/27/2018] [Indexed: 05/14/2023]
Abstract
California's coastal ecosystems are forecasted to undergo shifting ocean conditions due to climate change, some of which may negatively impact recreational and commercial fish populations. To understand if fish populations have the capacity to respond to multiple stressors, it is critical to examine interactive effects across multiple biological scales, from cellular metabolism to species interactions. This study examined the effects of CO2-acidification and hypoxia on two naturally co-occurring species, juvenile rockfish (genus Sebastes) and a known predator, cabezon (Scorpaenichthys marmoratus). Fishes were exposed to two PCO2 levels at two dissolved oxygen (DO) levels: ~600 (ambient) and ~1600 (high) μatm PCO2 and 8.0 (normoxic) and 4.5 mg l-1 DO (hypoxic) and assessments of cellular metabolism, prey behavior and predation mortality rates were quantified after 1 and 3 weeks. Physiologically, rockfish showed acute alterations in cellular metabolic enzyme activity after 1 week of acclimation to elevated PCO2 and hypoxia that were not evident in cabezon. Alterations in rockfish energy metabolism were driven by increases in anaerobic LDH activity, and adjustments in enzyme activity ratios of cytochrome c oxidase and citrate synthase and LDH:CS. Correlated changes in rockfish behavior were also apparent after 1 week of acclimation to elevated PCO2 and hypoxia. Exploration behavior increased in rockfish exposed to elevated PCO2 and spatial analysis of activity indicated short-term interference with anti-predator responses. Predation rate after 1 week increased with elevated PCO2; however, no mortality was observed under the multiple-stressor treatment suggesting negative effects on cabezon predators. Most noteworthy, metabolic and behavioral changes were moderately compensated after 3 weeks of acclimation, and predation mortality rates also decreased suggesting that these rockfish may be resilient to changes in environmental stressors predicted by climate models. Linking physiological and behavioral responses to multiple stressors is vital to understand impacts on populations and community dynamics.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Lisa M Komoroske
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Matthew J Hansen
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Jamilynn B Poletto
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
- School of Natural Resources, University of Nebraska, Lincoln, NE, USA
| | - Emily N Perry
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Nathan A Miller
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Sean M Ehlman
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, USA
| | - Sarah G Wheeler
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
- Corresponding author: Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA. Tel: +(530) 752-4997;
| |
Collapse
|
40
|
Cattano C, Calò A, Di Franco A, Firmamento R, Quattrocchi F, Sdiri K, Guidetti P, Milazzo M. Ocean acidification does not impair predator recognition but increases juvenile growth in a temperate wrasse off CO 2 seeps. MARINE ENVIRONMENTAL RESEARCH 2017; 132:33-40. [PMID: 29110937 DOI: 10.1016/j.marenvres.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/28/2023]
Abstract
Fish behavioural effects under Ocean Acidification (OA) rely on changes expected to occur in brain function, which can be reversed by gabazine, a GABA-A antagonist. Here, using standard two-channel choice flume, we assessed OA effects on the predator recognition ability of both gabazine-treated and -untreated Symphodus ocellatus post-settlers living off CO2 seeps in the Mediterranean Sea. To estimate the post-settlers background predation risk we evaluated the density of their predator in the wild and through otolith aging techniques we assessed their post-settlement growth. Results showed that: 1) post-settlers predator recognition was unaffected under OA; 2) post-settlers living in elevated CO2 were on average 15% bigger in size than those from ambient conditions. Our results support fish behavioural tolerance to OA, potentially mediated by pre-exposure to high-risk predation levels, and speculate that by increasing body size, juvenile fish might more efficiently avoid their predators.
Collapse
Affiliation(s)
- Carlo Cattano
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123 Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy.
| | - Antonio Calò
- Université Côte d'Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| | - Antonio Di Franco
- Université Côte d'Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| | - Roberto Firmamento
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123 Palermo, Italy
| | - Federico Quattrocchi
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Khalil Sdiri
- Université Côte d'Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| | - Paolo Guidetti
- CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy; Université Côte d'Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
| | - Marco Milazzo
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123 Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy
| |
Collapse
|
41
|
Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Front Zool 2017; 14:49. [PMID: 29093740 PMCID: PMC5661927 DOI: 10.1186/s12983-017-0238-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO2-induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396–548 μatm PCO2 under control and 915–1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod (Boreogadus saida, exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod (Gadus morhua, exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience. Results We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO2, possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO2 induced behavioural impairments. In contrast to B. saida, such temperature limitation was not detected in G. morhua; however, at 8 °C, CO2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua. Further, increased availability of energy-rich substrates was detected under these conditions. Conclusions Our results indicate a change of GABAergic metabolism in the nervous system of Gadus morhua close to the optimum of the temperature range. Since a former study showed that juvenile G. morhua might be slightly more behaviourally resilient to CO2 at this respective temperature, we conclude that the observed change of GABAergic metabolism could be involved in counteracting OA induced behavioural changes. This may serve as a fitness advantage of this respective species compared to B. saida in a future warmer, more acidified polar ocean. Electronic supplementary material The online version of this article (10.1186/s12983-017-0238-5) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Jarrold MD, Humphrey C, McCormick MI, Munday PL. Diel CO 2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci Rep 2017; 7:10153. [PMID: 28860652 PMCID: PMC5578974 DOI: 10.1038/s41598-017-10378-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Elevated CO2 levels associated with ocean acidification (OA) have been shown to alter behavioural responses in coral reef fishes. However, all studies to date have used stable pCO2 treatments, not considering the substantial diel pCO2 variation that occurs in shallow reef habitats. Here, we reared juvenile damselfish, Acanthochromis polyacanthus, and clownfish, Amphiprion percula, at stable and diel cycling pCO2 treatments in two experiments. As expected, absolute lateralization of A. polyacanthus and response to predator cue of Am. percula were negatively affected in fish reared at stable, elevated pCO2 in both experiments. However, diel pCO2 fluctuations reduced the negative effects of OA on behaviour. Importantly, in experiment two, behavioural abnormalities that were present in fish reared at stable 750 µatm CO2 were largely absent in fish reared at 750 ± 300 µatm CO2. Overall, we show that diel pCO2 cycles can substantially reduce the severity of behavioural abnormalities caused by elevated CO2. Thus, past studies may have over-estimated the impacts of OA on the behavioural performance of coral reef fishes. Furthermore, our results suggest that diel pCO2 cycles will delay the onset of behavioural abnormalities in natural populations.
Collapse
Affiliation(s)
- Michael D Jarrold
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Craig Humphrey
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia
| | - Mark I McCormick
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
43
|
Ferrari MC, McCormick MI, Watson SA, Meekan MG, Munday PL, Chivers DP. Predation in High CO2 Waters: Prey Fish from High-Risk Environments are Less Susceptible to Ocean Acidification. Integr Comp Biol 2017; 57:55-62. [DOI: 10.1093/icb/icx030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
44
|
Esbaugh AJ. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 2017; 188:1-13. [PMID: 28547292 DOI: 10.1007/s00360-017-1105-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Ocean acidification (OA) is an impending environmental stress facing all marine life, and as such has been a topic of intense research interest in recent years. Numerous detrimental effects have been documented in marine fish, ranging from reduced mortality to neurosensory impairment, and the prevailing opinions state that these effects are largely the downstream consequences of altered blood carbon dioxide chemistry caused by respiratory acid-base disturbances. While the respiratory acid-base disturbances are consistent responses to OA across tested fish species, it is becoming increasingly clear that there is wide variability in the degree of downstream impairments between species. This can also be extended to intraspecies variability, whereby some individuals have tolerant physiological traits, while others succumb to the effects of OA. This review will synthesize relevant literature on marine fish to highlight consistent trends of impairment, as well as observed interspecies variability in the responses to OA, and the potential routes of physiological acclimation. In all cases, whole animal responses are linked to demonstrated or proposed physiological impairments. Major topics of focus include: (1) respiratory acid-base disturbances; (2) early life survival and growth; (3) the implications for metabolic performance, activity, and reproduction; and (4) emerging physiological theories pertaining to neurosensory impairment and the role of GABAA receptors. Particular emphasis is placed on the importance of understanding the underlying physiological traits that confer inter- and intraspecies tolerance, as the abundance of these traits will decide the long-term outlook of marine fish.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| |
Collapse
|
45
|
Welch MJ, Munday PL. Heritability of behavioural tolerance to high CO 2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol Appl 2017; 10:682-693. [PMID: 28717388 PMCID: PMC5511360 DOI: 10.1111/eva.12483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated limited potential for acclimation of adversely affected olfactory behaviours in reef fishes under elevated CO2, indicating that genetic adaptation will be required to maintain behavioural performance in the future. Adaptation depends on the presence of heritable phenotypic variation in the trait, which may differ between populations and environments. We used parent–offspring regressions to estimate the heritability (h2) of variation in behavioural tolerance to high CO2 (754 μatm) in both field‐collected and laboratory‐reared families of Acanthochromis polyacanthus. Tolerance to elevated CO2 was measured by determining the behavioural response of individuals to chemical alarm cues. Both populations exhibited high heritability of olfactory behaviour phenotype (father–mid‐offspring h2 = 0.56 & 0.65, respectively) when offspring were acutely exposed to high CO2 for 4 days. However, there was no heritability in the behavioural phenotype when juveniles were chronically exposed to high CO2 for 6 weeks in the laboratory‐reared families. Parental exposure to high CO2 during the breeding season did not alter this relationship between heritability and length of juvenile exposure to high CO2. These results demonstrate that variation in behavioural tolerance to high CO2 is heritable, but adaptive potential may be constrained by a loss of phenotypic variation when juveniles permanently experience a high‐CO2 environment, as will occur with rising CO2 levels in the ocean.
Collapse
Affiliation(s)
- Megan J Welch
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia.,College of Marine and Environmental Sciences James Cook University Townsville QLD Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| |
Collapse
|
46
|
Lai F, Fagernes CE, Jutfelt F, Nilsson GE. Expression of genes involved in brain GABAergic neurotransmission in three-spined stickleback exposed to near-future CO 2. CONSERVATION PHYSIOLOGY 2016; 4:cow068. [PMID: 28066553 PMCID: PMC5196030 DOI: 10.1093/conphys/cow068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 05/28/2023]
Abstract
Change in the activity of the main inhibitory receptor, GABAA, has been suggested to be a general mechanism behind the behavioural alterations reported in ocean acidification studies on fish. It has been proposed that regulatory acid-base mechanisms in response to high CO2 alter the neuronal Cl- and HCO3- gradients that are important for GABAA receptor function. Here, we report a comprehensive analysis of gene expression of GABAA receptor subunits and of genes involved in GABAergic transmission in the brain of fish exposed to near-future CO2. Altogether, 56 mRNA transcripts were quantified in brains of three-spined stickleback (Gasterosteus aculeatus) kept in control pCO2 (333 ± 30 μatm CO2) or at high pCO2 levels (991 ± 57 μatm) for 43 days. The gene expression analysis included GABAA receptor subunits (α1-6, β1-3, γ1-3, δ, π and ρ1-3), enzymes and transporters involved in GABA metabolism (GAD1-2, GABAT and GAT1-3), GABAA receptor-associated proteins (GABARAP and GABARAPL), ion cotransporters (KCC1-4, NKCC1, ClC21-3, AE3 and NDAE) and carbonic anhydrase (CAII). Exposure to high CO2 had only minor effects on the expression of genes involved in GABAergic neurotransmission. There were significant increases in the mRNA levels of α family subunits of the GABAA receptor, with a more pronounced expression of α12, α3, α4 and α6b. No changes were detected in the expression of other GABAA subunits or in genes related to receptor turnover, GABA metabolism or ion transport. Although the minor changes seen for mRNA levels might reflect compensatory mechanisms in the high-CO2 conditions, these were apparently insufficient to restore normal neural function, because the behavioural changes persisted within the time frame studied.
Collapse
Affiliation(s)
- Floriana Lai
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Cathrine E Fagernes
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
47
|
Heuer RM, Grosell M. Elevated CO 2 increases energetic cost and ion movement in the marine fish intestine. Sci Rep 2016; 6:34480. [PMID: 27682149 PMCID: PMC5041088 DOI: 10.1038/srep34480] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/14/2016] [Indexed: 11/09/2022] Open
Abstract
Energetic costs associated with ion and acid-base regulation in response to ocean acidification have been predicted to decrease the energy available to fish for basic life processes. However, the low cost of ion regulation (6-15% of standard metabolic rate) and inherent variation associated with whole-animal metabolic rate measurements have made it difficult to consistently demonstrate such a cost. Here we aimed to gain resolution in assessing the energetic demand associated with acid-base regulation by examining ion movement and O2 consumption rates of isolated intestinal tissue from Gulf toadfish acclimated to control or 1900 μatm CO2 (projected for year 2300). The active marine fish intestine absorbs ions from ingested seawater in exchange for HCO3- to maintain water balance. We demonstrate that CO2 exposure causes a 13% increase of intestinal HCO3- secretion that the animal does not appear to regulate. Isolated tissue from CO2-exposed toadfish also exhibited an 8% higher O2 consumption rate than tissue from controls. These findings show that compensation for CO2 leads to a seemingly maladaptive persistent base (HCO3-) loss that incurs an energetic expense at the tissue level. Sustained increases to baseline metabolic rate could lead to energetic reallocations away from other life processes at the whole-animal level.
Collapse
Affiliation(s)
- Rachael M Heuer
- University of Miami- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Martin Grosell
- University of Miami- Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|