1
|
Li H, Yao W, Yang C, Zhang W, Wang Y, Lin Y, Du Z, Zhang C, Huang L, Zhang M, Fan H, Zhu J, Xiang H. SIRT5 Regulates Lipid Deposition in Goat Preadipocytes via PI3K-Akt and MAPK Signaling Pathways. Animals (Basel) 2025; 15:1072. [PMID: 40218465 PMCID: PMC11988186 DOI: 10.3390/ani15071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Silent Information Regulator 5 (SIRT5) has been established as a crucial regulator of cellular alanylation modification. Furthermore, accumulating evidence suggests that SIRT5 plays a significant regulatory role in key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid oxidation, all of which are closely associated with cellular lipid metabolism. Despite these advancements, the specific role of SIRT5 in regulating intramuscular fat (IMF) deposition in goats, as well as the underlying molecular mechanisms, remains largely unexplored. In this study, we cloned the complete coding sequence of the goat SIRT5 gene and, through amino acid sequence alignment, demonstrated its closest phylogenetic relationship with sheep. Additionally, we characterized the higher expression of SIRT5 during the differentiation of goat intramuscular precursor adipocytes. The silencing of SIRT5 by siRNA-mediated knockdown significantly upregulated the expression of lipogenesis-related genes and enhanced lipid deposition in goat intramuscular preadipocytes. Concurrently, SIRT5 deficiency led to the inhibition of cell proliferation and a marked reduction in apoptosis. Interestingly, although overexpression of SIRT5 promoted cell proliferation, it did not significantly alter lipid deposition in goat intramuscular precursor adipocytes. RNA sequencing (RNA-seq) analysis identified a total of 106 differentially expressed genes (DEGs) following SIRT5 silencing in goat preadipocytes, predominantly involved in the Focal adhesion, HIF-1, PI3K-Akt, and MAPK signaling pathways by KEGG pathway enrichment analysis. Notably, we successfully reversed the phenotypic effects observed in SIRT5 knockdown goat precursor adipocytes by inhibiting the PI3K-Akt and MAPK signaling pathways using the AKT inhibitor LY294002 and the p38 MAPK pathway inhibitor PD169316, respectively. In conclusion, our findings demonstrated that SIRT5 may modulate intramuscular fat deposition in goats through PI3k-Akt and MAPK signaling pathways. These results expand the gene regulatory network associated with IMF formation and provide a theoretical foundation for improving meat quality by targeting IMF deposition.
Collapse
Affiliation(s)
- Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenli Yao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Ming Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Huaigong Fan
- Sichuan Guonong Tianfu Agricultural Development Co., Ltd., Chengdu 611441, China;
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| |
Collapse
|
2
|
Lian J, Liu W, Hu Q, Zhang X. Succinylation modification: a potential therapeutic target in stroke. Neural Regen Res 2024; 19:781-787. [PMID: 37843212 PMCID: PMC10664134 DOI: 10.4103/1673-5374.382229] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 10/17/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide. Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of stroke-induced brain injury. Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology. Recently, a new type of post-translational modification, known as lysine succinylation, has been recognized to play a significant role in mitochondrial energy metabolism after ischemia. However, the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood. We aimed to review the effects of succinylation on energy metabolism, reactive oxygen species generation, and neuroinflammation, as well as Sirtuin 5 mediated desuccinylation after stroke. We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke. The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases. Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes. Sirtuins, especially Sirtuin 5, are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes. Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke. Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism, and neuroprotective effects of these agents have been observed in experimental stroke studies. However, their therapeutic efficacy in stroke patients should be validated.
Collapse
Affiliation(s)
- Jie Lian
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
4
|
Kwon OK, Bang IH, Choi SY, Jeon JM, Na AY, Gao Y, Cho SS, Ki SH, Choe Y, Lee JN, Ha YS, Bae EJ, Kwon TG, Park BH, Lee S. SIRT5 Is the desuccinylase of LDHA as novel cancer metastatic stimulator in aggressive prostate cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00018-3. [PMID: 35278714 PMCID: PMC10372916 DOI: 10.1016/j.gpb.2022.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed genital cancer in men worldwide. Among patients who developed advanced PCa, 80% suffered from bone metastasis, with a sharp drop in the survival rate. Despite great efforts, the detail of the mechanisms underlying castration-resistant PCa (CRPC) remain unclear. Sirtuin 5 (SIRT5), an NAD+-dependent desuccinylase, is hypothesized to be a key regulator of various cancers. However, compared to other SIRTs, the role of SIRT5 in cancer has not been extensively studied. Here, we showed significantly decreased SIRT5 levels in aggressive PCa cells relative to the PCa stages. The correlation between the decrease in the SIRT5 level and the patient's survival rate was also confirmed. Using quantitative global succinylome analysis, we characterized a significant increase of lysine 118 succinylation (K118su) of lactate dehydrogenase A (LDHA), which plays a role in increasing LDH activity. As a substrate of SIRT5, LDHA-K118su significantly increased the migration and invasion of PCa cells and LDH activity in PCa patients. This study investigated the reduction of SIRT5 and LDHA-K118su as a novel mechanism involved in PCa progression, which can also be proposed as a new target that can prevent CPRC progression, which is key to PCa treatment.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - So Young Choi
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju Mi Jeon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ann-Yae Na
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Urology, Kyungpook National University Hospital, Daegu 41566, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Urology, Kyungpook National University Hospital, Daegu 41566, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Chonbuk University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Urology, Kyungpook National University Hospital, Daegu 41566, Republic of Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
6
|
Moreno DS, Maza R, Contreras D, Moreira TR, Dos Santos EJ, De Almeida DM, Paulino MF, Rennó LN, Detmann E. Provision of a protein-rich supplement for grazing suckling female beef calves to improve productive performance and metabolic response. Anim Biosci 2021; 35:1174-1183. [PMID: 34727638 PMCID: PMC9262722 DOI: 10.5713/ab.21.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This study was conducted to evaluate the effects of the provision of a protein-rich supplement on productive performance, and metabolic profile on grazing suckling female beef calves in tropical conditions during 150 d of experimentation. Methods Fifty-six Nellore suckling female calves, and their respective dams were distributed in a completely randomised design and made to undergo two treatments as follows: UNS (without supplementation), and SUP (supplementation with 5 g/kg body weight [BW] of a protein supplement). Throughout the experiment, animal performance and metabolic profile were evaluated. Also, ureagenesis and gluconeogenesis were assessed for gene expression. Results SUP female calves showed a higher voluntary intake (p≤0.03) of the diet components evaluated, digestibility of organic matter (p≤0.02) and microbial nitrogen production (MICN; p≤0.02) compared to UNS female calves. In its turn, serum urea nitrogen (p≤0.01) and insulin-like growth factor-1 (p≤0.03) levels and ureagenesis (p≤0.04) increased in SUP female calves compared to UNS female calves. Blood glucose and triglyceride levels were not affected by supplementation. The average daily gain (ADG) from SUP female calves was higher (p≤0.02) compared with UNS female calves. However, supplementation did not affect the body measures of the animals. Conclusion In summary, provision of a protein-rich supplement improves the intake and nutrients digestibility, ADG and final BW and increases metabolic indicators of the protein status in grazing suckling female beef calves in tropical conditions.
Collapse
Affiliation(s)
- Deilen S Moreno
- Faculty of Agricultural Sciences, University of Pamplona, Pamplona, 543050, Colombia
| | - Román Maza
- Faculty of Agricultural Sciences, University of Pamplona, Pamplona, 543050, Colombia
| | - David Contreras
- Faculty of Agricultural Science, University of Cundinamarca, Fusagasugá, 252211, Colombia
| | | | | | | | | | | | - Edenio Detmann
- Animal Science Department, Federal University of Viçosa, Viçosa, 36570-900, Brazil
| |
Collapse
|
7
|
Kim HG, Cho JH, Kim J, Kim SJ. The Role of Epigenetic Changes in the Progression of Alcoholic Steatohepatitis. Front Physiol 2021; 12:691738. [PMID: 34335299 PMCID: PMC8323660 DOI: 10.3389/fphys.2021.691738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic steatohepatitis (ASH) is a progression hepatitis with severe fatty liver and its mortality rate for 30-days in patients are over 30%. Additionally, ASH is well known for one-fifth all alcoholic related liver diseases in the world. Excessive chronic alcohol consumption is one of the most common causes of the progression of ASH and is associated with poor prognosis and liver failure. Alcohol abuse dysregulates the lipid homeostasis and causes oxidative stress and inflammation in the liver. Consequently, metabolic pathways stimulating hepatic accumulation of excessive lipid droplets are induced. Recently, many studies have indicated a link between ASH and epigenetic changes, showing differential expression of alcohol-induced epigenetic genes in the liver. However, the specific mechanisms underlying the pathogenesis of ASH remain elusive. Thus, we here summarize the current knowledge about the roles of epigenetics in lipogenesis, inflammation, and apoptosis in the context of ASH pathophysiology. Especially, we highlight the latest findings on the roles of Sirtuins, a conserved family of class-III histone deacetylases, in ASH. Additionally, we discuss the involvement of DNA methylation, histone modifications, and miRNAs in ASH as well as the ongoing efforts for the clinical translation of the findings in ASH-related epigenetic changes.
Collapse
Affiliation(s)
- Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jung-Hyo Cho
- Department of East & West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Seung-Jin Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
8
|
Li Y, Gao M, Yin LH, Xu LN, Qi Y, Sun P, Peng JY. Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic Biol Med 2021; 169:99-109. [PMID: 33836263 DOI: 10.1016/j.freeradbiomed.2021.03.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Dioscin, one natural product, has various pharmacological actions. However, its effects on methotrexate (MTX)-induced hepatorenal damages still remain unknown. In the present study, the data manifested that dioscin restored the viabilities of L-02 and NRK-52E cells, reduced ALT, AST, Cr, BUN levels, and ameliorated histopathological changes of liver and kidney. Besides, dioscin decreased ROS levels in cells, and adjusted SOD, MDA, GSH and GSH-Px levels in rats. Dioscin reduced the expression levels of miR-145-5p which directly targeted Sirt5, and then regulated the expression levels of SOD1, Nrf2, Gst, Keap1, HO-1, GCLC and NQO1. MiR-145-5p mimic in cells deteriorated ROS levels and decreased Sirt5 expression to accentuate oxidative stress by regulating the expression levels of SOD1, Nrf2, Keap1, which were all reversed by dioscin. Moreover, MTX-induced hepatorenal damage were worsened in mice by Sirt5 siRNA or miR-145-5p agomir, which were also alleviated by dioscin. Dioscin relieved MTX-induced hepatorenal damages through regulating miR-145-5p-medicated oxidative stress, which should be considered as one effective drug to treat the disorder in future.
Collapse
Affiliation(s)
- Y Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - M Gao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - L-H Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - L-N Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Y Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Pengyuan Sun
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| | - J-Y Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Hong L, Fan D. Biological Implications and Clinical Potential of Metastasis-Related miRNA in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:42-54. [PMID: 33335791 PMCID: PMC7723777 DOI: 10.1016/j.omtn.2020.10.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), ranking as the third commonest cancer, leads to extremely high rates of mortality. Metastasis is the major cause of poor outcome in CRC. When metastasis occurs, 5-year survival rates of patients decrease sharply, and strategies to enhance a patient's lifetime seem limited. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that are significantly involved in manipulation of CRC malignant phenotypes, including proliferation, invasion, and metastasis. To date, accumulating studies have revealed the mechanisms and functions of certain miRNAs in CRC metastasis. However, there is no systematic discussion about the biological implications and clinical potential (diagnostic role, prognostic role, and targeted therapy potential) of metastasis-related miRNAs in CRC. This review mainly summarizes the recent advances of miRNA-mediated metastasis in CRC. We also discuss the clinical values of metastasis-related miRNAs as potential biomarkers or therapeutic targets in CRC. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji’an 343700, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
10
|
Nitzahn M, Lipshutz GS. CPS1: Looking at an ancient enzyme in a modern light. Mol Genet Metab 2020; 131:289-298. [PMID: 33317798 PMCID: PMC7738762 DOI: 10.1016/j.ymgme.2020.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
The mammalian urea cycle (UC) is responsible for siphoning catabolic waste nitrogen into urea for excretion. Disruptions of the functions of any of the enzymes or transporters lead to elevated ammonia and neurological injury. Carbamoyl phosphate synthetase 1 (CPS1) is the first and rate-limiting UC enzyme responsible for the direct incorporation of ammonia into UC intermediates. Symptoms in CPS1 deficiency are typically the most severe of all UC disorders, and current clinical management is insufficient to prevent the associated morbidities and high mortality. With recent advances in basic and translational studies of CPS1, appreciation for this enzyme's essential role in the UC has been broadened to include systemic metabolic regulation during homeostasis and disease. Here, we review recent advances in CPS1 biology and contextualize them around the role of CPS1 in health and disease.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Moura FHD, Costa TC, Trece AS, Melo LPD, Manso MR, Paulino MF, Rennó LN, Fonseca MA, Detmann E, Gionbelli MP, Duarte MDS. Effects of energy-protein supplementation frequency on performance of primiparous grazing beef cows during pre and postpartum. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1430-1443. [PMID: 32106648 PMCID: PMC7468163 DOI: 10.5713/ajas.19.0784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022]
Abstract
Objective Twenty-four pregnant Nellore primiparous grazing cows were used to evaluate the effects of energy-protein supplementation and supplementation frequency during pre (105 d before calving) and postpartum (105 d after calving) on performance and metabolic characteristics. Methods Experimental treatments consisted of a control (no supplementation), daily supplementation (1.5 kg/d of concentrate/animal) and infrequent supplementation (4.5 kg of concentrate/animal every three days). During the pre and postpartum periods, concentrations of blood metabolites and animal performance were evaluated. Ureagenesis and energy metabolism markers were evaluated at prepartum period. Results Supplementation frequency did not alter (p>0.10) body weight (BW), average daily gain (ADG), and carcass traits during pre and postpartum. The BW (p = 0.079), adjusted BW at day of parturition (p = 0.078), and ADG (p = 0.074) were greater for supplemented cows during the prepartum. The body condition score (BCS; p = 0.251), and carcass traits (p>0.10) were not affected by supplementation during prepartum. On postpartum, supplementation did not affect animal performance and carcass traits (p>0.10). The dry mater intake was not affected (p>0.10) by supplementation and supplementation frequency throughout the experimental period. Daily supplemented animals had greater (p<0.001) glucose levels than animals supplemented every three days. Supplementation and supplementation frequency did not alter (p>0.10) the levels of blood metabolites, neither the abundance of ureagenesis nor energy metabolism markers. Conclusion In summary, our data show that the reduction of supplementation frequency does not cause negative impacts on performance and metabolic characteristics of primiparous grazing cows during the prepartum.
Collapse
Affiliation(s)
| | - Thaís Correia Costa
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil.,Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Aline Souza Trece
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | | | - Marcos Rocha Manso
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Mário Fonseca Paulino
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Luciana Navajas Rennó
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Mozart Alves Fonseca
- Department of Agriculture, Nutrition and Veterinary Sciences, College of Agriculture, Biotechnology & Natural Resources, University of Nevada - Reno, Reno, NV 89557, USA
| | - Edenio Detmann
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
| | - Marcio de Souza Duarte
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil.,Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| |
Collapse
|
12
|
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, Indrischek H, Chintalapati M, Lohse K, Doose G, Overmann J, Bunk B, Bleidorn C, Grimm-Seyfarth A, Henle K, Nowick K, Faria R, Stadler PF, Schlegel M. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019; 8:giy160. [PMID: 30535196 PMCID: PMC6381762 DOI: 10.1093/gigascience/giy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Amin Saffari
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Maria Beatriz Walter Costa
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Embrapa Agroenergia, Parque Estacaeo Biologica (PqEB), Asa Norte, Brasilia/DF, 70770-901, Brazil
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
- Max Planck Institute for Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01397 Dresden, Germany
| | - Manjusha Chintalapati
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Gero Doose
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Jörg Overmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, 28006, Spain
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, Potsdam, 14476, Germany
| | - Klaus Henle
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Katja Nowick
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Rui Faria
- Department of Animal and Plant Sciences, Alfred Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, Leipzig, 04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
- Fraunhofer Institut Für Zelltherapie Und Immunologie, Perlickstrasse 1, Leipzig, 04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger strasse 17, Wien, 1090, Austria
- Center for non-Coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, Frederiksberg C, 1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| |
Collapse
|
13
|
To KKW, Tong CWS, Wu M, Cho WCS. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J Gastroenterol 2018; 24:2949-2973. [PMID: 30038463 PMCID: PMC6054943 DOI: 10.3748/wjg.v24.i27.2949] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that can post-transcriptionally regulate the expression of various oncogenes and tumor suppressor genes. Dysregulated expression of many miRNAs have been shown to mediate the signaling pathways critical in the multistep carcinogenesis of colorectal cancer (CRC). MiRNAs are stable and protected from RNase-mediated degradation, thereby enabling its detection in biological fluids and archival tissues for biomarker studies. This review focuses on the role and application of miRNAs in the prognosis and therapy of CRC. While stage II CRC is potentially curable by surgical resection, a significant percentage of stage II CRC patients do develop recurrence. MiRNA biomarkers may be used to stratify such high-risk population for adjuvant chemotherapy to provide better prognoses. Growing evidence also suggests that miRNAs are involved in the metastatic process of CRC. Certain of these miRNAs may thus be used as prognostic biomarkers to identify patients more likely to have micro-metastasis, who could be monitored more closely after surgery and/or given more aggressive adjuvant chemotherapy. Intrinsic and acquired resistance to chemotherapy severely hinders successful chemotherapy in CRC treatment. Predictive miRNA biomarkers for response to chemotherapy may identify patients who will benefit the most from a particular regimen and also spare the patients from unnecessary side effects. Selection of patients to receive the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Lastly, forced expression of tumor suppressor miRNA or silencing of oncogenic miRNA in tumors by gene therapy can also be adopted to treat CRC alone or in combination with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kenneth KW To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Christy WS Tong
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - William CS Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
14
|
Zhao Y, Zhou H, Ayisi CL, Wang Y, Wang J, Chen X, Zhao J. Suppression of miR-26a attenuates physiological disturbances arising from exposure of Nile tilapia ( Oreochromis niloticus) to ammonia. Biol Open 2018; 7:bio.029082. [PMID: 29615414 PMCID: PMC5936054 DOI: 10.1242/bio.029082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs may affect stress responses because they act as rapid responders at the post-translation level. In this study, we found that miR-26a is abundantly expressed in the brain and gill tissues of tilapia. Expression of miR-26a in the brain decreased significantly with increasing ammonia concentrations using stem-loop qPCR. To analyze the function of miRNA in vivo, miR-26a was stably knocked down with an antagomir in tilapia. Following ammonia challenge, miR-26a antagomir treatment significantly suppressed blood ammonia/[Cl−]/[K+] concentration and the reactive oxygen species production, while it markedly enhanced glutamine accumulation and antioxidant enzyme activity in the brain of tilapia, indicating that miR-26a may be involved in the remission of physiological disturbances resulting from ammonia stress. We strongly conclude that there is a direct link between miR-26a and the responses to ammonia in tilapia. Furthermore, bioinformatics analysis and luciferase assays demonstrated that miR-26a regulates HSP70 (heat shock protein 70) and GS (glutamine synthetase) expression by targeting their 3′-UTR and that the suppression of miR-26a could increase the intracellular level of HSP70 and GS in vivo. Summary: Our work increases the available information about the regulation of miR-26a and indicates that miR-26a may be involved in the remission of physiological disorders upon ammonia stress in tilapia.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| | - Haotian Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| | - Christian Larbi Ayisi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China
| | - Yan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| | - Xiaowu Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| | - Jinling Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, Shanghai, China.,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306, Shanghai, China
| |
Collapse
|
15
|
Cruz-Gil S, Sanchez-Martinez R, Gomez de Cedron M, Martin-Hernandez R, Vargas T, Molina S, Herranz J, Davalos A, Reglero G, Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J Lipid Res 2018; 59:14-24. [PMID: 29074607 PMCID: PMC5748493 DOI: 10.1194/jlr.m076752] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.
Collapse
Affiliation(s)
- Silvia Cruz-Gil
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Ruth Sanchez-Martinez
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Gomez de Cedron
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Roberto Martin-Hernandez
- Bioinformatics Unit, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Susana Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Jesús Herranz
- Biostatistics Unit, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Davalos
- Disorders of Lipid Metabolism and Molecular Nutrition Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Ana Ramirez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
16
|
Wang Q, Qi R, Liu H, Wang J, Huang W, Yang F, Huang J. Effects of Conjugated Linoleic Acid Supplementation on the Expression Profile of miRNAs in Porcine Adipose Tissue. Genes (Basel) 2017; 8:genes8100271. [PMID: 29027986 PMCID: PMC5664121 DOI: 10.3390/genes8100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Conjugated linoleic acids (CLAs) play a major role in adipocyte differentiation and lipid metabolism in animals. MicroRNAs (miRNAs) appear to be involved in many biological processes in adipose tissue. However, the specific influence on miRNAs by CLA supplementation in porcine adipose tissue remains unclear. Thus, we continuously added 1.5% CLA to the pig diet from the embryo stage to the finishing period and conducted a high-throughput sequencing approach to analyse the changes in adipose tissue miRNAs. We identified 283 known porcine miRNAs, and 14 miRNAs were differentially expressed in response to CLA treatment. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the targets of the 14 differentially expressed miRNAs were involved in the Wnt signalling pathway. The CLA treatment downregulated the gene expression of PPARγ, C/EBPα, FAS, and FATP1 in both subcutaneous and abdominal fat tissues; the analysis showed that ssc-miR-21 expression was significantly correlated with PPARγ expression (p < 0.05), and speculated that ssc-miR-21 might influence adipogenesis through PPARγ. In conclusion, our study analysed the miRNA profiles in porcine adipose tissues by CLA treatment, and demonstrated that miRNAs are important regulators of fat lipogenesis. This study provides valuable information for the molecular regulatory mechanism of CLA on adipose tissue.
Collapse
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Hong Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Wenming Huang
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China.
| |
Collapse
|