1
|
Murayama MA. Complement C3 deficient mice show more severe imiquimod-induced psoriasiform dermatitis than wild-type mice regardless of the commensal microbiota. Exp Anim 2024; 73:458-467. [PMID: 38945882 PMCID: PMC11534491 DOI: 10.1538/expanim.24-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
2
|
Wang J, Chen W, Chen S, Yue G, Hu Y, Xu J. Landscape of infiltrating immune cells and related genes in diabetic kidney disease. Clin Exp Nephrol 2024; 28:181-191. [PMID: 37882850 DOI: 10.1007/s10157-023-02422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is one of the prominent microvascular complications of diabetes and the leading cause of end-stage renal disease. Inflammation plays a crucial role in the development and progression of DKD. Currently, only a few studies depict the landscape of infiltrating immune cells and their potential regulatory network in DKD. To gain a better understanding of the role of immune cells in the renal microenvironment, we sought to reveal the profile of infiltrating immune cells and their potential regulatory network in DKD. METHODS We obtained the transcriptomes and the corresponding clinical data of 19 DKD and 25 control samples from the Gene Expression Omnibus and Nephroseq databases, respectively. Thereafter, we conducted an analysis on the infiltrating immune cells and identified immune-related differentially expressed genes through bioinformatics. Finally, correlation analyses among immune cells, immune genes, and clinical manifestations were performed, and differentially infiltrating immune cell subsets were verified through multiplex immunofluorescence staining. RESULTS We demonstrated the landscape of infiltrating immune cells in patients with DKD and identified the top five hub immune regulatory genes (C3, IL7R, TYROBP, BMP2, and CXCL6). Three of the core genes (C3, BMP2, and CXCL6) were significantly correlated with the estimated glomerular filtration rate. Through multiplex immunofluorescence staining, we verified that macrophage numbers were remarkably elevated, whereas Treg cells were remarkably reduced in diabetic kidney tissues. Th2 cells were scarce in the kidney tissue. CONCLUSION Collectively, our findings shed light on new, possible therapeutic strategies for DKD, from an immune microenvironment perspective.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Wen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ying Hu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
Qiao P, Zhi D, Yu C, Zhang C, Wu K, Fang H, Shao S, Yin W, Dang E, Li K, Wang G. Activation of the C3a anaphylatoxin receptor inhibits keratinocyte proliferation by regulating keratin 6, keratin 16, and keratin 17 in psoriasis. FASEB J 2022; 36:e22322. [PMID: 35429062 DOI: 10.1096/fj.202101458r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Pei Qiao
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
- Department of Transfusion Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Dalong Zhi
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Chen Yu
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Chen Zhang
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Kunyi Wu
- Core Research Laboratory The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an China
| | - Hui Fang
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Shuai Shao
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Wen Yin
- Department of Transfusion Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Erle Dang
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| | - Ke Li
- Core Research Laboratory The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an China
| | - Gang Wang
- Department of Dermatology Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
4
|
Zheng QY, Liang SJ, Xu F, Yang Y, Feng JL, Shen F, Zhong Y, Wu S, Shu Y, Sun DD, Xu GL. Complement component 3 prevents imiquimod-induced psoriatic skin inflammation by inhibiting apoptosis in mice. Int Immunopharmacol 2020; 85:106692. [PMID: 32535539 DOI: 10.1016/j.intimp.2020.106692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Complement component 3 (C3), a pivotal molecule in the complement system, is an essential immune mediator in various diseases, including psoriasis. However, the mechanistic role of C3 in psoriasis pathology and development remains elusive. Here, we showed that C3 deficiency dramatically augmented imiquimod-induced psoriasis-like skin inflammation, characterized by greater epidermal hyperplasia, inflammatory cell infiltration, and inflammatory gene expression than those in wild-type counterparts. In addition, C3 deficiency promoted imiquimod-induced skin cell apoptosis and supported greater proportions of IFN-γ+ T cells in the inflamed tissues. Accordingly, C3 supplement in the C3 deficient mice reduced skin inflammation and cells apoptosis. Moreover, blocking apoptosis with Z-VAD-FMK, a broad caspase inhibitor, markedly attenuated imiquimod-induced psoriasis-like skin inflammation and IFN-γ+ T cell responses in C3-deficient mice. Collectively, our results suggest that C3 prevents imiquimod-induced psoriasis-like skin inflammation by inhibiting apoptosis.
Collapse
Affiliation(s)
- Quan-You Zheng
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Shen-Ju Liang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Feng Xu
- Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Yi Yang
- Department of Rheumatism and Immunology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian-Li Feng
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Fen Shen
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu Zhong
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China; Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Shun Wu
- Department of Immunology, Army Medical University, Chongqing 400038, China
| | - Yong Shu
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Dao-Dong Sun
- Department of Urology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Gui-Lian Xu
- Department of Immunology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
5
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Cernoch M, Viklicky O. Complement in Kidney Transplantation. Front Med (Lausanne) 2017; 4:66. [PMID: 28611987 PMCID: PMC5447724 DOI: 10.3389/fmed.2017.00066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
The complement system is considered to be an important part of innate immune system with a significant role in inflammation processes. The activation can occur through classical, alternative, or lectin pathway, resulting in the creation of anaphylatoxins C3a and C5a, possessing a vast spectrum of immune functions, and the assembly of terminal complement cascade, capable of direct cell lysis. The activation processes are tightly regulated; inappropriate activation of the complement cascade plays a significant role in many renal diseases including organ transplantation. Moreover, complement cascade is activated during ischemia/reperfusion injury processes and influences delayed graft function of kidney allografts. Interestingly, complement system has been found to play a role in both acute cellular and antibody-mediated rejections and thrombotic microangiopathy. Therefore, complement system may represent an interesting therapeutical target in kidney transplant pathologies.
Collapse
Affiliation(s)
- Marek Cernoch
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|